

Tools in Artificial Intelligence

Tools in Artificial Intelligence

Edited by

Paula Fritzsche

I-Tech

IV

Published by In-Teh

In-Teh is Croatian branch of I-Tech Education and Publishing KG, Vienna, Austria.

Abstracting and non-profit use of the material is permitted with credit to the source. Statements and
opinions expressed in the chapters are these of the individual contributors and not necessarily those of
the editors or publisher. No responsibility is accepted for the accuracy of information contained in the
published articles. Publisher assumes no responsibility liability for any damage or injury to persons or
property arising out of the use of any materials, instructions, methods or ideas contained inside. After
this work has been published by the In-Teh, authors have the right to republish it, in whole or part, in
any publication of which they are an author or editor, and the make other personal use of the work.

© 2008 In-teh
www.in-teh.org
Additional copies can be obtained from:
publication@ars-journal.com

First published August 2008
Printed in Croatia

A catalogue record for this book is available from the University Library Rijeka under no. 111220071

Tools in Artificial Intelligence, Edited by Paula Fritzsche
 p. cm.
ISBN 978-953-7619-03-9
1. Artificial Intelligence. 2. Tools. I. Paula Fritzsche

Preface

Artificial Intelligence (AI) is often referred to as a branch of science which deals with

helping machines find solutions to complex problems in a more human-like fashion. It is
generally associated with Computer Science, but it has many important links with other
fields such as Maths, Psychology, Cognition, Biology and Philosophy. The AI success is due
to its technology has diffused into everyday life. Neural networks, fuzzy controls, decision
trees and rule-based systems are already in our mobile phones, washing machines and
business applications.

The book “Tools in Artificial Intelligence” offers in 27 chapters a collection of all the tech-

nical aspects of specifying, developing, and evaluating the theoretical underpinnings and
applied mechanisms of AI tools. Topics covered include neural networks, fuzzy controls,
decision trees, rule-based systems, data mining, genetic algorithm and agent systems,
among many others.

The goal of this book is to show some potential applications and give a partial picture of

the current state-of-the-art of AI. Also, it is useful to inspire some future research ideas by
identifying potential research directions. It is dedicated to students, researchers and practi-
tioners in this area or in related fields.

Editor

Paula Fritzsche

Computer Architecture and Operating Systems Department
University Autonoma of Barcelona

Spain
e-mail: paula.fritzsche@caos.uab.es

 VII

Contents

 Preface V

1. Computational Intelligence in Software Cost Estimation: Evolving
Conditional Sets of Effort Value Ranges

001

 Efi Papatheocharous and Andreas S. Andreou

2. Towards Intelligible Query Processing in Relevance Feedback-Based
Image Retrieval Systems

021

 Belkhatir Mohammed

3. GNGS: An Artificial Intelligent Tool for Generating and Analyzing
Gene Networks from Microarray Data

035

 Austin H. Chen and Ching-Heng Lin

4. Preferences over Objects, Sets and Sequences 049
 Sandra de Amo and Arnaud Giacometti

5. Competency-based Learning Object Sequencing using Particle Swarms 077
 Luis de Marcos, Carmen Pages, José Javier Martínez and José Antonio Gutiérrez

6. Image Thresholding of Historical Documents Based on Genetic Algorithms 093
 Carmelo Bastos Filho, Carlos Alexandre Mello, Júlio Andrade, Marília Lima,

Wellington dos Santos, Adriano Oliveira and Davi Falcão

7. Segmentation of Greek Texts by Dynamic Programming 101
 Pavlina Fragkou, Athanassios Kehagias and Vassilios Petridis

8. Applying Artificial Intelligence to Predict the Performance of
Data-dependent Applications

121

 Paula Fritzsche, Dolores Rexachs and Emilio Luque

9. Agent Systems in Software Engineering 139
 Vasilios Lazarou and Spyridon Gardikiotis

10. A Joint Probability Data Association Filter Algorithm for

Multiple Robot Tracking Problems
163

 Aliakbar Gorji Daronkolaei, Vahid Nazari, Mohammad Bagher Menhaj, and
Saeed Shiry

11. Symbiotic Evolution of Rule Based Classifiers 187
 Ramin Halavati and Saeed Bagheri Shouraki

VIII

12. A Multiagent Method to Design Open Embedded Complex Systems 205
 Jamont Jean-Paul and Occello Michel

13. Content-based Image Retrieval Using Constrained Independent
Component Analysis: Facial Image Retrieval Based on Compound Queries

223

 Tae-Seong Kim and Bilal Ahmed

14. Text Classification Aided by Clustering: a Literature Review 233
 Antonia Kyriakopoulou

15. A Review of Past and Future Trends in Perceptual Anchoring. 253
 Silvia Coradeschi and Amy Loutfi

16. A Cognitive Vision Approach to Image Segmentation 265
 Vincent Martin and Monique Thonnat

17. An Introduction to the Problem of Mapping in Dynamic Environments 295
 Nikos C. Mitsou and Costas S. Tzafestas

18. Inductive Conformal Prediction: Theory and Application to Neural Networks 315
 Harris Papadopoulos

19. Robust Classification of Texture Images using Distributional-based

Multivariate Analysis
331

 Vasileios K. Pothos, Christos Theoharatos,
George Economou and Spiros Fotopoulos

20. Recent Developments in Bit-Parallel Algorithms 349
 Pablo San Segundo, Diego Rodríguez-Losada and Claudio Rossi

21. Multi-Sensor Fusion for Mono and Multi-Vehicle Localization

using Bayesian Network
369

 C. Smaili, M. E. El Najjar, F. Charpillet and C. Rose

22. On the Definition of a Standard Language for Modelling
Constraint Satisfaction Problems

387

 Ricardo Soto, Laurent Granvilliers

23. Software Component Clustering and Retrieval: An Entropy-based
Fuzzy k-Modes Methodology

399

 Constantinos Stylianou and Andreas S. Andreou

24. An Agent-Based System to Minimize Earthquake-Induced Damages 421
 Yoshiya Takeuchi, Takashi Kokawa, Ryota Sakamoto,

Hitoshi Ogawa and Victor V. Kryssanov

 IX

25. A Methodology for the Extraction of Reader s Emotional State
Triggered from Text Typography

439

 Dimitrios Tsonos and Georgios Kouroupetroglou

26. Granule Based Inter-transaction Association Rule Mining 455
 Wanzhong Yang, Yuefeng Li and Yue Xu

27. Countering Good Word Attacks on Statistical Spam Filters with
Instance Differentiation and Multiple Instance Learning

473

 Yan Zhou, Zach Jorgensen and Meador Inge

1

Computational Intelligence in Software Cost
Estimation: Evolving Conditional Sets of

Effort Value Ranges
Efi Papatheocharous and Andreas S. Andreou

Department of Computer Science, University of Cyprus,
 Cyprus

1. Introduction
In the area of software engineering a critical task is to accurately estimate the overall project
costs for the completion of a new software project and efficiently allocate the resources
throughout the project schedule. The numerous software cost estimation approaches
proposed are closely related to cost modeling and recognize the increasing need for
successful project management, planning and accurate cost prediction. Cost estimators are
continually faced with problems stemming from the dynamic nature of the project
development process itself. Software development is considered an intractable procedure
and inevitably depends highly on several complex factors (e.g., specification of the system,
technology shifting, communication, etc.). Normally, software cost estimates increase
proportionally to development complexity rising, whereas it is especially hard to predict
and manage the actual related costs. Even for well-structured and planned approaches to
software development, cost estimates are still difficult to make and will probably concern
project managers long before the problem is adequately solved.
During a system’s life-cycle, one of the most important tasks is to effectively describe the
necessary development activities and estimate the corresponding costs. This estimation,
once successful, allows software engineers to optimize the development process, improve
administration and control over the project resources, reduce the risks caused by
contingencies and minimize project failures (Lederer & Prasad, 1992). Subsequently, a
commonly investigated approach is to accurately estimate some of the fundamental
characteristics related to cost, such as effort and schedule, and identify their inter-
associations. Software cost estimation is affected by multiple parameters related to
technologies, scheduling, manager and team member skills and experiences, mentality and
culture, team cohesion, productivity, project size, complexity, reliability, quality and many
more. These parameters drive software development costs either positively or negatively
and are considerably very hard to measure and manage, especially at an early project
development phase. Hence, software cost estimation involves the overall assessment of
these parameters, even though for the majority of the projects, the most dominant and
popular metric is the effort cost, typically measured in person-months.
Recent attempts have investigated the potential of employing Artificial Intelligence-oriented
methods to forecast software development effort, usually utilising publicly available

 Tools in Artificial Intelligence

2

datasets (e.g., Dolado, 2001; Idri et al., 2002; Jun & Lee, 2001; Khoshgoftaar et al., 1998; Xu &
Khoshgoftaar, 2004) that contain a wide variety of cost drivers. However, these cost drivers
are often ambiguous because they present high variations in both their measure and values.
As a result, cost assessments based on these drivers are somewhat unreliable. Therefore, by
detecting those project cost attributes that decisively influence the course of software costs
and similarly define their possible values may constitute the basis for yielding better cost
estimates. Specifically, the complicated problem of software cost estimation may be reduced
or decomposed into devising and evolving bounds of value ranges for the attributes
involved in cost estimation using the theory of conditional sets (Packard, 1990). These
ranges may then be used to attain adequate predictions in relation to the effort located in the
actual project data. The motivation behind this work is the utilization of rich empirical data
series of software project cost attributes (despite suffering from limited quality and
homogeneity) to produce robust effort estimations. Previous work on the topic has
suggested high sensitivity to the type of attributes used as inputs in a certain Neural
Network model (MacDonell & Shepperd, 2003). These inputs are usually discrete values
from well-known and publicly available datasets. The data series indicate high variations in
the attributes or factors considered when estimating effort (Dolado, 2001). The hypothesis is
that if we manage to reduce the sensitivity of the technique by considering indistinct values
in terms of ranges, instead of crisp discrete values, and if we employ an evolutionary
technique, like Genetic Algorithms, we may be able to address the effect of attribute variations
and thus provide a near-to-optimum solution to the problem. Consequently, the technique
proposed in this chapter may provide some insight regarding which cost drivers are the most
important. In addition, it may lead to identifying the most favorable attribute value ranges for
a given dataset that can yield a ‘secure’ and more flexible effort estimate, again having the
same reasoning in terms of ranges. Once satisfactory and robust value ranges are detected and
some confidence regarding the most influential attributes is achieved, then cost estimation
accuracy may be improved and more reliable estimations may be produced.
The remainder of this work is structured as follows: Section 2 presents a brief overview of
the related software cost estimation literature and mainly summarizes Artificial Intelligence
techniques, such as Genetic Algorithms (GA) exploited in software cost estimation. Section 3
encompasses the description of the proposed methodology, along with the GA variance
constituting the method suggested, a description of the data used and the detailed
framework of our approach. Consequently, Section 4 describes the experimental procedure
and the results obtained after training and validating the genetic evolution of value ranges
for the problem of software cost estimation. Finally, Section 5 concludes the chapter with a
discussion on the difficulties and trade-offs presented by the methodology in addition to
suggestions for improvements in future research steps.

2. Related work
Traditional model-based approaches to cost estimation, such as COCOMO, Function Point
Analysis (FPA) and SLIM, assume that if we use some independent variables (i.e., project
characteristics) as inputs and a dependent variable as the output (namely development
effort), the resulted complex I/O relationships may be captured by a formula (Pendharkar et
al., 2005). In reality, this is never the case. In COCOMO (Boehm, 1981), one of the most
popular models for software cost estimation, the development effort is calculated using the
estimated delivered source instructions and an effort adjustment factor, applied to three

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

3

distinct levels (basic, intermediate and advanced) and two constant parameters. COCOMO
was revised in newer editions (Boehm et al., 1995; Boehm et al., 2000), using software size as
the primary factor and 17 secondary cost factors. The revised model is regression-based and
involves a mixture of three cost models, each corresponding to a stage in the software life-
cycle namely: Applications Composition, Early Design and Post Architecture. The
Application Composition stage involves prototyping efforts; the Early Design stage includes
only a small number of cost drivers as there is not enough information available at this point
to support fine-grained cost estimation; the Post Architecture stage is typically applied after
the software architecture has been defined and provides estimates for the entire
development life-cycle using effort multipliers and exponential scale factors to adjust for
project, platform, personnel, and product characteristics.
Models based on Function Points Analysis (FPA) (Albrecht & Gaffney, 1983) mainly involve
identifying and classifying the major system components such as external inputs, external
outputs, logical internal files, external interface files and external inquiries. The classification
is based on their characterization as ‘simple’, ‘average’ or ‘complex’, depending on the
number of interacting data elements and other factors. Then, the unadjusted function points
are calculated using a weighting schema and adjusting the estimations utilizing a
complexity adjustment factor. This is influenced by several project characteristics, namely
data communications, distributed processing, performance objective, configuration load,
transaction rate, on-line data entry, end-user efficiency, on-line update, complex processing,
reusability, installation ease, operational ease, multiple sites and change facilitation.
In SLIM (Fairley, 1992) two equations are used: the software productivity level and the
manpower equation, utilising the Rayleigh distribution (Putnam & Myers, 1992) to estimate
project effort schedule and defect rate. The model uses a stepwise approach and in order to
be applicable the necessary parameters must be known upfront, such as the system size -
measured in KDSI (thousand delivered source instructions), the manpower acceleration and
the technology factor, for which different values are represented by varying factors such as
hardware constraints, personnel experience and programming experience. Despite being the
forerunner of many research activities, the traditional models mentioned above, did not
produce the best possible results. Even though many existing software cost estimation
models rely on the suggestion that predictions of a dependent variable can be formulated if
several (in)dependent project characteristics are known, they are neither a silver bullet nor
the best-suited approaches for software cost estimation (Shukla, 2000).
Over the last years, computational intelligence methods have been used attaining promising
results in software cost estimation, including Neural Networks (NN) (Jun & Lee, 2001;
Papatheocharous & Andreou, 2007; Tadayon, 2005), Fuzzy Logic (Idri et al., 2002; Xu &
Khoshgoftaar , 2004), Case Based Reasoning (CBR) (Finnie et al., 1997; Shepperd et al., 1996),
Rule Induction (RI) (Mair et al., 2000) and Evolutionary Algorithms.
A variety of methods, usually evolved into hybrid models, have been used mainly to predict
software development effort and analyze various aspects of the problem. Genetic
Programming (GP) is reported in literature to provide promising approximations to the
problem. In (Burgess & Leftley, 2001) a comparative evaluation of several techniques is
performed to test the hypothesis of whether GP can improve software effort estimates. In
terms of accuracy, GP was found more accurate than other techniques, but does not
converge to a good solution as consistently as NN. This suggests that more work is needed
towards defining which measures, or combination of measures, is more appropriate for the

 Tools in Artificial Intelligence

4

particular problem. In (Dolado, 2001) GP evolving tree structures, which represent software
cost estimation equations, is investigated in relation to other classical equations, like the
linear, power, quadratic, etc. Different datasets were used in that study yielding diverse
results, classified as ‘acceptable’, ‘moderately good’, ‘moderate’ and ‘bad’ results. Due to the
reason that the datasets examined varied extremely in terms of complexity, size,
homogeneity, or values’ granularity consistent results were hard to obtain. In (Lefley, &
Shepperd 2003) the use of GP and other techniques was attempted to model and estimate
software project effort. The problem was modeled as a symbolic regression problem to offer
a solution to the problem of software cost estimation and improve effort predictions. The so-
called “Finnish data set” collected by the software project management consultancy
organization SSTF was used in the context of within and beyond a specific company and
obtained estimations that indicated that with the approaches of Least-Square Regression,
NN and GP better predictions could be obtained. The results from the top five percent
estimators yielded satisfactory performance in terms of Mean Relative Error (MRE) with the
GP appearing to be a stronger estimator achieving better predictions, closer to the actual
values more often than the rest of the techniques. In the work of (Huang & Chiu, 2006) a GA
was adopted to determine the appropriate weighted similarity measures of effort drivers in
analogy-based software effort estimation models. These models identify and compare the
software project developed with similar historical projects and produce an effort estimate.
The ISBSG and the IBM DP services databases were used in the experiments and the results
obtained showed that among the applied methods, the GA produced better estimates and
the method could provide objective weights for software effort drivers rather than the
subjective weights assigned by experts.
In summary, software cost estimation is a complicated activity since there are numerous cost
drivers, displaying more than a few value discrepancies between them, and highly affecting
development cost assessment. Software development metrics for a project reflect both
qualitative measures, such as, team experiences and skills, development environment,
group dynamics, culture, and quantitative measures, for example, project size, product
characteristics and available resources. However, for every project characteristic the data is
vague, dissimilar and ambiguous, while at the same time formal guidelines on how to
determine the actual effort required to complete a project based on specific characteristics or
attributes do not exist. Previous attempts to identify possible methods to accurately estimate
development effort were not as successful as desired, mainly because calculations were
based on certain project attributes of publicly available datasets (Jun & Lee, 2001).
Nevertheless, the proportion of evaluation methods employing historical data is around
55% from a total of 304 research papers investigated by Jorgensen & Shepperd in 2004
(Jorgensen & Shepperd, 2007). According to the same study, evaluation of estimation
methods requires that the datasets be as representative as possible to the current or future
projects under evaluation. Thus, if we wish to evaluate a set of projects, we might consider
going a step back, and re-define a more useful dataset in terms of conditional value ranges.
These ranges may thus lead to identifying representative bounds for the available values of
cost drivers that constitute the basis for estimating average cost values.

3. The proposed cost estimation framework
The framework proposed in this chapter encompasses the application of the theory of
conditional sets in combination with Genetic Algorithms (GAs). The idea is inspired by the

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

5

work presented by Packard et al. (Meyer & Packard, 1992; Packard, 1990) utilising GAs to
evolve conditional sets. The term conditional set refers to a set of boundary conditions. The
main concept is to evaluate the evolved value ranges (or conditional sets) and extract
underlying determinant relationships among attributes and effort in a given dataseries. This
entails exploring a vast space of solutions, expressed in ranges, utilising additional
manufactured data than those located into a well-known database regularly exploited for
software effort estimation.
What we actually propose is a method for investigating the prospect of identifying the exact
value ranges for the attributes of software projects and determining the factors that may
influence development effort. The approach proposed implies that the attributes’ value
ranges and corresponding effort value ranges are automatically generated, evaluated and
evolved through selection and survival of the fittest in a way similar to natural evolution
(Koza, 1992). The goal is to provide complementing weights (representing the notion of
ranked importance to the associated attributes) together with effort predictions, which could
possibly result in a solution more efficient and practical than the ones created by other
models and software cost estimation approaches.

3.1 Conditional sets theory and software cost
In this section we present some definitions and notations of conditional sets theory in
relation to software cost based on paradigms described in (Adamopoulos et al., 1998;
Packard, 1990).
Consider a set of n cost attributes {A1, A2,…, An}, where each Ai has a corresponding discrete
value xi. A software project may be described by a vector of the form:

 { }1 2, ,..., nL x x x= (1)

Let us consider a condition Ci of the form:

 : ()i i i iC lb x ub< < , 1...i n= (2a)

where lbi and ubi are the lower and upper bounds of Ci respectively for which:

 :i i iC lb ub ε∀ − < (2b)

that is, lbi and ubi have minimal difference in their value, under a specific threshold ε.
Consider also a conditional set S; we say that S is of length l (≤n) if it entails l conditions of
the form described by equations (2a) and (2b), which are coupled via the logical operators of
AND and OR as follows:

 1 2 ...AND lS C C C= ∧ ∧ ∧ (3)

 1 2 ...OR lS C C C= ∨ ∨ ∨ (4)

We consider each conditional set S as an individual in the population of our GA, which will
be thoroughly explained in the next section as part of the proposed methodology. We use
equations (3) and (4) to describe conditional sets representing cost attributes, or to be more
precise, cost metrics. What we are interested in is the definition of a set of software projects,

 Tools in Artificial Intelligence

6

M, the elements of which are vectors as in equation (1) that hold the values of the specific
cost attributes used in relation with a conditional set. More specifically, the set M can be
defined as follows:

 { }1 2, ,..., mM L L L= (5)

 { },1 ,2 ,, ,...,i i i i lL x x x= , 1...i m= (6)

where l denotes the number of cost attributes of interest.
A conditional set S is related to M according to the conditions in equations (3) or (4) that are
satisfied as follows:

 :iL∀ ,i k kx satisfies C , 1... , 1... (AND)i m k l= = (7)

 ,1 1 ,2 2

,

,...

..., , 1... , (OR)
i i

i l l

x satisfies C OR x satisfies C

OR x satisfies C i m=
 (8)

3.2 Methodology
Before proceeding to describe the methodology proposed we provide a short description of
the dataset used. The dataset was obtained from the International Software Benchmarking
Standards Group (ISBSG, Repository Data Release 9 - ISBSG/R9, 2005) and contains an
analysis of software project costs for a group of projects. The projects come from a broad
cross section of industry and range in size, effort, platform, language and development
technique data. The release of the dataset used contains 92 variables for each of the projects
and hosts multi-organizational, multi-application domain and multi-environment data that
may be considered fairly heterogeneous (International Software Benchmarking Standards
Group, http://www.isbsg.org/). The dataset was recorded following data collection
standards ensuring broad acceptance. Nevertheless, it contains more than 4,000 data from
more than 20 countries and hence it is considered highly heterogeneous. Therefore, data
acquisition, investigation and employment of the factors that impact planning, management
and benchmarking of software development projects should be performed very cautiously.
The proposed methodology is divided into three steps, namely the data pre-processing step,
the application of the GA and the evaluation of the results. Figure 1 summarizes the
methodology proposed and the steps followed for evolving conditional sets and providing
effort range predictions. Several filtered sub-sets of the ISBSG/R9 dataset were utilized for
the evolution of conditional sets, initially setting up the required conditional sets. The
conditional sets are coupled with two logical operators (AND and OR) and the investigation
lies with extracting the ranges of project features or characteristics that describe the
associated project effort. Furthermore, the algorithm creates a random set or initial
population of conditions (individuals). The individuals are then evolved through specific
genetic operators and evaluated internally using the fitness functions. The evolution of
individuals continues while the termination criteria are not satisfied, among these a
maximum number of iterations (called generations or epochs) or no improvement in the
maximum fitness value occurs for a specific number of generations. The top 5% individuals
resulting in the higher fitness evaluations are accumulated into the optimum range

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

7

population, which then are advanced to the next algorithm generation (repetition). At the
end, the final population produced that satisfies the criteria is used to estimate the mean
effort, whereas at the evaluation step, the methodology is assessed through various
performance metrics. The most successful conditional sets evolved by the GA that have
small assembled effort ranges with relatively small deviation from the mean effort, may
then be used to predict effort of new, unknown projects.

Fig. 1. Methodology followed for evolving conditional sets

3.2.1 Data pre-processing
In this step the most valuable set of attributes, in terms of contribution to effort estimation,
are assembled from the original ISBSG/R9 dataset. After careful consideration of guidelines
provided by the ISBSG and other research organizations, we decided to the formation of a
reduced ISBSG dataset including the following main attributes: the project id (ID), the
adjusted function points of the product (AFP), the project’s elapsed time (PET), the project’s
inactive time (PIT), the project’s delivery rate (productivity) in functional size units (PDRU),
the average team size working on the project (ATS), the development type (DT), the
application type (AT), the development platform (DP), the language type (LT), the primary
programming language (PPL) and the resource level (RL) and the work effort expensed
during the full development life-cycle (EFF) which will be used as a sort of output by the
corresponding evolutionary algorithm. The attributes selected from the original, wider pool
of ISBSG, were further filtered to remove those attributes with categorical-type data and
other attributes that could not be included in the experimentation. Also, some attributes
underwent value transformations, for example instead of PET and PIT we used their
subtraction, normalized values for AFP and specific percentiles defining acceptance
thresholds for filtering the data.
The first experiments following our approach indicated that further processing of the
attributes should be performed, as the approach was quite strict and not applicable for
heterogeneous datasets containing many project attributes with high deviations in their

 Tools in Artificial Intelligence

8

values and measurement. Therefore, this led us to examine smaller, more compact,
homogeneous and free from outlier subsets. In fact, we managed to extract three final
datasets which we used in our final series of experiments. The first dataset (DS-1) contained
the main attributes suggested by Function Point Analysis (FPA) to provide measurement of
project software size, and included: Adjusted Function Points (AFP), Enquiry Count (EC),
File Count (FC), Added Count (AC) and Changed Count (CC). These attributes were
selected based on previous findings that considered them to be more successful in
describing development effort after applying sensitivity analysis on the inputs with Neural
Networks (Papatheocharous & Andreou, 2007). The second dataset (DS-2) is a variation of
the previous dataset based on the preliminary results of DS-1, after performing
normalization and removing the outliers according to the lower and upper thresholds
defined by the effort box-plots. This resulted to the selection of the attributes: Normalized
PDR-AFP (NAFP), Enquiry Count (EC), File Count (FC) and Added Count (AC). Finally, the
third dataset (DS-3) created included the project attributes that can be measured early in the
software life-cycle consisting of: Adjusted Function Points (AFP), Project’s Delivery Rate
(PDRU), Project’s Elapsed Time (PET), Resource Level (RL) and Average Team Size (ATS)
attributes in which also box-plots and percentile thresholds were used to remove outliers.

Fig. 2. Example of box-plots for the ISBSG project attributes (original full dataset)
It is noteworthy that each dataset also contained the values of the development work effort
(EFF), the output attribute that we wanted to predict. As we already mentioned, the last data
pre-processing step of the three datasets constructed included the cleaning of null and
outlying values. The theory of box-plots was used to locate the outlying figures from the
datasets and project cleaning was performed for each project variable separately. Figure 2
above shows an example of the box-plots created for each variable on the original full dataset.
We decided to disregard the extreme outliers (marked as asterisks) occurring in each of the
selected attributes and also exclude those projects considered as mild outliers (marked as
circles), thus imposing more strict filtering associated with the output variable effort (EFF).

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

9

3.2.2 Genetic algorithm application
Genetic Algorithms (GAs) are evolutionary computational approaches that are domain-
independent, and aim to find approximated solutions in complex optimization and search
problems (Holland, 1992). They achieve this by pruning a population of individuals based
on the Darwinian principle of reproduction and ‘survival of the fittest’ (Koza, 1992). The
fitness of each individual is based on the quality of the simulated individual in the
environment of the problem investigated. The process is characterized by the fact that the
solution is achieved by means of a cycle of generations of candidate solutions that are
pruned by using a set of biologically inspired operators. According to evolutionary theories,
only the most suited solutions in a population are likely to survive and generate offspring,
and transmit their biological heredity to the new generations. Thus, GAs are much superior
to conventional search and optimization techniques in high-dimensional problem spaces
due to their inherent parallelism and directed stochastic search implemented by
recombination operators. The basic process of our GA operates through a simple cycle of
three stages, as these were initially described by (Michalewicz, 1994):

Stage 1: Randomly create an initial population of individuals P, which represent solutions to
the given problem (in our case, ranges of values in the form of equations (3) or (4)).

Stage 2: Perform the following steps for each generation:
2.1. Evaluate the fitness of each individual in the population using equations (9) or (10)

below, and isolate the best individual(s) of all preceding populations.
2.2. Create a new population by applying the following genetic operators:

2.2.1. Selection; based on the fitness select a subset of the current population for
reproduction by applying the roulette wheel method. This method of
reproduction allocates offspring values using a roulette wheel with slots sized
according to the fitness of the evaluated individuals. It is a way of selecting
members from a population of individuals in a natural way, proportional to
the probability set by the fitness of the parents. The higher the fitness of the
individual is, the greater the chance it will be selected, however it is not
guaranteed that the fittest member goes to the next generation. So,
additionally, elitism is applied, where the top best performing individuals are
copied in the next generation and thus, rapidly increase the performance of the
algorithm.

2.2.2. Crossover; two or more individuals are randomly chosen from the population
and parts of their genetic information are recombined to produce new
individuals. Crossover with two individuals takes place either by exchanging
their ranges at the crossover point (inter-crossover) or by swapping the upper
or lower bound of a specific range (intra-crossover). The crossover takes place
on one (or more) randomly chosen crossover point(s) along the structures of
the two individuals.

2.2.3. Mutation; randomly selected individuals are altered randomly and inserted
into the new population. The alteration takes place at the upper or lower
bound of a randomly selected range by adding or subtracting a small random
number. Mutation intends to preserve the diversity of the population by
expanding the search space into regions that may contain better solutions.

2.3. Replace the current population with the newly formed population.

 Tools in Artificial Intelligence

10

Stage 3: Repeat from stage 2 unless a termination condition is satisfied. Output the
individual with the best fitness as the near to optimum solution.

Each loop of the steps is called a generation. The entire set of iterations from population
initialization to termination is called a run. At the termination of the process the algorithm
promotes the “best-of-run” individual.

3.2.3 Evaluation
The individuals evolved by the GA are evaluated according to the newly devised fitness
functions of AND or OR, specified as:

1

1 1

()*
AND l

i i i
i

F k
ub lb wσ

=

= + +
⎛ ⎞−⎜ ⎟
⎝ ⎠
∑

 (9)

1

1 1l

i i
OR i i i i

F k w
ub lbσ=

⎛ ⎞
= + + ∗⎜ ⎟−⎝ ⎠
∑ (10)

where k represents the number of projects satisfying the conditional set, ki the number of
projects satisfying only condition Ci, and σ, σi are the standard deviations of the effort of the
k and ki projects, respectively.
By using the standard deviation in the fitness evaluation we promote the evolved
individuals that have their effort values close to the mean effort value of either the k projects
satisfying S (AND case) or either the ki projects satisfying Ci (OR case). Additionally, the
evaluation rewards individuals whose difference among the lower and upper range is
minimal. Finally, wi in equations (9) and (10) is a weighting factor corresponding to the
significance given by the estimator to a certain cost attribute.
The purpose of the fitness functions is to define the appropriateness of the value ranges
produced within each individual according to the ISBSG dataset. More specifically, when an
individual is evaluated the dataset is used to define how many records of data (a record
corresponds to a project with specific values for its cost attributes and effort) lay within the
ranges of values of the individual according to the conditions used and the logical operator
connecting these conditions. It should be noted at this point that in the OR case the
conditional set is satisfied if at least one of its conditions is satisfied, while in the AND case
all conditions in S must be satisfied. Hence, k (and σ) is unique for all ranges in the AND
case, while in the OR case k may have a different value for each range i. That is why the
fitness functions of the two logical operators are different. The total fitness of the population
in each generation is calculated as the sum of the fitness values of the individuals in P.
Once the GA terminates the best individual is used to perform effort estimation. More
specifically, in the AND case we distinguish the projects that satisfy the conditional set used
to train the GA, while in the OR case the projects that satisfy one or more conditions of the
set. Next we find the mean effort value (ē) and standard deviation (σ) of those projects. If we
have a new project for which we want to estimate the corresponding development effort, we
first check whether the values of its attributes lay within the ranges of the best individual
and that it satisfies the form of the conditional set (AND or OR). If this holds, then the effort
of the new project is estimated to be:

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

11

 σ±= eepred (11)

where epred is the mean value of the effort of the projects satisfying the conditional set S.

4. Experimental process
This section explains in detail the series of experiments conducted and also presents some
preliminary results of the methodology. The methodology was tested on the three different
datasets described in the previous section.

4.1 Design of the experiments
Each dataset was separated into two smaller sub-datasets, the first of which was used for
training and the second for validation. This enables the assessment of the generalization and
optimization ability of the algorithm, firstly under training conditions and secondly with
new, unknown to the algorithm, data. At first, a series of initial setup experiments was
performed to define and tune the parameters of the GA. These are summarized in Table 1.
The values for the GA parameters were set after experimenting with different generation
epochs, as well as mutation and crossover rates and various number of points of crossover.
A number of control parameters were modified for experimenting and testing the sensitivity
of the solution to their modification.

Category Value Details
Attributes set { SAND, SOR }
Solution
representation L

Generation size 1000 epochs
Population size 100 individuals
Selection Roulette wheel based on fitness of each individual
Elitism Best individuals are forwarded (5%)
Mutation Ratio 0.01-0.05 Random mutation
Crossover Ratio 0.25-0.5 Random crossover (inter-, intra-)

Termination
criterion

Generations size is reached or
no improvements are noted for more than 100
generations

Table 1. Genetic Algorithm main parameters

We then proceeded to produce a population of 100 individuals representing conditional sets
S (or ranges of values coupled with OR or AND conditions), as opposed to the discrete
values of the attributes found in the ISBSG dataset. These quantities, as shown in equations
(2a) and (2b), were generated to cover a small range of values of the corresponding
attributes, but are closely related to (or within) the actual values found in the original data
series.
Throughout an iterative production of generations the individuals were evaluated using the
fitness functions specified in equations (9) or (10) with respect to the approach adopted. As
previously mentioned, this fitness was assessed based on the:
• Standard deviation

 Tools in Artificial Intelligence

12

• Number of projects in L satisfying (7) and (8)
• Ranges produced for the attributes
Fitness is also affected by the weights given by the estimator to separate between more and
less important attributes. From the fitness equations we may deduce that the combination of
a high number of projects in L, a low standard deviation with respect to the mean effort and
a small range for the cost attributes (at least the most significant) produces high fitness
values. Thus, individuals satisfying these specific requirements are forwarded to the next
population until the algorithm terminates. Figure 3 depicts the total fitness value of a
sample population through generations, which, as expected, rises as the number of epochs
increases. A plateau is observed in the range 50-400 epochs which may be attributed to a
possible trapping of the GA to a local minimum. The algorithm seems to escape from this
minimum with its total fitness value constantly being improved along the segment of 400-
450 epochs and then stabilizing. Along the repetitions of the GA algorithm execution, the
total population fitness improves showing that the methodology performs consistently well.

500

525

550

575

600

625

650

675

700

725

0 100 200 300 400 500 600epochs

to
ta

l f
itn

es
s

Fig. 3. Total Fitness Evolution

4.2 Experimental results
The experimental evaluation procedure was based on both the AND and OR approaches.
We initially used the attributes of the datasets with equal weight values and then
subsequently with combinations of different weight values. Next, as the weight values were
modified it was clear that various assumptions about the importance of the given attributes
for software effort could be drawn. In the first dataset for example, the Adjusted Function
Point (AFP) attribute was found to have a minimal effect on development effort estimations
and therefore we decided to re-run the experiments without this attribute taking part. The
process was repeated for all attributes of the dataset by continuously updating the weight
values and reducing the number of attributes participating in the experiments, until no more
insignificant attributes remained in the dataset. The same process was followed for all the
three datasets respectively, while the results summarized in this section represent only a few
indicative results obtained throughout the total series of experiments.
Tables 2 and 3 present indicative best results obtained with the OR and AND approaches,
respectively, that is, the best individual of each run for a given set of weights (significance)

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

13

that yield the best performance with the first dataset (DS-1). Table 4 presents the best results
obtained with the AND and OR approach with the second dataset (DS-2) and Table 5 lists
the best obtained results with the third attribute dataset (DS-3).

Attribute Weights / Ranges Evaluation Metrics

FC AC CC EC ē σ HR

0.1 0.4 0.1 0.4
[11, 240] [1, 1391] [206, 1739] [14, 169]

3014.2 1835.1 81/179

0.3 0.1 0.4 0.2
[11, 242] [1, 1363] [60, 1498] [1, 350]

3125.5 1871.5 81/184

0.3 0.4 0.1 0.2
[11, 242] [1, 1391] [1616, 2025] [14, 268]

3204.5 1879.2 81/187

0.2 0.4 0.1 0.3
[19, 298] [1, 1377] [1590, 3245] [14, 268]

3160.3 1880.7 81/178

0.2 0.2 0.4 0.2
[11, 240] [1, 1377] [46, 573] [1, 350]

3075.1 1857.2 79/183

0.2 0.4 0.2 0.2
[3, 427] [1, 1377] [46, 579] [1, 347]

3254.5 1857 83/191

Table 2. Indicative Results of conditional sets using the OR approach and DS-1

Evaluation metrics were used to assess the success of the experiments, based on (i) the total
mean effort, (ii) the standard deviation and, (iii) the hit ratio. The hit ratio (given in equation
(12)) provides a complementary piece of information about the results. It basically assesses
the success of the best individual evolved by the GA on the testing set. Recall that the GA
results in conditional set of value ranges which are used to compute the mean effort and
standard deviation of the projects satisfying the conditional set. Next, the number of projects
n in the testing set that satisfy the conditional set is calculated. Of those n projects we
compute the number of projects b that have additionally a predicted effort value satisfying
equation (11). The latter may be called the “hit-projects”. Thus, equation (12) essentially
calculates the ratio of hit-projects in the testing set:

 () bhit ratio HR
n

= (12)

The results are expressed in a form satisfying equations (3)-(8). A numerical example could
be a set of range values produced to satisfy equations (2a) and (2b) coupled with the logical
operator of AND as follows:

 [1700, 2000] [16, 205] ... [180 200]ANDS = ∧ ∧ ∧ (13)

The projects that satisfy equation (7) are then accumulated in set L (numbers represent
project IDs):

 L={1827, 1986, 1987,…,1806} (14)

 Tools in Artificial Intelligence

14

Using L the ē, σ and HR figures may be calculated. The success of the experiments is a
combination of the aforementioned metrics. Finally, we characterize an experiment as
successful if its calculated standard deviation is adequately lower than the associated mean
effort and achieves a hit ratio above 60%.
Indicative results of the OR conditional sets are provided in Table 2. We observe that the OR
approach may be used mostly for comparative analysis of the cost attributes by evaluating
their significance in the estimation process, rather the estimation itself, as results indicate
low performance. Even though the acceptance level of the hit ratio is better than average, the
high value of the standard deviation compared to the mean effort (measured in person
days) indicates that the results attained are dispersed and not of high practical value. The
total mean effort of the best 100 experiments was found equal to 2929 and the total standard
deviation equal to 518. From these measures the total standard error was estimated at 4.93,
which is not satisfactory, but at the same time it cannot be considered bad. However, in
terms of suggesting ranges of values for specific cost attributes on which one may base an
estimation, the results do not converge to a clear picture. It appears that when evaluating
different groups of data in the dataset we attain large dissimilarities, suggesting that
clustered groups of data may be present in the series. Nevertheless, various assumptions
can be drawn from the methodology as regards to which of the attributes seem more
significant and to what extent. The selected attributes, namely Added Count (AC), File
Count (FC), Changed Count (CC) and Enquiry Count (EC) seem to have a descriptive role
over effort as they provide results that may be considered promising for estimating effort.
Additionally, the best results of Table 2 (in bold) indicate that the leading factor is Added
Count (AC), with its significance being ranked very close to that of the File Count (FC).

Attribute Weights / Ranges Evaluation Metrics

FC AC CC ē σ HR

0.1 0.2 0.7
[22, 223] [187, 504] [9, 195]

3503 1963.6 3/4

0.5 0.3 0.2
[22, 223] [114, 420] [9, 197]

3329.4 2014.2 3/4

0.2 0.4 0.4
[14, 156] [181, 489] [9, 197]

3778.8 2061.4 3/4

0.4 0.4 0.2
[22, 223] [167, 390] [9, 195]

3850.3 2014.3 3/4

0.2 0.8 0
[14, 154] [35, 140] 0

2331.2 1859.4 12/16

0.7 0.3 0
[14, 152] [35, 141] 0

2331.2 1859.4 12/16

Table 3. Indicative Results of conditional sets using the AND approach with DS-1

On the other hand, the AND approach (Table 3) provides more solid results since it is based
on a more strict method (i.e. satisfy all ranges simultaneously). The results indicate again
some ranking of importance for the selected attributes. To be specific, Added Count (AC)

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

15

and File Count (FC) are again the dominant cost attributes, a finding which is consistent
with the OR approach. We should also note that the attribute Enquiry Count (EC) proved
rather insignificant in this approach, thus it was omitted from Table 3. Also, the fact that the
results produced converge in terms of producing similar range bounds shows that the
methodology may provide empirical indications regarding possible real attribute ranges. A
high hit ratio of 75% was achieved for nearly all experiments in the AND case for the
specified dataset, nevertheless this improvement is obtained with fewer projects, as
expected, satisfying the strict conditional set compared to the more loose OR case. This led
us to conclude that the specific attributes can provide possible ranges solving the problem
and providing relatively consistent results.
The second dataset (DS-2) used for experimentation included the Normalized AFP (NAFP)
and some of the previously investigated attributes for comparison purposes. The dataset
was again tested using both the AND and OR approaches. The first four rows of the results
shown in Table 4 individuals were obtained with the AND approach and the last two results
with the OR approach. The figures listed in Table 4 show that the method ‘approves’ more
individuals (satisfying the equations) because the ranges obtained are wider. Conclusively,
the values used for effort estimation result to increase of the total standard error. The best
individuals (in bold) were obtained after applying box-plots in relation to the first result
shown, while the rest two results did not use this type of filtering. It is clear from the
lowering of the value of the standard deviation that after box-plot filtering on the attributes
some improvement was indeed achieved. Nevertheless, the HR stays quite low, thus we
cannot argue that the ranges of values produced are robust to provide new effort estimates.

Attribute Weights / Ranges Evaluation Metrics

NAFP AC FC EC ē σ HR

0.25 0.25 0.25 0.25
[2, 134] [215, 1071] [513, 3678] [4, 846]

11386.7 9005.4 9/58

0.25 0.25 0.25 0.25
[7, 80] [34, 830] [88, 1028] [37, 581]

2861.7 2515.9 7/66

0.25 0.25 0.25 0.25
[1,152] [22, 859] [58, 3192] [20, 563]

3188.6 2470.9 3/221

0.25 0.25 0.25 0.25
[1, 156] [34, 443] [122, 2084] [37, 469]

3151.6 2377.9 4/139

0.25 0.25 0.25 0.25
[1, 36] [449, 837] [23, 1014] [7, 209]

4988.5 8521.2 10/458

0.25 0.25 0.25 0.25
[1, 159] [169, 983] [78, 928] [189, 567]

4988.5 8521.2 10/458

Table 4. Indicative Results of conditional sets using the AND and OR approaches with DS-2

The purpose of the final dataset (DS-3) used in the experiments is to test whether a selected
subset of attributes that can be measured early in the development life-cycle can provide
adequately good predictions. Results showed that the attributes of Adjusted Function Points

 Tools in Artificial Intelligence

16

(AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level (RL) and
Average Team Size (ATS) may provide improvements for selecting ranges with more
accurate effort estimation abilities. For these experiments only the AND approach is
presented as the results obtained were regarded to be more substantial. In the experiments
conducted with this dataset (DS-3) we tried to impose even stricter ranges, after the box-
plots and outlier’s removal in the initial dataset, by applying an additional threshold to
retain the values falling within the 90% (percentile). This was performed for the first result
listed in Table 5, whereas the threshold within the 70% percentile was also applied for the
second result listed on the same table. We noticed that this led to a significant optimization
of the results. Even though very few individuals are approved, satisfying the equations, the
HR is almost always equal to 100%. The obtained ranges are more clearly specified and in
addition, sound predictions can be made regarding effort since the best obtained standard
deviation of effort falls to 74.9 which also constitutes one of the best predictions yielded by
the methodology. This leads us to conclude that when careful removal of outliers is
performed the proposed methodology may be regarded as achieving consistently successful
predictions, yielding optimum ranges that are adequately small and suggesting effort
estimations that lay within reasonable mean values and perfectly acceptable deviation from
the mean.

Attribute Weights / Ranges Evaluation Metrics

AFP PDRU PET RL ATS ē σ HR

0.2 0.2 0.2 0.2 0.2
[48, 1207] [1, 7] [3, 12] [1, 3] [2, 5]

2657.6 913.7 3/3

0.2 0.2 0.2 0.2 0.2
[57, 958] [2, 13] [5, 10] [2, 4] [1, 6]

2131.0 74.9 2/2

0.2 0.2 0.2 0.2 0.2

[133, 1409] [1, 25] [7, 21] [2, 4] [2,
10]

2986.6 1220.0 5/5

0.2 0.2 0.2 0.2 0.2
[173, 1131] [1, 20] [2, 20] [2, 4] [1, 7]

2380.0 434.5 2/3

0.25 0.25 0 0.25 0.25

[189, 1301] [2, 26] 0 [1, 3] [2,
11]

2477.8 838.2 5/5

0.25 0.25 0 0.25 0.25
[693, 1166] [2, 23] 0 [1, 3] [1, 4]

2478.0 565.6 2/2

Table 5. Indicative Results of conditional sets using the AND approach with DS-3

5. Conclusions
In this approach we aimed at addressing the problem of large variances found in available
historical data that are used in software cost estimation. Project data is expensive to collect,
manage and maintain. Therefore, if we wish to lower the dependence of the estimation to

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

17

the need of gathering accurate and homogenous data, we might consider simulating or
generating data ranges instead of real crisp values.
The theory of conditional sets was applied in the present work with Genetic Algorithms
(GAs) on empirical software cost estimation data. GAs are ideal for providing efficient and
effective solutions in complex problems; there are, however, several trade-offs. One of the
major difficulties in adopting such an approach is that it requires a thorough calibration of
the algorithm’s parameters. We have tried to investigate the relationship between software
attributes and effort, by evolving attribute value ranges and evaluating estimated efforts.
The algorithm promotes the best individuals in the reproduced generations through a
probabilistic manner. Our methodology attempted to reduce the variations in performance
of the model and achieve some stability in the results. To do so we approached the problem
from the perspective of minimizing the differences in the ranges and the actual and
estimated effort values to decisively determine which attributes are the most important in
software cost estimates.
We used the ISBSG repository containing a relatively large quantity of data; nevertheless,
this data suffers from heterogeneity thus presents low quality level from the perspective of
level of values. We formed three different subsets selecting specific cost attributes from the
ISBSG repository and filtering out outliers using box-plots on these attributes. Even though
the results are of average performance when using the first two datasets, they indicated
some importance ranking for the attributes investigated. According to this ranking, the
attributes Added Count (AC) and File Count (FC) were found to lay among the most
significant cost drivers for the ISBSG dataset. The third dataset included Adjusted Function
Points (AFP), Project Delivery Rate (PDRU), Project Elapsed Time (PET), Resource Level
(RL) and Average Team Size (ATS). These attributes may be measured early in the software
life-cycle, thus this dataset may be regarded more significant than the previous two from a
practical perspective. A careful and stricter filtering of this dataset provided prediction
improvements, with the yielded results suggesting small value ranges and fair estimates for
the mean effort of a new project and its deviation. There was also an indication that within
different areas of the data, significantly different results may be produced. This is highly
related to the scarcity of the dataset itself and supports the hypothesis that if we perform
some sort of clustering in the dataset we may further minimize the deviation differences in
the results and obtain better effort estimates.
Although the results of this work are at a preliminary stage it became evident that the
approach is promising. Therefore, future research steps will concentrate on ways to improve
performance, examples of which may be: (i) Pre-processing of the ISBSG dataset and
appropriate clustering into groups of projects that will share similar value characteristics. (ii)
Investigation of the possibility of reducing the attributes in the dataset by utilizing a
significance ranking mechanism that will promote only the dominant cost drivers. (iii)
Better tuning of the GA’s parameters and modification/enhancement of the fitness functions
to yield better convergence. (iv) Optimization of the trial and error weight factor assignment
used in the present work by utilizing a GA. (v) Experimentation with other datasets
containing selected attributes again proposed by a GA. Finally, we plan to perform a
comparative evaluation of the proposed approach with other well established algorithms,
like for example the COCOMO model.

 Tools in Artificial Intelligence

18

6. References
Adamopoulos, A.V.; Likothanassis, S.D. & Georgopoulos, E.F. (1998). A Feature Extractor of

Seismic Data Using Genetic Algorithms, Signal Processing IX: Theories and
Applications, Proceedings of EUSIPCO-98, the 9th European Signal Processing Conference,
Vol. 2, pp. 2429-2432, Typorama, Greece.

Albrecht, A.J. & Gaffney J.R. (1983). Software Function Source Lines of Code, and
Development Effort Prediction: A Software Science Validation, IEEE Transactions on
Software Engineering. Vol. 9, No. 6, pp. 639-648.

Boehm, B.W. (1981). Software Engineering Economics, Prentice Hall, New Jersey.
Boehm, B.W.; Clark, B.; Horowitz, E.; Westland, C.; Madachy, R.J. & Selby R.W. (1995). Cost

Models for Future Software Life Cycle Processes: COCOMO 2.0, Annals of Software
Engineering, Vol.1, pp. 57-94, Springer, Netherlands.

Boehm, B.W.; Abts, C. & Chulani, S. (2000). Software Development Cost Estimation
Approaches – A Survey, Annals of Software Engineering, Vol.10, No. 1, pp. 177-205,
Springer, Netherlands.

Burgess, C.J. & Lefley, M. (2001). Can Genetic Programming Improve Software Effort
Estimation? A Comparative Evaluation, Information and Software Technology, Vol. 43,
No. 14, pp. 863-873, Elsevier, Amsterdam.

Dolado, J.J. (2000). A Validation of the Component-Based Method for Software Size
Estimation, IEEE Transactions on Software Engineering, Vol. 26, No. 10, pp. 1006-1021,
IEEE Computer Press, Washington D.C..

Dolado, J.J. (2001). On the Problem of the Software Cost Function, Information and Software
Technology, Vol. 43, No. 1, pp. 61-72, Elsevier, Amsterdam.

Fairley, R.E. (1992). Recent Advances in Software Estimation Techniques, Proceedings of the
14th International Conference on Software Engineering, pp. 382-391, ACM, Melbourne,
Australia.

Finnie, G.R.; Wittig, G.E. & Desharnais, J.-M. (1997). Estimating software development effort
with case-based reasoning, Proceedings of the 2nd International Conference on Case-Based

Reasoning Research and Development ICCBR, pp.13-22, Springer.
Holland, J.H. (1992). Genetic Algorithms, Scientific American, Vol. 267, No. 1, pp. 66–72, New

York.
Huang, S. & Chiu, N. (2006). Optimization of analogy weights by genetic algorithm for

software effort estimation, Information and Software Technology, Vol. 48, pp. 1034-
1045, Elsevier.

Idri, A.; Khoshgoftaar, T.M. & Abran, A. (2002). Can Neural Networks be Easily Interpreted
in Software Cost Estimation?, Proceedings of the 2002 IEEE World Congress on
Computational Intelligence, pp. 1162-1167 IEEE Computer Press, Washington D.C..

International Software Benchmarking Standards Group (ISBSG), Estimating, Benchmarking
& Research Suite Release 9, ISBSG, Victoria, 2005.

International Software Benchmarking Standards Group, http://www.isbsg.org/
Jorgensen, M. & Shepperd, M. (2007). A Systematic Review of Software Development Cost

Estimation Studies, IEEE Transactions on Software Engineering, Vol. 33, No. 1, pp. 33-
53, IEEE Computer Press, Washington D.C..

Computational Intelligence in Software Cost Estimation: Evolving Conditional Sets
of Effort Value Ranges

19

Jun, E.S. & Lee, J.K. (2001). Quasi-optimal Case-selective Neural Network Model for
Software Effort Estimation, Expert Systems with Applications, Vol. 21, No. 1, pp. 1-14
Elsevier, New York.

Khoshgoftaar, T.M.; Evett, M.P.; Allen, E.B. & Chien, P. (1998). An Application of Genetic
Programming to Software Quality Prediction Computational Intelligence in Software
Engineering, Series on Advances in Fuzzy Systems – Applications and Theory, Vol. 16,
pp. 176-195, World Scientific, Singapore.

Koza, J.R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural
Selection, MIT Press, Massachusetts.

Lederer, A.L. & Prasad, J. (1992). Nine Management Guidelines for Better Cost Estimating,
Communications of the ACM, Vol. 35, No. 2, pp. 51-59, ACM, New York.

Lefley, M. & Shepperd, M.J. (2003). Using Genetic Programming to Improve Software Effort
Estimation Based on General Data Sets, Proceedings of GECCO, pp. 2477-2487.

MacDonell, S.G. & Shepperd, M.J. (2003). Combining Techniques to Optimize Effort
Predictions in Software Project Management, Journal of Systems and Software, Vol.
66, No. 2, pp. 91-98, Elsevier, Amsterdam.

Mair, C; Kadoda, G.; Lefley, M.; Phalp, K.; Schofield, C.; Shepperd, M. & Webster, S. (2000).
An investigation of machine learning based prediction systems, Journal of Systems
Software, Vol. 53, pp. 23–29, Elsevier.

Meyer, T.P. & Packard, N.H. (1992). Local Forecasting of High-dimensional Chaotic
Dynamics, Nonlinear Modeling and Forecasting, Addison-Wesley.

Michalewicz, Z. (1994). Genetic Algorithms + Data Structures = Evolution Programs, Springer,
Berlin.

Packard, N.H. (1990). A Genetic Learning Algorithm for the Analysis of Complex Data,
Complex Systems, Vol. 4, No. 5, pp. 543-572, Illinois.

Pendharkar, P.C.; Subramanian, G.H. & Rodger, J.A. (2005). A Probabilistic Model for
Predicting Software Development Effort, IEEE Transactions on Software Engineering,
IEEE Computer Press, Vol. 31, No. 7, pp. 615-624, Washington D.C..

Papatheocharous, E. & Andreou, A. (2007). Software Cost Estimation Using Artificial Neural
Networks with Inputs Selection, Proceedings of the 9th International Conference on
Enterprise Information Systems, pp. 398-407, Madeira, Portugal.

Putnam, L.H. & Myers, W. (1992). Measures for Excellence, Reliable Software on Time, Within
Budget, Yourdan Press, New Jersey.

Shepperd, M. & Kadoda, G. (2001). Comparing Software Prediction Techniques Using
Simulation, IEEE Transactions on Software Engineering, Vol. 27, No. 11, pp. 1014-1022,
IEEE Computer Press, Washington D.C..

Shepperd, M.J.; Schofield, C. & Kitchenham, B. A. (1996). Effort estimation using analogy,
Proceedings of the 18th International Conference on Software Engineering, pp. 170-178,
Berlin.

Shukla, K.K. (2000). Neuro-genetic Prediction of Software Development Effort, Information
and Software Technology, Vol. 42, No. 10, pp. 701-713, Elsevier, Amsterdam.

Tadayon, N. (2005). Neural Network Approach for Software Cost Estimation. Proceedings of
the International Conference on Information Technology: Coding and Computing, pp. 815-
818, IEEE Computer Press, Washington D.C..

 Tools in Artificial Intelligence

20

Xu, Z. & Khoshgoftaar, T.M. (2004). Identification of Fuzzy Models of Software Cost
Estimation, Fuzzy Sets and Systems, Vol. 145, No. 1, pp. 141-163, Elsevier, New York.

2

Towards Intelligible Query Processing
 in Relevance Feedback-Based

Image Retrieval Systems
Belkhatir Mohammed

Faculty of IT, Monash University
???

1. Introduction
We propose in this paper the specification of an image retrieval architecture based on a
relevance feedback framework which operates on high-level image descriptions instead of
their extracted low-level features. This framework features a conceptual model which
integrates visual semantics as well as symbolic relational characterizations and operates on
image objects, abstractions of visual entities within a physical image. Also, it manipulates a
rich query language, consisting of both boolean and quantification operators, which
therefore leads to optimized user interaction and increased retrieval performance. Let us
first introduce the context of our research.
In order to cope with the storing and retrieval of ever-growing digital image collections, the
first retrieval systems (cf. [Smeulders et al. 00] for a review of the state-of-the-art), known as
content-based, propose fully automatic processing methods based on low-level signal
features (color, texture, shape...). Although they allow the fast processing of queries, they do
not make it possible to search for images based on their semantic content and consider for
example red apples or Ferraris as being the same entities simply because they have the same
color distribution. Failing to relate low-level features to semantic characterization (also
known as the semantic gap) has slowed down the development of such solutions since, as
shown in [Hollink 04], taking into account aspects related to the image content is of prime
importance for efficient retrieval. Also, users are more skilled in defining their information
needs using language-based descriptors and would therefore rather be given the possibility
to differentiate between red roses and red cars.
In order to overcome the semantic gap, a class of frameworks within the framework of the
European Fermi project proposed to model the image semantic and signal contents
following a sharp process of human-assisted indexing [Mechkour 95] [Meghini et al. 01].
These approaches, based on elaborate knowledge-based representation models, provide
satisfactory results in terms of retrieval quality but are not easily usable on large collections
of images because of the necessary human intervention required for indexing.
Automated systems which attempt to deal with the semantics/signal integration (e.g. iFind
[Lu et al. 00] and the prototype presented in [Zhou & Huang 02]) propose solutions based
on textual annotations to characterize semantics and on a relevance feedback (RF) scheme
operating on low-level features. RF techniques are based on an interaction with a user

 Tools in Artificial Intelligence

22

providing judgment on displayed images as to whether and to what extent they are relevant
or irrelevant to his need. For each loop of the interaction, these images are learnt and the
system tries to display images close in similarity to the ones targeted by the user. As any
learning process, it requires an important number of training images to achieve reasonable
performance. The user is therefore solicited through several tedious and time-consuming
loops to provide feedback for the system in real time, which penalizes user interaction and
involves costly computations over the whole set of images. Moreover, starting from a textual
query on semantics, these state-of-the art systems are only able to manage opaque RF (i.e. a
user selects relevant and/or non-relevant documents and is then proposed a revised
ranking without being given the possibility to ‘understand’ how his initial query was
transformed) since it operates on extracted low-level features. Finally, these systems do not
take into account the relational spatial information between visual entities, which affects the
quality of the retrieval results.
Our RF process is a specific case of state-of-the-art RF frameworks reducing the user’s
burden since it involves a unique loop returning the relevant images. Moreover, as opposed
to the opacity of state-of-the-art RF frameworks, it holds the advantage of being transparent
(i.e. the system displays the query generated from the selected documents) and penetrable
(i.e. the modification of the generated query is possible before processing), which increases
the quality of retrieval results. Through the use of a symbolic representation, the user is
indeed able to visualize and comprehend the intelligible query being processed. We manage
transparent and penetrable interactions by considering a conceptual representation of
images and model their conveyed visual semantics and relational information through a
high-level and expressive representation formalism. Given a user’s feedback (i.e. judgment
or relevance or irrelevance), our RF process, operating on both visual semantics and
relational spatial characterization, is therefore able to first generate and then display a query
for eventual further modifications operated by the user. It enforces computational efficiency
by generating a symbolic query instead of dealing with costly learning algorithms and
optimizes user interaction by displaying this ‘readable’ symbolic query instead of operating
on hidden low-level features.
As opposed to state-of-the-art loosely-coupled solutions penalizing user interaction and
retrieval performance with an opaque RF framework operating on low-level features, our
architecture combines a keyword-based module with a transparent and penetrable RF
process which refines the retrieval results of the first. Moreover, we offer a rich query
language consisting of several Boolean operators.
At the core of our work is the notion of image objects (IOs), abstract structures representing
visual entities within an image. Their specification is an attempt to operate beyond simple
low-level signal features since IOs convey the semantic and relational information.
In the remainder, we first detail the processes allowing to abstract the extracted low-level
features to high-level relational description in section 2. Section 3 deals with the visual
semantic characterization. We specify in section 4 the image model and develop its
conceptual instantiation integrating visual semantics and relational (spatial) features.
Section 5 is dedicated to the presentation of the RF framework.

2. From low-level spatial features to high-level relational description
Taking into account spatial relations between semantically-defined visual entities is crucial
in the framework of an image retrieval system since it enriches the index structures and

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems

23

expands the query language. Also, dealing with relational information between image
components allows to enhance the quality of the results of an information retrieval system
[Ounis&Pasca 98]. However, relating low-level spatial characterizations to high-level textual
descriptions is not a straightforward task as it involves highligting a spatial vocabulary and
specifying automatic processes for this mapping. We first study in this section methods used
to represent spatial data and deal with the automatic generation of high-level spatial
relations following a first process of low-level extraction.

2.1 Defining a spatial vocabulary through the relation-oriented approach
We consider two types of spatial characterizations: the first describes the absolute positions
of visual entities and the second their relative locations.
In order to model the spatial data, we consider the «relation-oriented» approach which
allows explicitly representing the relevant spatial relations between IOs without taking into
account their basic geometrical features. Our study features the four modeling and
representation spaces:
- The Euclidean space gathers the image pixels coordinates. Starting with this

information, all knowledge related to the other representation spaces can be inferred.
- The Topological space is itself linked to the notions of continuity and connection. We

consider five topological relations and justify this choice by the fact that these relations
are exhaustive and relevant in the framework of an image indexing and retrieval
system. Let io1 and io2 two IOs. These relations are (s1=P,io1,io2) : ‘io1 is a part of io2’,
(s2=T,io1,io2) : ‘io1 touches io2 (is externally connected)’, (s3=D,io1,io2) : ‘io1 is
disconnected from io2’, (s4=C,io1,io2) : ‘io1 partially covers (in front of) io2’ and
(s5=C_B,io1,io2) : ‘io1 is covered by (behind) io2’. Let us note that these relations are
mutually exclusive and characterized by the important property that each pair of IOs is
linked by only one of these relations.

- The Vectorial space gathers the directional relations: Right (s6=R), Left (s7=L), Above
(s8=A) and Below (s9=B). These relations are invariant to basic geometrical
transformations such as translation and scaling.

- In the metric space, we consider the fuzzy distance relations Near (s10=N) and Far
(s11=F). Discrete relations are not considered since providing a query language which
allows a user to quantify the distance between two visual entities would penalize the
fluidity of the interaction.

2.2 Automatic spatial characterization
Topological relations. In our spatial modeling, an IO io is characterized by its center of
gravity io_c and by two pixel sets: its interior, noted io_i and its border io_b. We define for
an image an orthonormal axis with its origin being the image left superior border and the
basic measure unity, the pixel. All spatial characterizations of an object such as its border,
interior and center of gravity are defined with respect to this axis.
In order to highlight topological relations between IOs, we consider the intersections of their
interior and border pixel sets through a process adapted from [Egenhofer 91]. Let io1 and
io2 be two IOs, the four intersections are: io1_i ∩ io2_i, io1_i ∩ io2_b, io1_b ∩ io2_i and io1_b
∩ io2_b. Each topological relation is linked to the results of these intersections as illustrated
in table 1. The strength of this computation method relies on associating topological

 Tools in Artificial Intelligence

24

relations to a set of necessary and sufficient conditions linked to spatial attributes of IOs (i.e.
their interior and border pixel sets).

 Intersections
Topological Relation io1_b ∩ io2_b io1_i ∩ io2_b io1_b ∩ io2_i io1_i ∩ io2_i

(P, io1, io2) ∅ ≠ ∅ ∅ ≠ ∅
(T, io1, io2) ≠ ∅ ∅ ∅ ∅
(D, io1, io2) ∅ ∅ ∅ ∅
(C, io1, io2) ∅ ∅ ≠ ∅ ≠ ∅
(C_B, io1, io2) ∅ ≠ ∅ ∅ ≠ ∅

Table 1. Characterization of topological relations with the intersections of interior and
border pixel sets of two IOs

Directional relations. The computation of directional relations between io1 and io2 is based
on their centers of gravity io1_c(x1c, y1c) and io2_c(x2c, y2c), the minimal and maximal
coordinates along x axis (x1min, x2min & x1max, x2max) as well as the minimal and maximal
coordinates along y axis (y1min, y2min & y1max, y2max) of their four extremities.
We will say that io1 is at the left of io2, noted (L,io1,io2) iff.
(x1c<x2c) ∧ (x1min<x2min) ∧ (x1max<x2max).
io1 is at the right of io2, noted (R,io1,io2) iff. (x1c>x2c) ∧ (x1min>x2min) ∧ (x1max>x2max).
We will say that io1 is above io2, noted (A,io1,io2) iff.
(y1c>y2c) ∧ (y1min>y2min) ∧ (y1max>y2max).
io1 is below io2, noted (B,io1,io2) iff. (y1c<y2c) ∧ (y1min<y2min) ∧ (y1max<y2max).
We illustrate these definitions in figure 1 where the IO corresponding to huts (io1) is above
the IO corresponding to the grass (io2). It is however not at the left of the latter since x1c<x2c

but x1min>x2min.

Figure 1. Characterization of directional relations

Metric relations. In order to distinguish between the Near and Far relations, we use the
constant Dsp= d(0 ,0.5*[σ1,σ2]T) where d is the Euclidean distance between the null

vector 0 and [σ1,σ2]T is the vector of standard deviations of the localization of centers of
gravity for each IO in each dimension from the overall spatial distribution of all IOs in the
corpus. Dsp is therefore a measure of the spread of the distribution of centers of gravity of
IOs. This distance agrees with results from psychophysics and can be interpreted as the
bigger the spread, the larger the distances between centers of gravity are. We will say that

y1C

y2C

x1C x2C x2min x1min

y1min

 O

y2min

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems

25

two IOs are near if the Euclidean distance between their centers of gravity is inferior to Dsp,
far otherwise.

2.3 From low-level features to symbolic spatial relations
So as to deduct knowledge from partial spatial information and to enforce computational
efficiency, composition rules are used to infer relations between two IOs io1 and io2 from
the relations generated between io1, io2 and a third IO io3. For example, if io1 is at the left of
io3 and io3 at the left of io2 then io1 is at the left of io2.
Composition rules on spatial relations are dynamically processed when constructing index
spatial representations. Let us note moreover that there are existing implications between
spatial relations characterized in different modeling spaces. We identified the following
implications related to the topological relations only:
• (P,io1,io2)Æ¬ (T, io1, io2)∧ ¬ (D, io1, io2) ∧ ¬ (C, io1, io2) ∧ ¬ (C_B, io1, io2)
• (T,io1,io2)Æ¬ (P, io1, io2)∧ ¬ (D, io1, io2) ∧ ¬ (C, io1, io2) ∧ ¬ (C_B, io1, io2)
• (D,io1,io2)Æ¬ (P, io1, io2)∧ ¬ (T, io1, io2) ∧ ¬ (C, io1, io2) ∧ ¬ (C_B, io1, io2)
• (C,io1,io2)Æ¬ (P, io1, io2)∧ ¬ (T, io1, io2) ∧ ¬ (D, io1, io2) ∧ ¬ (C_B, io1, io2)
• (C_B,io1,io2)Æ¬ (P, io1, io2)∧ ¬ (T, io1, io2) ∧ ¬ (D, io1, io2)∧ ¬ (C, io1, io2)
These implications illustrate the fact that there exists a unique topological relation between
two IOs.
We identified the following implications related to the directional relations:
• (L,io1,io2) Æ ¬ (R,io1,io2); (R,io1,io2) Æ ¬ (L,io1,io2)
• (A,io1,io2) Æ ¬ (B,io1,io2); (B,io1,io2) Æ ¬ (A,io1,io2)
These implications illustrate the fact that an IO io1 is either at the left or at the right of a
second IO io2. Also, it is either above, either below io2.
We identified the following implications between metric relations only:
• (N,io1,io2) Æ ¬ (F,io1,io2); (F,io1,io2) Æ ¬ (N,io1,io2)
These implications illustrate the fact that an IO io1 is either near, either far from a second IO
io2.
Finally, we identified the following implications between spatial relations of distinct
natures:
• (P, io1, io2) Æ N, io1, io2), if io1 is part of io2, then it is near io2.
• (T, io1, io2) Æ (N, io1, io2), if io1 touches io2, then it is near io2.
We propose in the next section to highlight the image visual semantics, i.e. semantic
concepts linked to IOs.

3. Characterizing the visual semantics
Semantic concepts are learned and then automatically extracted given a visual ontology. Its
specification is strongly constrained by the application domain. Indeed, the development of
cross-domain multimedia ontologies is currently limited by the difficulty to automatically
map low-level signal features to semantic concepts [Naphade et al. 06]. Our efforts have
been focused towards developing an ontology for general-purpose photography.
Several experimental studies presented in [Mojsilovic&Rogowitz 01] have led to the
specification of twenty categories or picture scenes describing the image content at a global
level. Web-based image search engines (google, altavista) are queried by textual keywords

 Tools in Artificial Intelligence

26

corresponding to these picture scenes and 100 images are gathered for each query. These
images are used to establish a list of semantic concepts characterizing objects that can be
encountered in these scenes. A total of 72 semantic concepts to be learnt and automatically
extracted are specified.

Figure 2. Image patches corresponding to semantic concepts: ground, sky, vegetation,
water, people, mountain, building

A three-layer feed-forward neural network with dynamic node creation capabilities is used
to learn these semantic concepts. Labeled image patches cropped from home photographs
constitute the training corpus T (example images are provided in figure 3). Low-level color
and texture features are computed for each of the training images as an input vector for the
neural network.

a)Learning framework linking each grid-based region with a semantic-concept and its
recognition result

b)Recognition results are reconciled across all regions to highlight IOs

Figure 3. Architecture for the highlighting of IOs and the characterization of their
corresponding semantic concept

Once the neural network has learned the visual vocabulary, the approach subjects an image
to be indexed to a multi-scale, grid-based recognition against these semantic concepts. An
image to be processed is scanned with grids of several scales. Each one features visual
regions {vri} characterized by a feature vector of low-level color and texture features. The
latter is compared against feature vectors of labeled image patches corresponding to
semantic concepts in the training corpus T (figure 3.a)). Recognition results for all semantic
concepts are computed and then reconciled across all grid regions which are aggregated
according to configurable spatial tessellation (figure 3.b)) in order to highlight IOs. Each IO
is linked to a semantic concept with maximum recognition value.

csem_r1 =
water T csem_r1 =

people T

{vr23}{vr1}

Io1 Io2

{vr63} {vr43}

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems

27

4. A model for semantic/relational integration
We propose an image model combining visual semantics and relational characterization
through a bi-facetted representation (cf. figure 4). The image model consists of both a
physical image level representing an image as a matrix of pixels and a conceptual level. IOs
convey the visual semantics and the relational information at the conceptual level. The latter
is itself a bi-facetted framework:
- The visual semantics facet describes the image semantic content and is based on

labeling IOs with a semantic concept. E.g., in figure 4, the second IO (Io2) is tagged by
the semantic concept Water. Its conceptual specification is dealt with in section 4.1.

- The relational facet features the image relational content in terms of symbolic spatial
relations. E.g., in figure 4, Io1 is inside Io2. Its conceptual specification is dealt with in
section 4.2.

Figure 4. Image Model

To instantiate this model within an image retrieval framework, we use a representation
formalism capable to model IOs as well as the conveyed visual semantics and relational
information. This formalism should moreover make it easy to visualize the image
information, especially as far as the interaction with the user within a RF framework is
concerned. A graph-based representation and particularly conceptual graphs (CGs) [Sowa
84] is an efficient solution to describe an image and characterize its components. CGs have
indeed proven to adapt to the symbolic approach of image retrieval [Mechkour 96]
[Belkhatir et al. 04] [Belkhatir 05a] [Belkhatir et al. 05b]. CGs allow to represent components
of our image retrieval architecture and to specify expressive index and query frameworks.
Formally, a CG is a finite, bipartite and directed graph. It features two types of nodes:
concept and relation nodes. In the graph [Tools with Artificial Intelligence](Entitled)
[Book]Æ(Published_by)Æ[I-Tech], concepts are between brackets and relations between
parentheses. This graph is equivalent to a first-order logical expression where concepts and
relations are connected by the conjunction operator (boolean AND):
∃ x,y,z s.t. (Book=x) ∧ (Tools with Artificial Intelligence=y) ∧ (I-Tech=z) ∧ Entitled(x,y) ∧
Published_by(x,z).
It is semantically interpreted as: the book entitled Tools with Artificial Intelligence is
published by I-Tech. Concepts and conceptual relations are organized within a lattice
structure partially ordered by the IS-A (≤) relation. Person ≤ Man, e.g., denotes that the
concept Man is a specialization of the concept Person, and will therefore appear in the
offspring of the latter within the lattice organizing these concepts. In our model, CGs are
used to represent the image content at the conceptual level.

 Physical image level

 Conceptual image level
Relational facet

People Water
Visual semantics facet

Inside

Io1 Io2

 Tools in Artificial Intelligence

28

4.1 Representation of the visual semantics facet
An instance of the visual semantics facet is represented by a set of CGs, each one containing
an Io concept linked through the conceptual relation is_a to a semantic concept:
[Io]Æ(is_a)Æ[csem[i]]. E.g., graphs [Io1]Æ(is_a)Æ[People] and [Io2]Æ(is_a)Æ[Water] are the
representation of the visual semantics facet in figure 4 and can be translated as: the first IO
(Io1) is associated with the semantic concept people and the second IO (Io2) with the
semantic concept water. We use WordNet to elaborate a visual ontology that reflects the is_a
relation among the semantic concepts. They are organized within a multi-layered lattice
ordered by a specific/generic partial order (a part of the lattice is given in figure 5).

Figure 5. Lattice organizing semantic concepts

We now focus on the relational facet by first proposing structures for the integration of
relational information within our strongly-integrated framework and then specifying their
representation in terms of CGs.

4.2 Conceptual representation of the relational facet
Each pair of IOs are related through an index spatial meta-relation (ISR), compact structure
summarizing spatial relationships between these IOs. ISRs are supported by a vector
structure Sp with eleven elements corresponding to the previously explicited spatial
relations. Values Sp[i], i ∈ [1,11] are booleans stressing that the spatial relation si links the
two considered IOs. E.g., the first and second IOs (Io2) respectively corresponding to
semantic concepts person and water in figure 4 are related by the ISR <P:1, T:0, D:0, C:0,
C_B:0, R:0, L:0, A:0, B:0, N:0, F:0>, which is translated by Io1 being inside (part of) Io2.
Our framework proposes an expressive query language which integrates visual semantics
and symbolic spatial characterization through boolean operators. A query which associates
visual semantics with a boolean disjunction of spatial relations such as Q: “Find images with
people at the left OR at the right of buildings” can therefore be processed (user-formulated
queries are studied in [Belkhatir 05b]). Or spatial concepts (OSCs) are conceptual structures
semantically linked to the disjunction boolean operator and specified for the processing of
such a query. They are supported by the vector structure Spor such that Spor(i), i∈[1,11], is a
non-null boolean value if the spatial relation si is mentioned in the disjunction of spatial
relations within the query. The OSR <P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, A:0, B:0, N:0, F:0>OR
corresponds to the spatial characterization expressed in Q.

Tsc

Plant

Sky Physical Object Thing

 Forest
Vegetation/Flora

Water

 Beach Lake Pool

Living thingGround Manmade Object

 Construction Way
Window Pillar Building Fence WallRoad Stairs

Field Forest Beachfront Floor Organism

Flower GrassBody PartPlant PartRock Geological Form

Pebble Leaf Foliage Trunk Face Beach Mountains Dune

Natural Object
Person

⊥sc

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems

29

In our conceptual representation of the spatial facet, spatial meta-relations are elements of
partially-ordered lattices organized with respect to the type of the query processed. There
are two types of basic graphs controlling the generation of all the relational facet graphs.
Index spatial graphs link two IOs through an ISR: [Io1]Æ(ISR)Æ[Io2]. Query spatial
graphs link two IOs through And, Or or Not spatial meta-relations [Io1]→(ASR)→[Io2];
[Io1]→(OSR)→[Io2] and [Io1]→(NSR)→[Io2]. Eg, the index spatial graph [Io1]→(<P:1, T:0,
D:0, C:0, C_B:0, R:0, L:0, A:0, B:0, N:0, F:0>)→[Io2] is the index representation of the spatial
facet in figure 4 and is interpreted as the first IO (Io1) is related to the second IO (Io2)
through the ISR <P:1, T:0, D:0, C:0, C_B:0, R:0, L:0, A:0, B:0, N:0, F:0>. The query spatial
graph [Io1]→(<P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, A:0, B:0, N:0, F:0>OR)→[Io2] is the
representation of query Q.

4.3 Image index and query representations
Image index and query representations are obtained through the combination (join
operation [Sowa 84]) of CGs over the visual semantics and relational facets. We propose the
graph unifying all visual semantics and spatial CG representations of the image proposed in
figure 4:

5. A relevance feedback framework strongly integrating visual semantics and
relational descriptions
We present a RF framework enhancing the state-of-the-art techniques as far as two major
issues are concerned. First, while most image RF architectures are designed to deal with
global image features, our framework operates at the IO level and the user is therefore able
to select visual entities of interest to refine his search. Moreover, the user has a total control
of the query process since the system displays the query generated from the images he
selects and allows its modification before processing.

5.1 Use case scenario
Our RF framework operates on the whole corpus or on a subset of images displayed after an
initial query image was proposed. The user refines his search by selecting IOs of interest. In
case the user wants to refine the spatial characterization between a pair of visual entities
(e.g. the user is interested in retrieving people either inside, in front of or at the right of a
water area), he first queries with the semantic concepts corresponding to these entities (here
‘water and people’) and then enrich his characterization through RF. The system translates the
phrase query ‘water and people’ in a visual semantics graph:
[Image]Æ(composed_of)Æ[Io1]Æ(is_a)Æ[water]
 [Io2]Æ(is_a)Æ[people]

 Tools in Artificial Intelligence

30

The latter is processed and the results are given in figure 6.

Figure 6. First retrieval for the query “water and people”

When the RF mode is chosen, the system displays all IOs within images relevant to the
query ‘water and people’. The user chooses to highlight 3 pairs of IOs (figure 7) within
displayed images which are relevant to his need (i.e. present the specific visual semantic and
spatial characterizations he is interested in).

Figure 7. Selected IOs and their conceptual representation

The system is then expected to generate a generalized and accurate representation of the
user’s need from the conceptual information conveyed by the selected IOs.
According to the user’s selection, the system should find out that the user focuses on images
containing a person either being inside, in front of or at the right of water. Our RF
framework therefore processes the ISRs of the selected pairs of IOs so as to construct the
OSR <P:1, T:0, D:0, C:1, C_B:0, R:1, L:0, A:0, B:0, N:0, F:0>OR. The spatial query graph
[Io1]→[<P:1, T:0, D:0, C:1, C_B:0, R:1, L:0, A:0, B:0, N:0, F:0>OR]→[Io2] is then generated.
Finally, visual semantics and spatial query graphs are aggregated to build the full query
graph:

Io2

Io1 is_a Person

is_a WaterIo2

Io1

 Io2
Io2

Io1

Io1 is_a Water

Io1 is_a Person

Io2 is_a Water

Io1 is_a Person

Io1

<P:0,… C:1…R:0… N:1, F:0>

<P:1, T:0, D:0…R:0… N:1, F:0>

<P:0, T:0, D:1…R:1… N:1, F:0>

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems

31

Image Io1 is_a Person Composed_of

Io2 is_a Water

<P:1, T:0, D:0, C:1, C_B:0, R:1, L:0, A:0, B:0, N:0, F:0>OR

5.2 Relevance feedback algorithm
The algorithm summarizing the RF mode is as follows:
Given a query with semantic concepts SCi, generate a visual semantics graph Gsem.
Process the graph and display relevant images.
If the user selects the RF mode, highlight IOs then take into account the n pairs of IOs
selected by the user.
Regarding the spatial subfacet
The n selected pairs of IOs are characterized by n ISRs supported by vector structures
[Sp]k (k∈[1,n]) such that values [Sp(i)]k, i∈[1,11] are booleans stressing that in the kth ISR
the spatial relation si links the considered pair of IOs.
Generate four Or spatial relations respectively corresponding to the topological relations,
the right/left and above/below directional relations and finally the metric relations
considering the n ISRs (let us note that we generate an OSR for each group of relations
which are said incompatible, i.e. one IO cannot be both at the left and at the right of an
other IO, also one IO cannot be both near and far from an other IO etc…). These OSRs are
supported by vector structures [SpOR]j(i), j∈[1,4] , i∈[1,11] such that:
• [SpOR]1(i) is a boolean value equal to 1 if a topological relation si (i∈[1,5]) relates the

IOs in one of the n pairs selected by the user and all other boolean values are null
([SpOR]1(i)=0 ∀ i∈[6,11]).

• [SpOR]2(i) is a boolean value equal to 1 if a directional relation right/left si (i=6 or i=7)
relates the IOs in one of the pairs selected by the user and all other boolean values are
null.

• [SpOR]3(i) is a boolean value equal to 1 if a directional relation above/below si (i=8 or
i=9) relates the IOs in one of the pairs selected by the user and all other boolean
values are null.

• [SpOR]4(i) is a boolean value equal to 1 if a metric relation si (i=10 or i=11) relates the
IOs in one of the pairs selected by the user and all other boolean values are null.

Generate the respective Or query graphs Gspa_k: [IO]Æ(<[SpOR]j(i)>)Æ[IO], j∈[1,4], i ∈
[1,11]
Aggregate (join operation [Sowa 84]) CGs Gspa_1, Gspa_2, Gspa_3 and Gspa_4 to generate the
spatial query graph Gspa.
Aggregate (join operation) visual semantics and spatial query graphs Gsem and Gspa. Each
query (like document index representations) is indeed represented by a global CG
resulting from the aggregation of CGs over the visual semantics and relational facets
called image query graph.

5.3 Matching query and index structures
The Projection Operator. An operational model of image retrieval based on the CG
formalism uses the graph projection operation for the comparison of an image query graph

 Tools in Artificial Intelligence

32

and an image document graph. This operator allows to identify within a graph g1 sub-
graphs with the same structure as a given graph g2, with nodes being possibly restricted, i.e.
their types are specialization of g2 node types. If a projection of an image query graph IQ
within an image document graph ID exists then the image document indexed by ID is
relevant for the image query IQ.
Formally, the projection operation℘ : IQ Æ ID exists if there is a sub-graph of ID verifying the
two following properties:
- There is a unique document concept which is a specific of a query concept, this being

valid for any query concept. This property ensures that all elements describing the
query are present within the image document, and their image is unique.

- For any relation linking concepts cQ1 and cQ2 of IQ, there is the same relation between the
two concepts cD1 and cD2 of ID, such as ℘(cQ1) = cD1 and ℘(cQ2) = cD2.

However, brute-force implementations of the projection would result in exponential
execution times. Based on the work in [Ounis&Pasca 98], we use an adaptation of the
inverted file approach for image retrieval. We specify lookup tables associating visual
semantics concepts to the set of image documents whose index contain it. Treatments that
are part of the projection are performed during indexing following a specific organization of
CGs which does not affect the expressiveness of the formalism. Moreover, lattices
organizing spatial relations are defined by mathematical partial orders and not hard-coded,
which allows fast query processing. We discuss in the next section the organization of the
lattice for processing queries with OSMs.
Processing queries with OSMs. ISRs are organized within an Or lattice to process a query
conveying a boolean disjunction of spatial relations such as “Find images with people at the
left or at the right of buildings”. This query is first translated in its graph representation (cf.
section 4.2). Semantic concepts huts and grass are processed by the lattice of semantic
concepts. The link between the generated OSR <P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, T:0, B:0,
N:0, F:0>OR and its equivalent ISR is not straightforward. A new category of meta-relations
eliciting this link by taking into account dominant spatial relations (i.e. spatial relations
mentioned in a query as they have a higher importance in the ordering process of ISRs
within the lattice, other spatial relations are called secondary) shall be introduced. These
concepts are index spatial meta-relations with dominant dOR, where dOR is the set of
dominant spatial relations. They are supported by a vector structure sd with eleven elements
corresponding to spatial relations si. Values sd[i]i∈[11] such that si∈dOR characterize the
presence of dominant spatial relations and values sd[j]j∈[1,11] such that j ≠ i, the presence of
secondary spatial relations within the spatial characterization of the considered IOs. Index
spatial meta-relations with dominant dOR are specializations of OSRs and generalizations of
ISRs as far as the lattice organization is concerned. The OSR <B:0…D:1,I:0…U:1…>OR is
related to its equivalent ISR with dominant {left, right}: <P:0, T:0, D:0, C:0, C_B:0, R:1, L:1,
T:0, B:0, N:0, F:0> as highlighted in the lattice of figure 8. As a matter of fact, the most
relevant images provided by the system present people at the left or at the right of
buildings, i.e. people and buildings related through only dominant spatial relations. This
symbolic spatial characterization is represented by the highlighted ISR (sr) in figure 8. Other
images are composed of people either at the right or at the left of buildings with at least one
additional spatial relation not mentioned in the query linking the two semantic concepts. In
the lattice, ISRs representing such characterizations are descendants of sr. Formally, sub-
lattices of index spatial meta-relations with dominant dOR are partially ordered by ≤OR:

Towards Intelligible Query Processing in Relevance Feedback-Based Image Retrieval Systems

33

∀a,b index spatial meta-relations with dominant dOR, a ≤OR b ⇔ (a=⊥OR)
∨ (b=TOR) ∨ [(∀i∈[1,11], si∈ dOR, (a[i] = 0 ∧ b[i] = 1) ∨ (a[i] = 1 ∧ b[i] = 1)) ∧

(∀j∈[1,11], sj ∉ dOR, (b[i] = 0 ∧ a[i] = 1) ∨ (b[i] = 1 ∧ a[i] = 1))]

Figure 8. Lattice Processing Or Spatial Meta-relations

7. Conclusion
We have specified within the scope of this paper a framework combining semantics and
relational (spatial) characterizations within a coupled architecture in order to address the
semantic gap.
This framework is instantiated by an operational model based on a sound logic-based
formalism, allowing to define a representation for image documents and a matching
function to compare index and query structures.
We have specified a query framework coupling keyword-based querying with a relevance
feedback module managing transparent and penetrable interactions by considering
conceptual characterizations of images.
The choice of conceptual graphs as an operational model is the most natural in the sense that
it holds several advantages in our application context. It indeed allows the symbolic
representation of all components of a multimedia indexing and retrieval architecture:
queries, index documents and matching function. Moreover its simple representation is
particularly well-suited for user interaction in the framework of relevance feedback.
To stress the relevance of our approach, the theoretical contributions of this paper in the
domain of image indexing and retrieval are summarized below:
- We have first proposed a neural-network based architecture for the highlighting of

image objects, structures abstracting the image visual entites, and the characterization
of their associated semantics.

- In the perspective of unifying the semantic and relational characterizations, we have
proposed an integrated model featuring a bi-facetted organization. The visual semantics
facet describes the image semantic content and is based on labeling IOs with a semantic
concept. The relational facet is itself based on the relational (spatial) characterizations
between pairs of image objects obtained after highlighting a correspondence process
between extracted low-level information and symbolic relations.

<P:0, T:0, D:0, C:0, C_B:0, R:1, L:1, T:0, B:0, N:0,
F:0>OR

(...)

 (...) (...)

(...) (...) (...) (...) (...)

10 0

0001 110..0 1..1 1000

(..) 10..01

110..01

11..1

 (..)0..01

(...)

 10..011

1..11 10..0

100.. 010..

1010..0 (..)

101..

110..0

0110..0
011..1

(...) 0..110..0(sr)

0..0100 0..0010

10..010
11011..110

(...)

⊥OR

T

0..01
10..001100..01

 Tools in Artificial Intelligence

34

- To overcome the limitations of the keyword-based approach to query on the image
content, we have proposed a high-level relevance feedback framework, allowing in
particular the relational characterization of the image objects.

- We have finally proposed a correspondence model based on the conceptual graph
projection operator. Its instantiation is optimized through the use of specific data
structures to boost retrieval. In particular, semantic and spatial index structures are
organized in lattices defined by mathematical partial orders.

8. References
Belkhatir, M. et al. (2004). Integrating perceptual signal features within a multi-facetted

conceptual model for automatic image retrieval, ECIR, pp. 267-282
Belkhatir, M. (2005). Combining semantics and texture characterizations for precision-

oriented automatic image retrieval, ECIR, pp. 457-474
Belkhatir, M. et al.: A full-text framework for the image retrieval signal/semantic

integration, DEXA (2005), pp. 113-123
Egenhofer, M. et al. (1991). Reasoning about binary topological relations, SSD, 143-160
Hollink, L. et al. (2004). Classification of user image descriptions. Int. J. Hum.-Comput. Stud.

61(5), pp. 601-626
Lu, Y. et al. (2000). A unified framework for semantics and feature based relevance feedback

in image retrieval systems. ACM MM, pp. 31-37
Mechkour, M. (1995). EMIR2: An Extended Model for Image Representation and Retrieval,

DEXA, pp. 395-404
Meghini, C. et al. (2001). A model of multimedia information retrieval, J. ACM 48(5), pp.

909-970
Mojsilovic, A. & Rogowitz, B. (2001). Capturing image semantics with low-level descriptors,

ICIP, pp. 18-21
Naphade, M. et al. (2006). A Large-Scale Concept Ontology for Multimedia, IEEE

MultiMedia 13(3), pp. 86-91
Ounis, I. & Pasca, M. (1998): RELIEF: Combining expressiveness and rapidity into a single

system. ACM SIGIR, pp. 266-274
Smeulders, A.W.M. et al. (2000). Content-based image retrieval at the end of the early years.

IEEE PAMI 22(12), pp. 1349-1380
Sowa, J.F. (1984). Conceptual structures: information processing in mind and machine,

Addison-Wesley publishing company
Zhou, X.S. & Huang, T.S. (2002). Unifying Keywords and Visual Contents in Image

Retrieval. IEEE Multimedia 9(2), pp. 23-33

3

GNGS: An Artificial Intelligent Tool for
Generating and Analyzing Gene Networks

from Microarray Data

Austin H. Chen1 and Ching-Heng Lin2
1Department of Medical Informatics, Tzu-Chi University

1,2Graduate Institute of Medical Informatics, Tzu-Chi University
Taiwan

1. Introduction
The completion of the Human Genome Project has been recognized as a great achievement
in the study of biomedicine; the project not only provides information regarding human
genes but also provides new ways to study human diseases such as cancers. High-
throughput techniques, such as microarray experiments, have emerged as a method of
study that measures the level of gene expression in gene networks. Since microarray
experiments can produce thousands of datasets under various experimental conditions
simultaneously, it is now feasible to study gene interactions and regulatory networks. How
to analyze and interpret the results of these analyses, however, has become an important
research area in bioinformatics.
In the study of biological cellular behavior, understanding how biological activities are
governed by the relationships among genes, RNA, and proteins is a common challenge.
Gene networks represent such connectivity. A gene network consists of a group of genes
that interact among themselves in order to synthesize proteins. Recently, genome-wide gene
expression microarray data relevant to the yeast cell cycle has been collected (Spellman et
al., 1998; Cho et al., 1998; Zhu et al., 2000). Since the gene expression profile data is a record
of the network interactions between the regulators and the target genes, it is possible to use
this information to trace these complex relationships. A variety of computer clustering
methods have been developed in order to group together genes with similar patterns of
expression (Eisen et al., 1998; Tamayo et al., 1999; Tavazoie et al, 1999).
Previous efforts at modeling gene networks from high dimensional datasets have generally
fallen into one of three classes, either employing Boolean networks (D’haeseleer et al., 1999;
Husmeier et al., 2005), which are restricted to logical relationships between variables, or
using systems of differential equations (Chen et al., 1999; Sakamoto & Iba, 2001; Thomas,
1990) to model the continuous dynamics of coupled biological reactions. The work of
Friedman et al. (2000) uses Bayesian networks to analyze expression data. The statistical
framework of Bayesian learning, since it deals with uncertainly, is designed for domains

 Tools in Artificial Intelligence

36

with a large number of variables and for handling noisy data. Another advantage of this
probabilistic approach is the ability to combine prior knowledge with the information
extracted from data.
A Bayesian network is a graphical model that finds probabilistic relationships among
variables (i.e. genes) of the system. Bayesian networks are popular decision support models
(Cooper & Herskovits, 1992; Husmeier, 2005) because they inherently model the uncertainty
in the data. In addition, Bayesian networks successfully amalgamate probability theory and
graph theory to efficiently model multidimensional probability distributions by searching
for independent relationships in the data (Gevaert et al., 2006; Heckerman, 1995). Other
features that make Bayesian networks attractive candidates for modeling gene expression
data include the ability to handle noisy or missing information, handle hidden variables,
and make causal inferences. (Beal et al, 2005)
Currently, a user-friendly system that can display and analyze various gene networks from
microarray experimental datasets is urgently needed. In this study, our goal is to develop a
gene network generating system (GNGS) that can generate the gene networks of the yeast
cell cycle from experimental microarray data as well as analyze the performance of gene
networks using five different Bayesian network algorithms.

2. Methods
In this study, three kinds of datasets were used. The first two datasets are Alarm (Beinlich,
1989) and Asia (Lauritzen & Spiegelhalter, 1988) networks. These two datasets were
commonly used in Bayesian networks, and the known structure of the Alarm and Asia
networks are used to compare the performance of different Bayesian network algorithms.
The third dataset used in this study is S. cerevisiae cell cycle gene expression data collected
by Spellman et al. (1998). This dataset contains four medium time series: 18, 24, 17 and 14
time series points for alpha, cdc15, cdc28 and elu respectively. In the assessment of a gene
network, we use each of the three medium time series: alpha, cdc15, and cdc28.
After normalizing the gene expression data, we sorted these values into three classes based
on Friedman’s threshold value of 0.5 (Friedman et al., 2000). The data was then translated
into 3 discrete values:

The results were compared with a known YPL256C sub network (Dejori, 2002). In order to
compare the performance of gene networks generated from different Bayesian network
algorithms (Kim et al., 2004), we defined specificity and sensitivity as Formula 1 and
Formula 2.

network reference in the edges #
edges estimated correctly #ySensitivit =

Formula 1: Sensitivity of gene network

Data representation

under-expressed = -1

normal expressed = 0

over-expressed = +1

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data

37

edges estimated all
edges estimatedcorrectly #ySpecificit =

Formula 2: Specificity of gene network
The greater the number of correct edges, the better the sensitivity. A higher value for
sensitivity and specificity indicates better performance of the gene network.

3. Bayesian network algorithms
The gene networks of the yeast cell cycle were constructed using Bayesian network
algorithms from data recorded in four different microarray experimental datasets. Five
computer algorithms were developed in the construction of these gene networks. Among
them are the Power Constructor (PC) algorithm, Hill Climbing (HC) algorithm, Maximum-
Weight Spanning Tree (MWST) algorithm, K2 algorithm and MWST+K2 algorithm. Table 1
shows a comparison of these five algorithms.

K2 algorithm

K2 is the most widely used algorithm in Bayesian network
structure learning. It is well known as a general method for
inferring inter-node relations in a given node group based
on a complete database free of missing data [22].

MWST
algorithm

The MWST algorithm was developed by Chow and Liu [4].
This algorithm searches for an optimal tree structure by
using the computed mutual information as edge weights
[4]. The MWST associates a weight to each connection,
where each weight represents the mutual information
between the two variables. When the weight matrix is
created, the MWST algorithm gives an optimal tree
structure.

K2+MWST
algorithm

Combining the K2 and MWST algorithms provides a better
quality of network by speeding the execution efficiency. A
known order of nodes is first calculated using the MWST
algorithm, and these results are then used in K2.

Hill climbing
algorithm

The sub-optimal hill climbing method is the heuristic K2
algorithm. The method focuses solely on precision and
computation time at the expense of reliability, and it
mainly relies on local exploitation. The more intensive the
local exploitation, the stronger the need for specialized
information about the function to be minimized [15, 16].

PC algorithm

PC is one of several dependent-based algorithms. This
algorithm has an intuitive basis, and under some ideal
conditions, it guarantees a graph that is equivalent to a true
model of the data. It can be considered a smart selection
and can intelligently order the questions needed to recover
a causal structure.

Table 1. Comparison of five Bayesian network algorithms

 Tools in Artificial Intelligence

38

Before constructing a gene network, it is necessary to preprocess the gene expression data.
The gene expression data in Spellman’s experiment is first normalized into the value of log2.
We then categorize these values into three classes based on Friedman’s threshold value of
0.5. These classes are represented by 3 discrete values: under-expressed (-1), normal
expressed (0), and over-expressed (+1). In this section, we use the K2 algorithm to
demonstrate how to construct a gene network. K2 is a search and score algorithm. Initially, a
node order is set. Since the quality of the network structure is sensitive to the order of the
nodes, an estimation of the nodes ordering is important. At first, the initial state of every
node does not include the parent nodes. We use formula 3 to appraise whether the set of
parent nodes, iπ , belongs to variable i . By finding every variable (node) that maximizes

(,)ig i π , we maximize the probability of Bayesian network structure sB belonging to data D .
The algorithm will stop when there are no parent nodes could increase the score.

∏∏
== −+

−
=

ii r

k
ijk

q

j iij

i
i N

rN
rig

11

!
)!1(

)!1(),(π

Formula 3: Estimating function
As an example of how to calculate the partial conditional probability among genes, the data
calculated between gene CLN2 and gene RNR3 in CDC15 conditions is computed and
shown on Table 2. From Table 2, the conditional probability of P(RNR3|CLN2)
can be expressed as P(-1|-1) = 0.0, P(0|-1) = 0.0, P(1|-1) = 0.556， P(-1|0) = 0.5,

P(0|0) = 0.444，P(1|0) = 0.444，P(-1|1) = 0.5，P(0|1) = 0.556, P(1|1) = 0. The conditional
probability is 0.0 when both RNR3 and CLN2 are under-expressed as well as 0.444 and 0.0
when both RNR3 and CLN2 are normal expressed and over-expressed. The Bayesian Gene
Networks are then generated from these values using five algorithms.

 RNR3 CDC5

 -1 0 1 -1 0 1

-1 0 0 0.556 -1 1 0 0

0 0.5 0.444 0.444 0 0 0.909 0.375 C
LN

2

1 0.5 0.556 0

A
C

E2

1 0 0.091 0.625

 CLB2

 CLN2

 -1 0 1 -1 0 1

-1 0 0.143 0.6 -1 0 0.25 0.625

0 0.286 0.714 0.3 0 0.125 0.375 0.375 C
LN

1

1 0.714 0.143 0.1

C
LB

2

1 0.875 0.375 0

Table 2. Partial conditional probability tables of genes in CDC15 dataset

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data

39

4. GNGS system implementation
During this study, we developed a gene network generating system (GNGS) that is capable
of generating the gene networks of the yeast cell cycle from experimental microarray data as
well as comparing the performance of gene networks using five different Bayesian network
algorithms. GNGS utilizes both MatLab’s powerful processing ability and LabVIEW’s
dynamic interfaces in a single platform.

4.1 System architecture
GNGS is an innovative system that generates gene networks of the yeast cell cycle using
Bayesian network algorithms. LabVIEW is the abbreviation for Laboratory Virtual
Instrument Engineering Workbench. It is a kind of graphical programming language, or G
language. The difference between the LabVIEW language and a general programming
language is that LabVIEW can be written through encoded icons and can be used to
construct a system. LabVIEW is an entirely graphical language which looks somewhat like
an electronic schematic. It is hierarchical in that any virtual instrument that you design can
be quickly converted into a module which can be a sub-unit of another virtual instrument
(VI).
For example, every icon in Figure 1 has its own function. Programmers design the system
by establishing connections between icons. Different data types can be expressed using color
variations in the lines.

Figure 1. The VIs of displaying network function and executing time

MatLab, meanwhile, is an interactive, matrix-oriented programming language that enables
us to express our mathematical ideas very concisely and directly; it considerably reduces
development time and keeps code short, readable, and fully portable.
This system converts code written in MatLab and integrates the results onto the LabVIEW
interface. In Figure 2 we show a Matlab scrip node (a VI provided by LabVIEW) which is
the kernel that integrates the MatLab and LabVIEW languages together. The results
computed from the Matlab scrip node can be seen as a VI output that transmits to another
VI.

 Tools in Artificial Intelligence

40

Figure 2. The Matlab scrip node generated from LabVIEW

4.2 System flow path
Figure 3 shows an overall flow path in the design of this system. A Select interface will be
displayed to guide the users in running the program. By selecting the desired algorithm,
GNGS will load the gene data and the system-constructed network from the selected gene
dataset. After the gene network is displayed, the performance will then be calculated and
shown in the summary table.

Figure 3. Design flow path of the system

Select algorithm
and dataset
interface

Load gene data

Generate gene
network

Show gene
network

Analyze gene
network

Display system
performance

Generate report

Send report via
e-mail

MATLAB
codes

VI

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data

41

5. System demonstration
The main functions of the GNGS interface include:
1. Algorithm selection section: users select the desired algorithm.
2. Network selection section: users select a desired network.
3. Dataset selection section: only displayed if the cell cycle button is clicked.
4. Execute icon: users click to run the program.
5. Clear icon: users click to clear all selections and release memory space.
6. Gene network display section: displays the resulting gene network.
7. Status slide bar section: shows the current execute status.
8. Summary table: displays summaries of users’ requests.
9. Report icon: users click to generate reports that include the network graph and

summary table.
10. Send icon: the system will send a report to the user through e-mail.
11. Exit icon: exits the interface.
When the users select one of the five Bayesian Network algorithms, the available network
will be automatically displayed. Furthermore, if the users select cell cycle, four dataset types
will then be displayed. After selecting the data set and clicking the Execute button, the light
will turn to green as shown in Figure 4. The red light informs the user that the process is
currently running. The slider bar on the right-hand side will show the execution status.

Figure 4. A screen of the system interface when the Execute icon is clicked

Figure 5 shows the final computation time and the gene network for the selected conditions.
The result column will display information for the users, including algorithm, network type,
dataset type, computation time, sensitivity, and specificity. The Clear button is also
provided in case the users wish to clear the information. When the Clear button is clicked,
the memory space will be released. Doing so assures that there are no memory overflow
problems.

 Tools in Artificial Intelligence

42

Figure 5. A screen of the system interface when the execution is finished.

6. Performance comparison
6.1 Alarm and Asia networks
Both the Alarm and Asia networks were used in this study to compare the performance for
five different Bayesian network algorithms. Using the K2 algorithm as an example, the
results of the Alarm and Asia network comparisons are shown in Figures 6 and Figure 7,
respectively. In Figure 7, two structures are displayed: a known Asia network structure on
the left and a K2-generated network on the right.

Figure 6. A screen of the system interface after the execution is completed for the K2
algorithm and the Alarm network.

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data

43

Figure 7. A screen of the system interface after the execution is completed for the K2
algorithm and the Asia network.

6.2 Gene networks of the yeast cell cycle
GNGS can generate gene networks based on the selected algorithm and dataset. In Figure 8,
we show two gene networks generated from two experimental microarray datasets: one
from the cdc_28 dataset and one from the cdc_15 dataset.

6.3 Comparison of computer execution time
In this section we compare the computer execution time for six datasets based on the K2
algorithm. The Alarm network, as expected, had the longest execution time at 28.1 seconds
because it had the largest amount of data; gene networks from four cell cycle datasets all
had an execution time of less than 1 second (Figure 9). The quantity of data within the
dataset can affect the computer’s execution time. Thus, we compared the system’s execution
time for five algorithms based on the same dataset. The times for K2, MWST, and
K2+MWST were all less than one second. More complex search algorithms, such as the PC
and HC algorithms, had a longer computer execution time; these, however, were still less
than one minute (Figure 10).

(a)

 Tools in Artificial Intelligence

44

(b)

Figure 8. Gene networks generated from the K2 algorithm by two different microarrary
datasets: (a) the cdc_28 dataset, and (b) the cdc_15 dataset.

K2

28.1

7.72

0.76

0.98

0.85

0.89

0 5 10 15 20 25 30

Alarm

Asia

Cell cycle all data

Cell cycle cdc_28

Cell cycle cdc_15

Cell cycle Alpha

Executing time(sec)

Figure 9. Comparison of execution time for 6 datasets based on the K2 algorithm

cdc_28

0.98

0.75

0.95

28.6

49

0 10 20 30 40 50 60

K2

MWST

K2+MWST

PC

HC

Executing time

Figure 10. Comparison of execution time for 5 algorithms using cdc_28 dataset.

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data

45

6.4 Comparison of sensitivity and specificity
By comparing the sensitivity and specificity of gene networks generated from six datasets
using the K2 algorithm, it was found that the gene network constructed from the Asia
dataset had the best performance (Figure 11). Both sensitivity and specificity were at 100
percent accuracy. The gene networks constructed from the cell cycle datasets, however,
produced approximately 50 percent sensitivity.
In addition, we compared gene networks constructed based on five algorithms from the
same dataset. It was notable that the HC algorithm required the longest computer time
(Figure 10 and 12).

K2

87.5
100

70

50
60

50

79.63

100

63.64

27.78

46.15
33.33

0

20

40

60

80

100

120

Alarm Asia Cell cycle
all data

Cell cycle
cdc_28

Cell cycle
cdc_15

Cell cycle
Alpha

(%
) Sensitivity

Specificity

Figure 11. Comparison of sensitivity and specificity for 6 datasets based on the K2 algorithm

cdc_15

60

20
30

100

20

46.15

18.18 15.38 15.15 18.18

0

20

40

60

80

100

120

K2 MWST K2+MWST PC HC

(%
) Sensitivity

Specificity

Figure 12. Comparison of sensitivity and specificity for 6 algorithms based on cdc_15 data
set

 Tools in Artificial Intelligence

46

6.5 Summaries of system performance
Finally, the system performance for all gene networks generated from the four experimental
microarray datasets using five Bayesian network algorithms is summarized in Table 3. It
was noted that the computer execution times for K2, MWST, and K2+MWST were all less
than one second. Even for the more complicated operations such as the PC and HC
algorithms, the execution time was still less than one minute.
A comparison of characteristics for each algorithm and its performance is summarized in
Tables 3. Among these six algorithms, K2 has the best performance in terms of execution
time, sensitivity, and specificity. In essence, the more nodes within a network structure
(such as the Alarm network), the more run time is needed. This study found that the search
and score method (K2) is the best strategy to find the optimal gene network due to its
excellent performance and short execution time. The GNGS system is capable of running
these algorithms, displaying the resulting networks, and analyzing system performance
simultaneously.

Algorithm Network Data
type

Executing
time(sec) Sensitivity Specificity

Alarm - 28.1 87.5 79.63
Asia - 7.72 100 100

All data 0.76 70 63.64
cdc_28 0.98 50 27.78
cdc_15 0.85 60 46.15

K2
Cell
cycle

Alpha 0.89 50 33.33
Alarm - 4.48 32.61 41.67
Asia - 7.92 62.5 71.43

All data 0.73 30 27.27
cdc_28 0.75 20 18.18
cdc_15 0.75 20 18.18

MWST
Cell
cycle

Alpha 0.75 18.18 18.18
Alarm - 26.2 36.96 26.98

All data 0.9 30 27.27
cdc_28 0.95 30 23.08
cdc_15 0.9 30 15.38

K2+MWST Cell
cycle

Alpha 1 30 15.38
Asia - 20.6 75 100

All data 20.7 100 15.15
cdc_28 28.6 100 15.15
cdc_15 28.9 100 15.15

PC Cell
cycle

Alpha 28.5 100 15.15
Asia - 57 37.5 30

All data 55.1 20 18.18
cdc_28 49 30 33.33
cdc_15 51.4 20 18.18

HC Cell
cycle

Alpha 52.7 30 27.27
Table 3. Summaries of system performance for all gene networks generated from four
experimental microarray datasets using five Bayesian network algorithms.

GNGS: An Artificial Intelligent Tool for Generating and
Analyzing Gene Networks from Microarray Data

47

 7. Conclusion
In this paper, we have described a novel method to approach the study of gene networks.
Firstly, we have developed and written five Bayesian network algorithms to construct gene
networks of the yeast cell cycle based on four different microarray datasets. Secondly, we
have implemented a gene network generating system that is more user-friendly. GNGS is
capable of generating gene networks of the yeast cell cycle from experimental microarray
data and comparing the performance of gene networks using five different Bayesian
network algorithms. Our system utilizes both the powerful processing abilities of MatLab
and the dynamic interface of LabVIEW in a single platform. Thirdly, we have compared the
performance of each algorithm through measures such as execution time, sensitivity, and
specificity for all five algorithms based on four different datasets.
In the near future, we intend to further improve performance by utilizing dynamic Bayesian
network algorithms that more accurately reflect living cells’ dynamic behavior. Our
approach will then be used to explore the gene networks of human cells based on the
microarray datasets of human cancers.

8. References
Beal et al (2005) A Bayesian approach to reconstructing genetic regulatory networks with

hidden factors, Bioinformatics, Vol 21, No. 3, 349 – 356
Beinlich, I.A., Suermondt, H.J., Chavez, R.M., and Cooper, G.F. (1989) The alarm monitoring

system: A case study with two probabilistic inference techniques for belief
networks, Technical Report KSL-88-84, Knowledge Systems Lab, Medical Computer
Science, Stanford University.

Chen, T., He, H.L., Church, G.M. (1999) Modeling Gene Expression with Differential
Equations, Proc. of Pacific Symposium on Biocomputing, pp. 29-40.

Cho,R.J. et al. (1998) A genome-wide transcriptional analysis of the mitotic cell cycle”. Mol.
Cell, 2, 65–73.

Chow, C., and Liu, C., (1968) Approximating discrete probability distributions with
dependence trees, IEEE Transactions on Information Theory, 14(3), 462–467.

Cooper, G.F., Herskovits, E. (1992) A Bayesian method for the induction of probabilistic
networks from data. Mach. Learning J. 9, 309–347.

Dejori, J. (2002) Analyzing Gene-Expression Data with Bayesian Networks, MS Thesis,
Elektro- und Biomedizinische Technik Technische Universit¨at Graz. 2002.

D’haeseleer, P, Liang, S, and Somogyi, R. (1999) Tutorial: Gene Expression Data Analysis
and Modeling, Pacific Symposium on Biocomputing ’99 (PSB’99).

Eisen,M.B., Spellman,P.T., Brown,P.O., and Bostein,D. (1998) Cluster analysis and display of
genome-wide expression patterns., Proc. Natl Acad. Sci., USA, 95, 14863–14868.

Friedman, N., Linial, M., Nachman, I., and Pe’er, D. (2000) Using Bayesian networks to
Analyze Expression data, Journal of Computational Biology, 7, 601-620.

Gevaert,O. et al. (2006) Predicting the prognosis of breast cancer by integrating clinical and
microarray data with Bayesian networks. Bioinformatics, 22, 184–190.

Heckerman, D., Geiger, D. and Chickering, D.(1995) Learning Bayesian networks: The
combination of knowledge and statistical data, Machine Learning, 20(3), 197-243.

Husmeier,D., Dybowski,R. and Roberts,S., eds (2005) Probabilistic modelling in
bioinformatics and medical informatics. Springer-Verlag, London, UK.

 Tools in Artificial Intelligence

48

Kim, S., Imoto, S., and Miyano, S. (2004) Dynamic Bayesian network and nonparametric
regression for nonlinear modeling of gene networks from time series gene
expression data, Biosystems, 75, 57-65.

Lauritzen, S.L., and Spiegelhalter, D.J. (1988) Local computations with probabilties on
graphical structures and their application to expert systems, J. Royal Statistical
society B, 50:154-227.

Ovalle-Mart´ınez, F.J., Gonz´alez, J.S., and Stojmenovi´c, I., (2004) A parallel hill climbing
algorithm for pushing dependent data in clients-providers-servers systems, Mobile
Network and Applications, 9:257–264.

Renders, J.-M. and H. Bersini (1994) Hybridizing genetic algorithms with hill-climbing
methods for global optimization: Two possible ways, Proceedings of the First IEEE
International Conference on Evolutionary Computation, pp. 312-317. IEEE Press.

Sakamoto, E. and Iba, H. (2001) Inferring a System of Differential Equations for a Gene
Regulatory Network by using Genetic Programming, IEEE Press, Congress on
Evolutionary Computation, pp.720-726,.

Spellman, P.T., et al. (1998) Comprehensive Identification of cell cycleregulated genes of the
yeast saccharomyces cerevisiae by microarray hybridization, Molecular Biology of the
Cell, 9, 3273-3297.

Tamayo, P. et al. (1999) Interpreting patterns of gene expression with self-organizing maps:
methods and application to hematopoietic differentiation, Proc. Natl Acad. Sci.,
USA, 96, 2907–2912.

Tavazoie, S. et al. .(1999) Systematic determination of genetic network architecture. Nat.
Genet., 22, 281–285.

Thomas H. Cormen, Charles E. Leiserson, and Ronald R. Rivest (1990) Introduction to
Algorithms., MIT Press.

Wright, R. and Yang, Z. (2004) Privacy-preserving Bayesian network structure computation
on distributed heterogeneous data, In 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), Seattle, WA, USA.

Zhu, G. et al. (2000) Two yeast forkhead genes regulate the cell cycle and pseudohyphal
growth.” Nature,406, 90–94.

4

Preferences over Objects, Sets and Sequences
Sandra de Amo and Arnaud Giacometti

Universidade Federal de Uberlândia
Université de Tours

Brazil
France

1. Introduction
Recently, a lot of interest arose in the artificial intelligence and database communities
concerning the topic of preference elicitation, modelling and reasoning. In fact, due to the
huge amount of information users are faced up to daily, the development of formalisms
allowing preference specification and reasoning turns out to be an essential task. A lot of
work has been done in this area so far (Boulilier et al., 2004); (Brafman et al., 2006a);
(Chomicki, 2003); (Kießling, 2002); (Wilson, 2004). Most of this work focus on specifying and
reasoning with preferences over objects in some universe U. In most applications, mainly
those related to the database field, one deals with huge set of objects, which makes
unfeasible for the users to specify their preferences in a quantitative way, that is, by explicitly
associating to each object (or tuple) o a number pref(o) standing for her degree of preference
concerning this object. A qualitative framework for expressing preferences over objects is
more suitable in this case. The user is asked to provide a set of statements or rules which
express her generic preferences over the attribute values of the objects. For instance, the user
can express her preferences about films by stating that (1) concerning comedies, she prefers
those from Woody Allen to those from Nanni Moretti (2) concerning Nanni Moretti’s
movies, she prefers comedies to dramas. Such frameworks, besides providing a compact
way for expressing preferences, are also supposed to derive an explicit preference ordering
over the objects, given the compact specification provided by the user, and produce an
algorithm to determine the most preferred objects according to this ordering.
Some recent research on preference elicitation and reasoning has focused on preference over
more complex entities, like sets of objects (Brafman et al., 2006b); (des Jardin & Wagstaff,
2005). Indeed, in many situations, instead of selecting a most preferred object, one may be
interested in selecting a best set of objects whose components satisfy certain criteria of
diversity and mutual compatibility. For instance, in the creation of a film festival program, a
criteria for a “good” program could be “a program including a comedy is better than a program
which doesn’t include one”.
However, more complex entities other than simple sets of objects have been appearing in
recent applications. For instance, in the design of a web page, the developer can take into
account user preferences about hyperlink structures (trees). In our example of the film
festival program, an optimal program should not only be characterized by the quality,
diversity and compatibility of its components but also by the ordering in which each film is

 Tools in Artificial Intelligence

50

presented in the program. So, it is natural to think about preference elicitation and reasoning
over structures rather than merely over simple objects or non-structured sets of objects.
In this chapter, we cover with some details some classical and important formalisms to
specify preferences over objects and sets of objects and we address the problem of
specifying and reasoning with preferences over sequences of objects. The material we present
here addressing this topic is an extension of our previous work (de Amo & Giacometti,
2007). Preferences over sequences of objects naturally appear when a decision maker is faced
to the problem of producing an optimal sequence of objects. The following example
illustrates the kind of preference statements we will deal with.
Example 1 Let us suppose a decision maker who works on the creation of a program for a
film festival. Based on his past experiences on film festivals, there are some rules he thinks
are crucial to the success of such an event.
1. For comedies, it is better to choose those by Woody Allen than those by Nanni Moretti.

Concerning Nanni Moretti’s movies, comedies are better than dramas.
2. It is better to start the festival by presenting a comedy.
3. If the previous film was a comedy, then it is better to follow it by a drama. However, if

the previous film was a drama, then it is better to follow it by a comedy, unless it is a
film by Nanni Moretti, in which case, it is better to follow it by another drama.

4. If there is a drama in the program, then it is better to present a comedy sometime before
it.

We introduce the logic framework TPref allowing preference elicitation and reasoning over
sequences of objects as well as an algorithm to yield the most preferred sequences satisfying
a given set of temporal constraints. Our elicitation procedure consists in obtaining from the
user (1) a set of temporal conditions which affects her preferences over sequences of objects
and (2) a set of statements or rules involving these temporal conditions, which express her
preferences. The four statements illustrated in Example 1 are preference statements we treat
in this paper.
After preference elicitation, the statements provided by the user are translated into formulae
of the logic TPref. Our formalism, which is based on Propositional Temporal Logic (PTL),
generalizes the language introduced in (Wilson, 2004) for expressing preference over single
objects. We show a procedure to decide the consistency of a set of statements in the past
fragment of the logic TPref, that is, if a set of statements Φ (a compact preference
representation) derives an explicit preference ordering > φ over sequences of objects. We

discuss the difficulties for using this same idea in proving consistency in the general case of
preference statements involving past and future conditions. Finally, we provide an
algorithm for producing the best sequences of objects given a set of temporal preference
statements Φ.

1.1 Related work
The research literature on preference reasoning and elicitation over objects is extensive. The
approach of CP-Nets (Boutilier et al., 2004) uses a very simple graphical model which
captures users qualitative conditional preference over objects, under a ceteris paribus
semantics. The order on objects induced by a CP-Net is rather restrictive, due mainly to the
ceteris paribus semantics and also by the fact that all attributes are equally important where
comparing two objects. The approach of TCP-Nets (Brafman et al., 2006a) generalizes the

Preferences over Objects, Sets and Sequences

51

CP-Nets by introducing the ability of expressing a relative importance and conditional
relative importance of object attributes. Thus, a TCP-Net is a more refined tool for
comparing objects than CP-Nets. The approach introduced in (Wilson, 2004) uses a logical
framework for expressing conditional preference statements. It consists of a formalism in the
same lines of CP-Nets but with a richer language allowing to express not only the usual CP-
Nets ceteris paribus statements but also TCP-Nets statements and more general conditional
statements (called stronger conditional statements). The temporal conditional preference
statements we introduce in Section 4 for specifying preferences over sequences of objects is a
generalization, in the temporal context, of the stronger conditional statements of (Wilson,
2004). The conditions in a stronger conditional statement can be viewed as a propositional
logic formula. In our approach for specifying preferences over sequences of objects, the
conditions are propositional temporal logic formulae.
In the database area, the problem of enhancing well-known query languages with
preference features has been tackled in several recent and important works in the area. In
(Chomicki, 2003), a simple logical framework is proposed for expressing preferences.
Preferences are expressed by preference formulae. These formulae are incorporated into
relational algebra and into SQL, through the operator winnow parameterized by a preference
formula. (Kießling, 2002) introduced Preference SQL which extends SQL by a preference
model based on strict partial orders. Several built-in base preference constructors are
proposed. The optimizer uses an efficient rewriting procedure which transforms preference
queries into standard SQL queries.
Recent work on preference modelling in AI has focused on sets of objects instead of single
objects. In (Brafman et al., 2006b), a language for specifying qualitative preferences over sets
is introduced. The language allows users to express preferences over sets of objects taking
into account a class of basic properties which affect their choice. It is shown that a set-
preference statement specified in this language can be transformed into a conditional
preference statement over attributed objects. The language introduced in (des
Jardins&Wagstaff, 2005) allows quantitative preference specification over sets of objects. It
supports two important preference notions: diversity and depth. Diversity specifies the
amount of variability among objects in a set, and depth specifies preferred feature values.
Most work on temporal reasoning with preferences is related to automated plannning.
Preferences concerns the relative execution times of a set of events {e1, ..., en} (Khatib, 2001);
(Kumar, 2007). A preference statement in such an explicit temporal framework may establish
for instance that event ei must be scheduled between xi and yi seconds before event ej .
Propositional Temporal Logic (PTL) was introduced in (Prior, 1997) as a formal system for
specifying and reasoning with paralell programs. Recently, PTL has been used in the
automated planning context, as a formalism to specify “good” executing plans (which can
be viewed as sequences of state transitions). In (Bacchus et al., 1996), PTL has been used in
the automated planning context where actions depend on past and current states. The
problem considered there is of rewarding temporally extended behaviors, that is, rewarding
sequence of actions (or state transitions) achieving a predefined goal. Rewards are
associated to properties that sequences must satisfy. Such properties are expressed by PTL
formulae. In (Bienvenue et al., 2006), a formalism based on temporal logic and situation
calculus was introduced in order to express qualitative preferences about executing plans.
Such formalism allows to specify, to reason and to generated preferred plans. This approach
generalizes the one proposed in (Son & Pontelli, 2006), which also uses temporal logic for

 Tools in Artificial Intelligence

52

expressing preferences over executing plans with an implementation using answer-set
programming. At the best of our knowledge, there are no work treating qualitative
conditional preferences elicitation and reasoning over sequence of attributed objects in the lines
of the CP-Net formalism. The approach we propose in this chapter is a first step towards
incorporating a formalism for reasonning with preferences over sequences of objects into a
temporal relational query language, and so, building a bridge between the two disciplines
(AI and Temporal Databases), in the lines of which has been done in (Endres & Kießling,
2006), where a method for transforming TCP-Nets queries into database preference queries
has been proposed.
Chapter Organization. This chapter is organized as follows. In Section 2, we present three
classical approaches for preference specification over objects, the CP-Nets, the TCP-Nets and
the strong conditional statements of (Wilson, 2004). We discuss important problems related
to this topic, such as finding the most preferred objects, comparing objects (dominance
queries) and ordering objects (ordering queries). We describe the third approach (Wilson,
2004) with more details since it constitutes a necessary background for our work on
sequences of objects. In Section 3, we present a simple approach for specifying preferences
over sets of objects. In Section 4, we present our approach for eliciting and reasoning with
preference over sequences of objects. In this Section, we introduce the syntax and semantics of
the language TPref allowing to express preferences over sequence of objects, we show how
to test the consistency of a set of statements Φ in TPref, and discuss its complexity. Besides,
we present an algorithm to produce the optimal sequences satisfying a set of simple
temporal constraints.

2. Preferences over objects
In most AI applications involving the ability of making decisions, users are required to
compare different alternatives and must be able to choose those which better conform to
their needs or personal preferences. Thus, such applications must support the ability of
automate the preference elicitation process. In this section we will present three important
approaches for representing and reasoning with preferences over objects. The first approach
is based on a graphical model focusing on the notion of conditional preferential
independence. The second approach is also based on a graphical model and generalizes the
first one. The third approach is quite general and is based on a logical framework allowing
users to express their preferences through a set of rules.

2.1 Conditional preference networks (CP-Nets)
The graphical model we describe in this section was introduced in (Boutilier et al., 2004) and
is similar to a Baysesian Network (Pearl, 1988) from a syntactical point of view. Nevertheless
both models differ with respect to their semantics. The model we present here, called
Conditional Preference Networks (CP-Nets) uses a graph in order to capture statements of
qualitative conditional preference independence. The semantics of the model is based on the
ceteris paribus semantics which has been largely exploited in the AI field in the past (Doyle et
al., 1991). Other approaches for representing and reasoning with preferences have employed
graphical representations of preference relations such as (Bacchus & Grove, 1995) and
(Bacchus and Grove, 1996), but with a different semantics.

Preferences over Objects, Sets and Sequences

53

In the CP-Net preference model, the user is required to specify, for any specific attribut A of
interest, which other attributes can influence her preferences for values of A. For each
instantiation of the relevant attributes for A (the parents of A in the graphical
representation) the user must specify her preference ordering over values of A according to
the values of its parents. For instance, let us consider a set of objects with attributes A,B,C,D
and let us suppose that preference over attribute A depends on attributes B and C. So, the
user may specify that if the value of B is b1 and the value of C is c2, and everything else is equal then
she prefers a2 to a1 as a value for attribute A. Based on this preference rule, the user can decide
that between two objects o1 = (a1, b1, c2, d1) and o2 = (a2, b1, c2, d1) she prefers object o2 to object
o1. On the other hand, this rule cannot allow her to decide that object o2 is preferred to object
o3 = (a1, b1, c2, d2), since the values of the attribute D in both objects are different. The ceteris
paribus semantics (everything else being equal) imposes that we can only compare objects
according to a given preference rule r if the objects have the same values on the attributes
not appearing in r.
Notation. We suppose a set V = {X1,X2, ...,Xn} of attributes. For each attribute X ∈ V , we
denote by dom(X) the finite set of values of X (the domain of X). For Z = {Z1, ...,Zm}⊆V we
denote by dom(Z) the set dom(Z1) × dom(Z2) × ... × dom(Zm). If Z = V , we denote by O the
set dom(Z). The elements of O are called objects, tuples or outcomes. If o = (x1, ..., xn) is an
object, we denote by o[Xi] the element xi∈dom(Xi). If Z = {Z1, ...,Zm} ⊆V , we denote by o[Z]
the tuple of elements (o[Z1], ..., o[Zm]). Sometimes we abbreviate this tuple by z.
Definition 1 (CP-Net Preference Model) A CP-Net over a set of attributes V is a directed
graph N = (V , E) where each node X∈V is annotated with a conditional preference table (CP
table) CPT(X). Each CP table CPT(X) associates a total order ; u with each instantiation u of
the attributes which are parents of X in the graph.
The following example illustrates the concept of CP-Net as a formalism for specifying user’s
preferences.
Example 2 Let V = {Director (D), Genre (G) }, dom(D) = {Woody Allen (w), Nanni Moretti
(n), Hitchcock (h)}, dom(G) = {comedy (c), drama (d), thriller (t)}. Let us suppose that I
strictly prefer comedies to dramas and thrillers to comedies but my preference about film
directors is conditioned to the film genre: I prefer Nanni Moretti’s dramas toWoody Allen’s
dramas, and Woody Allen’s dramas to Hitchcock’s dramas. However, I prefer Woody
Allen’s comedies to Nanni Moretti’s comedies and Nanni Moretti’s comedies to Hitchcock’s
comedies. On the other hand, for thrillers I largely prefer Hitchcock’s ones than Woody
Allen’s. But if I had to choose between a Woody Allen’s thriller and a Nanni Moretti’s
thriller I would choose a Woody Allen’s thriller. These preference rules can be expressed by
the CP-Net depicted in Figure 1(a).
A CP-Net aims at capturing a preference ordering (a total order) over the objects in O. Thus,
the semantics of a CP-Net is defined as the set of preference orderings which are consistent
with the preference constraints imposed by the given CP-Net. In Figure 1(b) one represents
by thin arrows the relationships between objects which are entailed by the CP-Net of Figure
1(a). An arrow from object o to object o’ means that o ; o’. The arrows resulting from
transitivity (e.g. from (t, h) to (d, n)) are not showed in the figure. The thick arrows are not
entailed by the CP-Net of Figure 1(a) but are consistent with it (see the discussion following
Theorem 1 below).

 Tools in Artificial Intelligence

54

(a) (b)

Fig. 1. (a) A CP-Net N (b) A preference ordering satisfying N

Definition 2 (Satisfiability of a CP-Net) Let N be a CP-Net over the set of attributes V , X
∈V and U ⊂ V the set of parents of X in N. Let Y be the set of attributes other than X and its
parents. Let ;u be the ordering over dom(X) imposed by the CPT(X) for a given
instantiation u of the attributes in U. We say that a preference ordering ; over O is
compatible with ;u iff for all instantiations y of the attributes in Y we have yxu ; yx’u iff x ;u
x’. A preference ordering ; satisfies the CP table CPT(X) iff it is compatible with ;u for any
instantiation u of the attributes in U. We say that the preference ordering ; satisfies the CP-
Net N iff it satisfies all the CP tables of N. A CP-Net N is satisfiable iff there exists some
preference ordering ; satifying it.
In Figure 1(b) it is depicted a preference ordering satisfying the CP-Net of Figure 1(a). The
following theorem guarantees that for acyclic CP-Nets it is possible to build an ordering
satisfying it.
Theorem 1 Every acyclic CP-Net is satisfiable.
The detailed proof of Theorem 1 can be found in (Boutilier et al., 2004). The ordering given
by this theorem is built by induction on the number of attributes in the CP-Net and uses the
topological ordering on these attributes induced by the acyclic graph. The preference
ordering depicted in Figure 1(b) is obtained by using the construction of Theorem 1. The
thick arrows are specific to this particular ordering. They are built respecting the ordering
given in the CP table CPT(G). A preference ordering satisfying an acyclic CP-Net is not
unique in general. For instance, if we consider an arrow going from (d, n) to (c, h) in Figure 1(a)
instead of the opposite arrow depicted in this figure, and we keep the other arrows, we
obtain another ordering satisfying N.
Best Outcomes. Given an acyclic CP-Net N, the task of determining the best outcomes with
respect to the preference orderings satisfying N is very simple. Even if the preference
ordering satisfying N is not unique, surprisingly, the best outcome is unique and independs
on the particular preference ordering satisfying N. The algorithm for building this unique
best outcome consists in sweeping through the graph from ancestors to descendents
instantiating each attribute to its most preferred value given the instantiation of its parents.
We describe the process of determining the best outcome in the following example.

Preferences over Objects, Sets and Sequences

55

Example 3 (Producing the best outcome determined by a CP-Net) Let us consider the
CP-Net of Example 2. We begin by choosing the best value for attribute G (the attribute with
no ancestors). This best value is t. Next, we take the children of attribute G. In our case, we
have only one child, the attribute D. For G instantiated as t, the best value for the attribute D
is h. Then, the best outcome is the object (t, h), that is, the most preferred movie is a
Hitchcock’s thriller.
This process of sweeping through the graph from ancestors to descendents and instantiating
the attributes with the most preferred values given the instantiation of their parents is called
forward sweep. The following theorem guarantees that this procedure produces the best
outcome. The proof can be found in (Boutilier et al., 2004).
Theorem 2 Let N be an acyclic CP-Net. The best outcome with respect to any preference
ordering satisfying N is unique and is produced by the forward sweep procedure.
Discussion. The CP-Net model for preference reasoning is not restricted to acyclic graphs.
The advantage of considering acyclic CP-Nets is that the acyclicity of the graph implies that
the model is consistent, that is, the CP-Net induces a preference ordering over the objects. If
the graph is cyclic, the existence of such preference ordering is not guaranteed. In
(Domshlak & Brafman, 2002) some initial results on consistency testing for cyclic CP-Nets
were presented. More recently (Prestwich et al., 2005) showed that the optimal outcomes of
an unconstrained (and possibly cyclic) CP-Net are the solutions of a set of hard constraints.
They proposed a new algorithm for finding optimal outcomes which makes use of hard
constraint solving. This new algorithm works even for cyclic CP-Nets. Besides, it works also
with any preference formalism which produces a preorder over the outcomes. Another
aspect which has to be considered is the constraint enforcing that in each CP table CPT(X),
the domain dom(X) is totally ordered. The general definition of a CP-Net allows an arbitrary
total preorder over dom(X), that is, the antisymmetric property is not required to be satisfied
(a ; b and b ; a do not imply a = b). The difficulty with such general CP-Nets is that
consistency is not verified in general. In (Boutilier et al., 2004) it is proved that consistency
can be guaranteed if some special conditions are verified by the acyclic CP-Net.
Besides the problem of finding the best outcomes determined by a CP-Net N, two other
problems are particularly important: the dominance problem and the ordering problem.
Both problems involve the task of comparing two objects o and o’. The first problem asks if
N can deduce o ; o’(denoted by N |= o ; o’). That is, it asks if for all preference orderings ;
consistent with N it is true that o ; o’. The second problem asks if the CP-Net is incapable of
deducing o’ ; o (denoted by N |≠ o’ ; o). That is, it asks if there exists a preference ordering ;
consistent with N such that o ; o’. The second problem is easier than the first one. It can be
proven that for acyclic CP-Nets, the complexity of determining the truth of at least one of
the orderings queries N |≠ o’ ; o or N |≠ o ; o’ is O(n) over the number n of attributes
involved in the CP-Net N (Boutilier et al., 2004). On the other hand, the dominance problem
is polynomial (when the graph verifies some conditions) and NP-complete in general. For a
deeper discussion on these topics, see (Boutilier et al, 2004). In (Boutilier et al. 1997) it was
shown that the dominance problem is intrinsically related to the problem of finding optimal
outcomes satisfying a set of given constraints (the constraint-based preferential optimization
problem in CP-Nets).

 Tools in Artificial Intelligence

56

2.2 Tradeoffs-enhanced conditional preference networks (TCP-Nets)
In preference elicitation with CP-Nets the user describes how her preference over the values
of an attribute depends on the values of other attributes. CP-Nets are able to specify a class
of intuitive and useful preference statements of the form: “I prefer the value a0 for attribute A
given that B = b and C = c”. However, there are other intuitive and important preference
statements which cannot be represented by a CP-Net. These statements have the form: “It is
more important to me that the value of attribute A be better than the value of attribute B be better”.
For instance, I could say that when choosing a movie, a most preferred genre is more
important than a most preferred director. So, when comparing the films f1 = (c,w) and f2 = (t,
n) in Example 2, I would prefer f2 to f1. Notice that the CP-Net N given in Example 2 is not
able to infer f2 ; f1 nor f1 ; f2. Another kind of intuitive statements which cannot be
represented by a CP-Net has the form: “Given that C = c, a better assignement of attribute A is
more important to me than a better assignement of attribute B”. For instance, I could say that
when choosing a movie produced in the 50’s, a most preferred genre is more important than
a most preferred director. However, for movies produced during the 60’s, directors play a
more important role in my decision than the movie genre.
A CP-Net is able to specify only one kind of relationship between attributes, the conditional
preference dependence relationship. In this section we consider an extension of the CP-Net
formalism allowing two other kind of relationships between attributes: relative importance
(atribute A is more important than attribute B in my decision) and conditional relative
importance (attribute A is more important than attribute B in my decision given that the
value for attribute C is c0). This enhanced model, introduced in (Brafman et al., 2006a), is
called Tradeoffs-enhanced Conditional Preference Network (TCP-Nets).
Like CP-Nets, TCP-Nets are annotaded graphs where nodes are attributes. Unlike CP-Nets,
TCP-Nets have three types of edges. The first one corresponds to CP-Nets edges, indicating
conditional preference between attributes. The second edge type (directed) capture relative
importance of attribute X over attribute Y . More precisely, let X and Y be two attributes
mutually preferenctially independent given Z = V − {X, Y }, that is, for every fixed
instantiation of the attributes in Z, the ranking of X values is independent of the value of Y .
We say that X is more important than Y , denoted X �Y , if for every instantiation z of the
attributes in Z and for every x, x’ ∈ dom(X) such that x ; x’ given z, we have that xyz ;
x’y’z.
The third edge type (undirected) captures conditional relative importance. More precisely, let X
and Y be a pair of attributes in V and let Z ⊆V − {X, Y }. We say that X is more important
than Y given z ∈ dom(Z) iff for every w ∈ dom(V −({X, Y } ∪ Z)) we have: xyzw ;x’y’zw
whenever x ; x’ given zw. We denote this relation by X �z Y . Thus, an undirected edge of
the third type between attributes X and Y , labelled with the set of attributes Z, means that X
�z Y or Y �z X, depending on the values of the attributes in Z. As in CP-Nets, each node X in
a TCP-Net is annotaded with a CP table CPT(X). In addition, in TCP-Nets, each undirected
edge labelled with Z between attributes X and Y is annotaded with a conditional importance
table (or CI table) CIT(X, Y, Z), describing the relative importance of X and Y given the value
of the corresponding importance-conditioning attributes Z.
Definition 3 (TCP-Net Preference Model) A TCP-Net N is a tuple (V, cp, i, ci, cpt, cit) where:
(1) V is a set of attributes (the nodes of N); (2) cp (conditional preference arcs) is a set of

Preferences over Objects, Sets and Sequences

57

directed arcs (X, Y), for X, Y∈V ; (3) i (importance arcs) is a set of direct arcs (X, Y), for X, Y
∈ V such that X � Y ; ci (conditional importance) is a set of undirected arcs {X, Y } labelled
with a set of attributes Z such that X �z Y or Y �z X depending on the assignement z of
attributes in Z ; cpt associates a CP table CPT(X) to each node X of N, where CPT(X) is a
mapping from dom(Parents(X)) to strict partial orders over dom(X); cit associates a CI table
CTI(X, Y, Z) indicating, for each instantiation z ∈ dom(Z), the relative importance of X and
Y.
The following example illustrates the concept of TCP-Net as a formalism for specifying
preferences.
Example 4 Let V = {Director (D), Genre (G), Year (Y) }, dom(D) = {Woody Allen (w), Nanni
Moretti (n)}, dom(G) = {comedy (c), drama (d)}, dom(Y) = {80,90}. Let us suppose that I
strictly prefer comedies to dramas but my preference about directors is conditioned to the
film genre: When choosing dramas, I prefer Nanni Moretti’s to Woody Allen’s. However, for
comedies, I prefer Woody Allen’s to Nanni Moretti’s. When choosing a film, the year of
production is more important for my decision than the director. When choosing a Woody
Allen’s film, its genre is more important to me than its year of production. But for Nanni
Moretti’s films, the year of production is more important than the genre. These preference
rules can be expressed by the TCP-Net depicted in Figure 2(a).

(a) (b) (c)

Fig. 2. (a) A TCP-net N (b) The partial ordering induced by N (c) The dependence graph

The semantics of a TCP-Net is defined in terms of the set of strict partial orders consistent
with the constraints imposed by the preference and importance relations expressed by the
graph edges, the CP and CI tables. As for CP-Nets, TCP-Nets semantics is based on the
ceteris paribus semantics. We present here only the intuitive idea behind the semantics of a
TCP-Net. For a more formal presentation, see (Brafman et al., 2006a). A strict partial order ;
satisfies a TCP-Net N if the following intuitive conditions are verified: (1) in each CP table
CPT(X), for every z ∈ dom(Z) (where Z = Parents(X)), two objects o and o’differing only on
the attribute X and whose values on Z are given by z, are ordered by ; consistently with the
ordering on the X values given in CPT(X); (2) if X �Y , then any two objects o and o’differing
only on the values of X and Y are ordered as o ; o’if the relationship o[X] ; o[X’] appears in
the CP table CPT(X) corresponding to the instantiation given by o[Parents(X)]; (3) in each CI

 Tools in Artificial Intelligence

58

table CPI(X, Y,Z), for every z ∈ dom(Z) such that X �z Y , any two objects o and o’ differing
only on the attributes X and Y and whose values on Z are given by z are ordered as o ; o’ if
the relationship o[X] ; o[X’] appears in the CP table CPT(X) corresponding to the
instantiation given by o[Parents(X)]. In Figure 2(b) one represents the relationships between
objects which are entailed by the TCP-Net in Figure 2(a). The arrow from object o to object o’
means that o ; o’. The arrows resulting from transitivity are not showed in the figure. Notice
that the arrow from film (d, n, 80) to film (c, n, 90) is inferred using the CI table CIT(G, Y,D)
which imposes that, for Nanni Moretti’s movies, the year of production is more important
than the genre. So, as I prefer films produced in the 80’s than films produced in the 90’s, I
prefer the first film to the second one, even if the first film is a drama and the second one is a
comedy.
Definition 4 (Satisfiability of a TCP-Net) A TCP-Net N is satisfiable (or consistent) iff there
is some strict partial order ; over O that satisfies it. Let o, o’ ∈ O. We say that o ; o’ is
implied (or inferred) by the TCP-Net N iff it is verified by all strict partial orders ; over O
satisfying N.
Satisfiability is a desired property for TCP-Nets since it is important to guarantee that the
preference rules provided by the users do not lead to inconsistencies like “I prefer object o to
object o’ and object o’ to object o”. However, the definition of TCP-Net satisfiability does not
provide a mechanism for testing TCP-Net consistency. Fortunately, for a large class of TCP-
Nets consistency is guaranteed. This class of TCP-Nets is referred as conditionally acyclic and
is defined as follows:
Definition 5 (Conditionally Acyclic TCP-Nets) Let N be a TCP-Net over the set of
attributes V . We associate to N a graph N*, called the dependency graph of N in the following
way: the nodes of N* are the same as the nodes of N. Each directed edge of N is a directed
edge of N*. For each undirected edge {X, Y } of N, labelled by the set of attributes Z, we
insert in N* two directed edges (A,X) and (A, Y) for each attribute A ∈ Z. Besides, for each
assignement z ∈ dom(Z) of the attributes in Z, we insert a direct edge (X,Y) or (Y,X)
depending on the information given in the CI table CIT(X,Y,Z) corresponding to the
assignement z. In that way, we are able to associate a set of directed graphs G(N) to the TCP-
Net N, one for each assignement of the attributes labelling the undirected edges of N. We
say that the TCP-Net is conditionally acyclic if each graph of G(N) is acyclic.
For instance, the dependence graph associated to the TCP-Net of Figure 2(a) is given in
Figure 2(c). As we see, this TCP-Net is not conditionally acyclic, since the graph N* is cyclic.
Now, if we consider the TCP-Net depicted in Figure 3(a), it is easy to see that it is
conditionally acyclic, since all graphs in G(N) (showed in Figure 3(b)) are acyclic.
For conditionally acyclic TCP-Nets we have the following result, whose proof can be found
in (Brafman et al. 2006a).
Theorem 3 Every conditionally acyclic TCP-Net is satisfiable.
Discussion. (1) Complexity: Unfortunately, testing for conditionally acyclicity is not an easy
task. This problem is shown to be coNP-hard in (Brafman et al. 2006a). (2) Best Outcomes:

Preferences over Objects, Sets and Sequences

59

One of the central properties of the CP-Net model is that, given an acyclic CP-Net N and a
(possibly empty) partial instantiation x of some of its attributes, it is simple to determine a
best object consistent with x. In the previous section, we presented the forward sweep
procedure which produces the best object of an acyclic CP-Net. This procedure works also
for conditionally acyclic TCP-Nets. The relative importance relations do not have any
influence in the process of obtaining the optimal outcome. In order to obtain the best object,
we simply consider the CP-Net part of the TCP-Net N (ignoring the i-edges and the ci-
edges) and we apply the forward sweep procedure for the resulting CP-Net. This simple
algorithm for finding the best outcome can be applied to all TCP-Nets for which the CP-Net
part is acyclic. In particular, it is applicable for conditionally acyclic TCP-Nets. However,
finding the best outcome associated to a TCP-Net N satisfying a set of hard constraints is not
trivial. In (Brafman et al., 2006a), an algorithm (Search-TCP) is developed for producing the
best outcomes associated to a conditionally acyclic TCP-Net N satisfying a set of hard

constraints C on the attributes of N.

(a) (b)

Fig. 3. (a) A conditionally acyclic TCP-net N (b) The set of acyclic graphs G(N)

2.3 A logical framework for preferences over objects
In this section we present a third approach for preference elicitation and reasoning
introduced in (Wilson, 2004). This approach is based on a logical framework and generalizes
the CP-Nets and TCP-Nets approaches.
The Preference Language L. The language L is constituted by statemets of the form ϕ: u
→(X = x) > (X = x’), where u is a formula of the form (Xi 1

= x1) ∧ ... ∧ (Xi k = xk), with Xi j ∈ V

− {X} and xj ∈ dom(Xi j) for all j ∈ {1, ..., k} and x, x’ ∈ dom(X). We call such statements
conditional preference rules or cp-rules for short. The formula u is called the condition of the cp-
rule ϕ. The set of attributes appearing in u is denoted by Attr(u). If ϕ is the statement u→ (X

 Tools in Artificial Intelligence

60

= x) > (X = x’) then sometimes we denote u by u ϕ , X by X ϕ and x, x’ by x ϕ and x’ ϕ

respectively. A conditional preference theory over V is a finite set of statements of L.

Example 5 Let V = {G,D} as in Example 2. Let ϕ1 and ϕ2 the following conditional preference
rules:
ϕ1 : (G = c) → (D = w) > (D = n),

ϕ2 : (D = n) → (G = c) > (G = d).

Then Γ = {ϕ1, ϕ2} is a conditional preference theory which expresses the first preference
statement of Example 1.
A conditional preference statement ϕ : u → (X = x) > (X = x’) induces a preference ordering
on objects over V. Let o = tyx and o’ = tyx’ be objects over V, where y is an object over Attr(u),
t is an object over V − (Attr(u) ∪ {X}). We say that o is preferred to o’ according ϕ. The set of

pairs of objects (o, o’) where o is preferred to o’ according to ϕ is denoted by ϕ*. If Γ is a
conditional preference theory, we denote by >Γ the transitive closure of the binary relation
Γ* = ∈Γ∪ ϕ ϕ*.

Example 6 Let us compare the objects o1 = (c,w) and o2 = (d, n) according to Γ. We have that
(c,w) is preferred to (c, n) according to ϕ1. And (c, n) is preferred to (d, n) according to ϕ2.
Then, using transitivity, we conclude that (c,w) is preferred to (d, n), that is, o1 >Γ o2.
Consistency Test. One important feature of preference conditional theories is that there is
no need of eliciting a total order on the values of an attribute given each assignement to its
parents, as in the CP-Net preference model. So, a conditional preference theory is a compact
way of expressing preference: we can reason with any theory Γ specified by the user,
provided this theory satisfies some properties which guarantee its consistency. Besides, the
user can add new statements later on; because the logic used in the deduction system is
monotonic, all previous deductions concerning preferences will hold.
Now, we present the concept of consistency for a preference conditional theory Γ. A model of
Γ is a strict partial order (that is, a transitive and irreflexive relation) > on objects O over V
such that > contains the induced ordering >Γ. We say that Γ is consistent if there exists a
model > for Γ. It is easy to see that a theory Γ is consistent if and only if its induced relation
>Γ is irreflexive, since >Γ is transitive by definition.
Example 7 The theory Γ presented in Example 5 is consistent. Indeed >Γ = {(o1, o3), (o3, o4), (o1,
o4)} is a strict partial order over the set of objects O = {o1,o2, o3, o4 }, where o1 = (c,w), o2 =

(d,w), o3 = (c, n), o4 = (d, n). Note that (o1, o3) ∈ *
1ϕ , (o3, o4) ∈ *

2ϕ and (o1, o4) is inferred by

transivity. However, the theory Γ’= Γ ∪ {ϕ3, ϕ4} where: ϕ3 : (G = d) → (D = n) > (D = w) and

ϕ4 : (D = w) →(G = d) > (G = c), is not consistent. Indeed, (o4, o2) ∈ *
3ϕ and (o2, o1) ∈ *

4ϕ . So, o1

>Γ’ o1, since (o4, o1) ∈ > Γ’ and (o1, o4) ∈ > Γ’ , which proves that > Γ’ is not irreflexive.
We associate to each preference conditional theory Γ a graph G(Γ) defined as follows: the
nodes of G(Γ) are the attributes appearing in the rules of Γ and the set of edges is given by
{(Y,Xϕ) : Y ∈ Uϕ}, where Uϕ denotes the set of attributes appearing in the condition uϕ. The
preference conditional theory Γ is acyclic if its graph G(Γ) is acyclic.

Preferences over Objects, Sets and Sequences

61

As we will see in Theorem 4, in order to ensure consistency for acyclic theories it will be
sufficient to ensure local consistency. More precisely : Let o be a fixed object over V and X be
an attribute in V . Let x, x’ ∈ dom(X). We say that (x, x’) is validated by o if there exists a
statement (ϕ : uϕ → X = x > X = x’) ∈ Γ such that o satisfies the formula uϕ (the conditions of

ϕ). We define the relation > X
o on dom(X) as the transitive closure of the set of all pairs (x, x’)

validated by o. We say that the preference theory Γ is locally consistent if for all objects o and
all attributes X, the relation > X

o is irreflexive.
Example 8 Let us consider the situation of Example 7 except that the set of attributes V is
augmented with a third attribute Y (year of production), so V = {G,D, Y }. Let us consider the
preference theory Γ1 = {ϕ1, ϕ5}, where ϕ5 : (Y = 1990) → (D = n) > (D = w). Let o = (c,w, 1990)

and let us fix the attribute D. Then w > D
o n since (w, n) is validated by o, if we consider the

statement ϕ1. But (n,w) is also validated by o, if we consider the statement ϕ5. Thus, Γ1 is not
locally consistent.
The following theorem gives necessary and sufficient conditions for ensuring consistency of
a preference theory Γ.
Theorem 4 Let Γ be a conditional preference theory. Then, we have : (1) If Γ is consistent
then Γ is local consistent. (2) If Γ is local consistent and acyclic then Γ is consistent. (3) If all
the attributes in V are binary, local consistency can be determined in time proportional to
| Γ |2 × |V |.
The theory Γ1 presented in Example 8 is not locally consistent, so it is not consistent by
Theorem 4. Notice that its graph G(Γ 1) = {(G,D),(Y,D)} is acyclic. On the other hand, the
theory Γ given in Example 5 is consistent but its graph G(Γ) = {(G,D),(D,G)} is cyclic. By
Theorem 4 we can conclude that it is local consistent. This is an example of a local consistent
theory whose graph is cyclic.
Finding optimal outcomes. Let Γ be a preference conditional theory over a set of attributs V.
Given an object o over V ’ ⊆ V , we say that a value xi ∈ dom(Xi) is undominated given the
object o if there is no statement u → (Xi = x) > (Xi = xi) in Γ, such that o satisfies u. The
algorithm for finding optimal objects with respect to a locally consistent preference theory Γ
with acyclic G(Γ) works as follows: (1) enumerate the attributes of V in such a way that the
ordering 〈X1, ...,Xn〉 is compatible with the graph G(Γ) (that is, if i > j then there is no path

going from Xj to Xi in G(Γ)). (2) For each i ∈ {1, ..., n} let α (Xi) = x, where x ∈ dom(Xi) and x is

undominated with respect to the object o = (α(X1), ..., α(Xi−1)). Local consistency of Γ ensures
that such x always exists.
Example 9 Let us consider V = {G, D, Y } as in Example 8. Let us consider the preference
theory Γ1 = {ϕ1, ϕ6}, where ϕ6 : (G = d) → (Y = 1990) > (Y = 2000). We have G(Γ1) = {(G,D), (G,

Y)}. Then, the ordering 〈G, D, Y 〉 is compatible with G(Γ1). We choose α(G) = c. For α(D), the

only undominated value given (c) is w. For α(Y), both values 1990 and 2000 are
undominated given (c,w). So, a best object is o1 = (c,w, 1990). Another one is o2 = (c,w, 2000).
By choosing α(G) = d, we also get o3 = (d,w, 1990) and o4 = (d, n, 1990) as best objects.

 Tools in Artificial Intelligence

62

3. Preferences over sets of objects
For the time being, we have been interested in formalisms allowing to eliciting and
reasoning with preferences over objects. We have introduced some important frameworks
for specifying user’s preferences in a compact way, besides discussing important issues
related to this topic, such as decidability and complexity of the problems of finding the best
objects, dominance and ordering queries and introduction of hard constraints. In this section
we tackle these issues in a broader context, by considering a simple framework for dealing
with preferences over sets of objects. This problem arises naturally in the context of our
running example. Let us suppose the task of creating a program for a film festival. Here, the
crucial task is not to obtain user’s preferences about movies considered individually, but
about several possible sets of movies. Thus, the user has to be able to specify her preferences
about a group of films, taking into account aspects like genre diversity, genre adaptability
(for instance, a user may not be interested in programs containing both comedies and
dramas), etc. In such situation, we would like to be able to determine the preferred
characteristics which must be satisfied by a group of objects, and then to be able to select from
a set of objects the best subset satisfying these preference rules. A simple way to treat the
problem of finding the best subset of objects is to produce a set containing the k best
elements according to a set of preference rules on individual objects. This naive solution is
not suitable since the attractiveness of particular objects does not imply that these same
objects put together would constitute an atractive set. If one of the requirements for a
“good” set is the diversity of its elements, putting together a set of good objects would not
necessarily produce the required diversity. Several recent works on preference modelling in
AI have focused on eliciting and reasoning with preference over sets of objects, from a
quantitative and a qualitative perspectives. In (des Jardins & Wagstaff, 2005) for instance, it
was proposed a formalism to deal with preferences over sets of objects supporting the
notions of diversity and depth. These concepts allows expressing preferences in a quantitative
way, by measuring in some sort the degree of diversity and depth of a preferred set of
objects. Since in this chapter we are focusing on formalisms based on a qualitative
perspective, we will describe here the very simple and elegant approach of (Brafman et al.,
2006b). This approach allows the user to specify a broad class of interesting properties about
sets of objects. And surprisingly, such set-preference statements can be naturally
transformed into conditional preference statements over attributed objects.
The Specification Language. Most properties of sets of objects which are important for
users when specifying their preferences take the forms: (1) “at least one object in the set satisfies
C = c and D = d or A = a; (2) the number of objects satisfying C = c is 2. Let L the propositional
language where the propositions are of the form X = x, where X is an attribute in the set V of
attributes and x ∈ dom(X). An object o ∈ O satisfies X = x if o[X] = x. This notion of

satisfaction is extended to formulae ϕ ∈ L as usually in Propositional Logic. It is denoted by

o |= ϕ. Now we consider the following class of properties C over sets of objects : 〈|ϕ| θ n〉,

where ϕ ∈ L, θ ∈ {=, ≤, ≥, >, <}, n ∈ N. Using such statements, the user is able to express the

properties about sets of objects which may affect her preferences. These properties refers to
the number of objects in the selected subset O of objects verifying some constraints. The
following example illustrates these properties:

Preferences over Objects, Sets and Sequences

63

Example 10 Let us consider the situation depicted in Example 2, but with an extra attribute
standing for the film title. So, V = {G,D, T}. Let us suppose the following properties which
affect user’s preferences about a film program: the fact the it contains at most two Woody
Allen’s comedies, at least two Hitchcock’s thrillers and no dramas. This can be specified by
the following set-preference properties:
P1: 〈|G = c ∧ D = w| ≤ 2〉

P2: 〈|G = t ∧ D = h| ≥ 2〉 P3: 〈|G = d| = 0〉
Let us consider the following set of films: O = {(c,w, t1), (c,w, t2), (c,w, t3), (d, n, t4), (t, h, t5), (t,
h, t6)}. For this set we have P1(O) = false, P2(O) = true and P3(O) = false.
Now, let us consider a set of properties P = {P1, ..., Pn} ∈ C. Each property Pi can be treated as
an attribute taking values in the set {true, false} (dom(Pi) = {true, false}). Each subset of
objects O ⊂ O corresponds to an “object” in V = dom(P1) × × dom(Pn). That is, abstractly,
each subset O can be viewed as a vector of truth-values (an object). Moreover, any
preference order over objects in V implicitly induces a preference order over sets of objects
of O. So, in order to specify preferences over sets of objects, the user must simply specify (1)
which are the properties about sets that affects her preferences and (2) her specific
preference rules involving the validity of these properties. After such specifications, the
problem of extracting a preference ordering over sets of objects satisfying the user’s
requirements is reduced to the problem of extracting a preference ordering over objects.
Thus, we can use one of the formalisms introduced in the previous section for reasoning
with preferences over objects in order to infer a preference ranking over sets of objects. The
following example illustrates this idea.
Example 11 Let us consider the situation of our Example 10. Let us suppose the user
specifies the following preference statements: (1) She prefers programs containing at most
two Woody Allen’s comedies; (2) For programs containing more than two Woody Allen’s
comedies she prefers a program containing at least one drama; (2) For programs containing
no dramas he prefers a program containing at least two Hitchcock’s thrillers. These
preference statements can be represented by the TCP-Net depicted in Figure 4.

Fig. 4. A TCP-Net representing set-preference statements

4. Preferences over sequences of objects
In this section, we present our formalism allowing to specify compact preference statements
provided by the users. First, we will formalize the notion of temporal conditions used for
ranking sequences of objects. By viewing each object in a sequence as a state, we propose

 Tools in Artificial Intelligence

64

to use the formalism of Propositional Linear Temporal Logic (PTL) to capture the desired
properties of sequence of objects, which we call temporal conditions. After formalizing our
temporal conditions, we introduce the language TPref for expressing conditional
preferences over sequences of objects. Preference statements in TPref use temporal
conditions in their formulation.

4.1 Temporal conditions
The language we use for expressing temporal condition is basicly the Propositional
Temporal Logic (PTL), adapted to our context. In PTL, the basic formulae are propositional
variables p1, ..., pn. In our case, basic formulae or propositions are of the form X = a where X ∈
V and a ∈ dom(X). In order to emphasize the fact that our language assume a particular
basic formula format, we will call it STL (for Simple Temporal Logic) instead of PTL. We
stress however that both logics are essentially the same.
Definition 6 (The language STL for temporal conditions) The STL formulae are defined as
follows: (1) true and false are STL formulae. (2) if P is a proposition then P is a STL formula.
(3) if F and G are STL formulae then F ∧ G, F ∨ G and ¬F are STL formulae. (4) if F and G are
STL formulae then F Until G and F Since G are STL formulae. A temporal condition is a STL
formula. If F is a temporal condition, we denote by Attr(F) the set of attributes appearing in
F.
Next, we present the semantics of temporal conditions. Temporal conditions are evaluated
over sequences of objects. A sequence of objects of O is a structure consisting of a set of objects
{o1, o2, ..., ok} with an (temporal) ordering o1 < o2 < ... < ok, telling us that oi comes before oi+1.
We denote this structure simply by = 〈o1, o2, ..., ok〉. If = 〈o1, ..., ok〉 then k is called the
length of and is denoted by ||. We denote by Seq(O) the set of sequences of objects in O
and by Seqn(O) the set of sequences of length n in Seq(O).
Definition 7 (STL Semantics) The notion of satisfaction of a STL formula by a sequence of
objects = 〈o1, ..., ok〉 at a state i ∈ {1, ..., k} (denoted by (, i) |= F) is inductively defined as
follows: (1) (, i) |= (X = a) iff oi[X] = a; (2) (, i) |= F ∧ G iff (, i) |= F and (, i) |= G;
(3) (, i) |= F ∨ G iff (, i) |= F or (, i) |= G; (4) (, i) |= ¬F iff (, i) |≠ F;
(5) (, i) |= F Until G iff there exists j such that i < j ≤ || and (, j) |= G and for all k such
that i < k < j we have (, k) |= F.
(6) (, i) |= F Since G iff there exists j such that 1 ≤ j ≤ i and (, j) |= G and for all k such that
j < k < i we have (, k) |= F.
We say that satisfies a STL formula F (denoted by |= F) if (, k) |= F, where k = ||. We
say that F is satisfiable if there exists ∈ Seq(O) such that |= F. The formula true (resp.
false) is satisfied by any sequence (resp. by no sequence) ∈ Seq(O). We say that two STL
formulae F,G are equivalent iff for every sequence , |= F iff |= G. We say that F,G are
globally equivalent (g-equivalent) iff for every sequence , (, i) |= F iff (, i) |= G, for all i ∈
{1, ..., ||}.
Derived Formulae:
Prev F = false Since F (“in the previous state F”); Next F = false Until F (“in the next state
F”); First = ¬ Prev true (“I am at the first state”); Last = ¬ Next true (“I am at the last state”).; ♦F
= true Since F (“Sometimes in the past F”); ◊F = true Until F (“Sometimes in the future F”); ■F =
¬♦¬F (“Always in the past F”); □F = ¬◊¬F (meaning “Always in the future F”)

Preferences over Objects, Sets and Sequences

65

A very important property verified by PTL formulae (and consequently, by STL formula) is
the separability property: it says that every PTL formula is g-equivalent to a boolean
combination of pure past, pure future and pure present formulae. Let us define these kind of
formulae:
Definition 8 (Present, Past and Future Formulae) A pure present formula is inductively
defined by the following rules: (1) a proposition X = a is a pure present formula. (2) a
boolean combination of pure present formulae is a pure present formula. A pure past
formula (resp. a pure future formula) is inductively defined as follows: (1) if F and G are pure
present formulae then F Since G (resp. F Until G) are pure past formula (resp. a pure future
formula). (2) If F and G are pure past formulae (resp. pure future formulae) then F Since G
(resp. F Until G) is a pure past formula (resp. a pure future formula). (3) a boolean
combination of pure past formulae (resp. pure future formulae) is a pure past formula (resp.
a pure future formula). We say that a formula F is separated if F is of the form F1 ∨ ... ∨ Fn,
with each Fi of the form F 0

i ∧ F i
+

 ∧ F i
−

 , where F 0
i is pure present formula, F i

+
 is a pure

future formula and F i
−

 is a pure past formula.
From a semantic point of view, the pure present, pure past and pure future formulae verifies
the following properties which are easily proved by induction on the formulae construction.
Proposition 1 Let F be a STL formula.
• F is a pure present formula iff for all = 〈o1, ..., oi−1, oi, oi+1, ..., ok〉 ∈ Seqk(O) we have: (,

i) |= ϕ iff (’, i) |= ϕ for any sequence ’= 〈o1, ..., oi−1, o ,
i , oi+1, ..., ok〉 ∈ Seqk(O) which

differ from only at state i.
• F is pure past formula iff for all = 〈o1, ..., oi−1, oi, ..., ok〉 ∈ Seqk(O) we have: (, i) |= ϕ

iff (’, i) |= ϕ for any sequence ’ = 〈o1, ..., oi−1, o ,
i , ..., o ,

k 〉.

• F is pure future formula iff for all = 〈o1, ..., oi, oi+1..., ok〉 ∈ Seqk(O) we have: (, i) |= ϕ

iff (’, i) |= ϕ for any sequence ’ = 〈o ,
1 , ..., o ,

i , oi+1, ..., ok〉.
Intuitively, pure past formulae are not “aware” of what is happening in the current state or
in future states. Pure present formulae are not “aware” of what has happened in the past
states or of what is going to happen in future states. And pure future formulae are not
“aware” of what is happening in the current state or has happened in past states.
Theorem 5 (Separation Theorem (Gabbay, 1989)) Let F be a STL formula. Then F is g-
equivalent to a separated formula.
For instance, ◊((X = a) ∧ ■(Y = b)) is not separated but is equivalent to the separated formula
■(Y = b)∧(Y = b)∧((Y = b) Until (X = a)). The property of separation of propositional temporal
formulae is not trivial. In fact, separation is closely related to the expressivity power of a
temporal language. For details on this important subject see (Gabbay, 1989). For a discussion
about open problems concerning the complexity of separating a formula into its past, future
and present components see (Hodkinson & Reynolds, 2005).

4.2 A temporal preference language
Now, we introduce the specification language for our temporal preference model. A
temporal preference will be characterized by a set of temporal conditional preference rules that
we formally define next.

 Tools in Artificial Intelligence

66

Definition 9 (Temporal Conditional Preference Rule) Atemporal conditional preference rule
(or tcp-rule) is an expression of the form: ϕ : F → (X = x > X = x’) where X ∈ V , x, x’ ∈
dom(X) and F is a STL separated formula. A simple tcp-rule is a tcp-rule where the temporal
condition contains a unique disjunct. It is easy to see that a tcp-rule is equivalent to a set of
simple tcp-rules.
Definition 10 (Temporal Conditional Preference Theory) A Temporal Conditional Preference-
Theory is a finite set Φ of simple tcp-rules F → (X = x) > (X = x’), where X ∉ Attr(F0). In what
follows, sometimes it will be useful to use the following notation for the elements appearing
in a tcp-rule ϕ: F −

ϕ ∧ F 0
ϕ ∧ F +

ϕ denotes its temporal condition and (Xϕ = xϕ) > (Xϕ = x’ϕ)
denotes the expression appearing in its right side.
Example 12 Let us consider the situation of our film festival program presented in Example
1. The statements are expressed by the following tcp-rules:
1. ϕ1 : (G = c) → (D = w) > (D = c)

2. ϕ2 : (G = d) → (D = n) > (D = w). Here, the conditions in the tcp-rules are pure present
formulae.

3. ϕ3 : First → (G = c) > (G = d). Here, the condition in the tcp-rule is a pure past formula
since First ≡ Prev False.

4. ϕ4 : Prev(G = c) → (G = d) > (G = c)

5. ϕ5 : Prev((G = d) ∧ (D = w)) → (G = c) > (G = d)

6. ϕ6 : Prev((G = d) ∧ (D = n)) → (G = d) > (G = c). Here, the conditions in the tcp-rule are
pure past formulae.

7. ϕ7: (◊(G = d) ∧ ♦(G = c)) → (G = c) > (G = d)). Here, the conditions in the tcp-rules are
separated formulae of the form F− ∧ F+ (with pure past and pure future components
only).

The ordering induced by a Temporal Preference Theory. First of all we will show how two
sequences in Seq(O), differing at one single position i, can be compared via a temporal
preference theory. Afterwards, we show how two sequences in Seq(O), differing in k
positions i1, ..., ik can be compared.
Definition 11 (Sequences differing at one single position) Let ϕ be a tcp-rule. Let Rϕ be the

relation over Seqn(O) defined as follows: if = 〈o1, . . . , on〉 and ’ = 〈o ,
1 , . . . , o ,

n 〉 then Rϕ’

iff there exists j ∈{1, . . . , n} such that: (1) oj ≠ o ,
j and oi = o ,

i for every i ∈ {1, . . . , n}\{j}; (2) (,

j) |= Fϕ and (’, j) |= Fϕ; (3) oj [Xϕ] = xϕ and o ,
j [Xϕ] = x ,

ϕ ; (4) For every Y ∈ V \ {Xϕ}, oj [Y] =

o ,
j [Y]. If such position j exists, it is unique and denoted by (, ’).

Thus, two sequences of the same size can be compared via Rϕ only if they differ at one single
position. Roughly speaking, in order to compare two sequences differing at k > 1 positions,
via a temporal conditional preference theory Φ, we will consider the union of Rϕ, for ϕ∈Φ

and the transitive closure of this union. More precisely: Given a set Φ of tcp-rules, we denote

by RΦ the set ∈∪ Φ ϕϕ R and by >Φ the transitive closure of RΦ. We say that is preferred to ’

Preferences over Objects, Sets and Sequences

67

w.r.t. the theory Φ if >Φ ’. Lemma 1 below gives a necessary and sufficient condition in

order to a sequence be preferred to a sequence ’ w.r.t. Φ. Before stating this result, we
need the following definition:
Definition 12 (Improving Flipping Sequence (IFS)) Let and ’ be two sequences of length
n. We say that there exists an Improving Flipping Sequence (IFS) from to ’ w.r.t Φ if there

exists a set of sequences {1, . . . , p+1} and a set of tcp-rules {ϕ1, . . . , ϕp} in Φ such that 1 = ,
p+1 = ’ and k Rϕk k+1 for every k ∈ {1, . . . , p}.
Lemma 1 Let Φ be a set of tcp-rules. Let and ’ be two sequences of length n. Then >Φ ’

iff there exists an IFS from to ’ w.r.t. Φ.

Example 13 Let us consider the theory Φ = {ϕ1, ..., ϕ7} of Example 12 and the following

sequences: 1 = 〈(c, n), (d,w)〉, 2 = 〈(d, n), (d,w)〉 and 3 = 〈(d, n), (c,w)〉. Note that (1, 2) = 1
and (2, 3) = 2. So, 1 and 3 differ in two positions, 1 and 2. We have 1 Rϕ7 2 and 2 Rϕ6
3. Then there exists an IFS from 1 to 3, and so 1 >Φ 3.
As we see, a temporal conditional preference theory Φ is a compact way of expressing

preference between sequences of objects: we can reason with any theory Φ the user gives us,
provided this theory is consistent. More precisely:
Definition 13 (Consistency) Let Φ be a temporal preference theory. We say that Φ is
consistent iff >Φ is irreflexive, that is, >Φ is a partial order over Seqn(O), for all n > 0 (remind
that, by definition, >Φ is transitive; and that transitivity and irreflexivity imply anti-
symmetry).

4.3 Consistency test
The main purpose of this section is to give necessary and sufficient conditions for a temporal
conditional preference theory Φ to be consistent. In this paper, we only give necessary and

sufficient conditions when tcp-rules in Φ use only conjunctions of pure past and pure

present formulae of STL, i.e. for all ϕ∈ Φ, Fϕ = F −
ϕ ∧ F 0

ϕ . In the following, we denote by

TPref* the set of all tcp-rules of this form.
A Method for Testing Consistency. We will show (Theorem 6) that testing the consistency
of a temporal conditional preference theory Φ reduces to test the consistency of a number

l(Φ) of conditional preference theories over objects. Before proving this result, we need to
introduce some notation first.
Let = 〈o1, . . . , on〉 be a sequence in Seqn(O) and on+1 be an object in O. In the following, we
denote by rlo (for Remove Last Object) and add the operators defined by: rlo() = 〈o1, . . . ,
on−1〉 and add(, on+1) = 〈o1, . . . , on, on+1〉. Let ϕ be a tcp-rule where Fϕ = F −

ϕ ∧ F 0
ϕ ∧ F +

ϕ . We

denote by ϕ0 the cp-rule defined by: ϕ0 : F 0
ϕ → (Xϕ= xϕ) > (Xϕ= xϕ). Given a tcp-theory Φ and

a sequence ∈ Seq(O), we define for every integer j ∈ {1, . . . , ||} the cp-theory Γj(Φ,) as
follows:

 Tools in Artificial Intelligence

68

Intuitively, Γj(Φ,) is the set of the present components of the tcp-rules conditions whose
past and future components are satisfied by at position j. Note that if and ’ are two
sequences in Seqn(O) such that rlo() = rlo(’) then Γn(Φ,) = Γn(Φ,’). The following lemma

gives a necessary condition for two sequences and ’ satisfy >Φ ’, where Φ is a theory in
TPref* (without future components).
Lemma 2 Let Φ be a tcp-theory such that for every ϕ ∈ Φ, ϕ ∈ TPref*. For every pair of

sequences = 〈o1, . . . , on+1〉 and ’ = 〈o ,
1 , . . . , o ,

1n+ 〉 in Seqn+1(O) with n > 0, if >Φ ’, then

rlo() >Φ rlo(’), or rlo() = rlo(’) and on+1 >Γ o ,
1n+ where Γ = Γn+1(Φ,) = Γn+1(Φ,’).

Proof. Let = 〈o1, . . . , on+1〉 and ’ = 〈o ,
1 , . . . , o ,

1n+ 〉 be two sequences such that >Φ ’. If

>Φ , it means that there exists an IFS from to ’ w.r.t. Φ. Thus, there exists a set of

sequences {1, . . . , p+1} in Seqn+1(O) and a set of tcp-rules {ϕ1, . . . , ϕp} such that 1 = , p+1 =

’ and for every k ∈ {1, . . . , p}, k Rϕk k+1. For every k ∈ {1, . . . , p + 1}, let ,
k be the sequence

in Seqn(O) defined by ,
k = rlo(k). It can be easily seen that for every k ∈ {1, . . . , p}, we have:

• ,
k = ,

1k+ if k[n + 1] ≠ k+1[n + 1], or

• ,
k ≠ ,

1k+ if k [n+1] = k+1[n+1]. In that case, we have j = (k, k+1) = (,
k , ,

1k+) < n+ 1.

Therefore, since ϕ ∈ TPref*, (k, j) |= Fϕk and (k+1, j) |= Fϕk implies that (,
k , j) |= Fϕk

and (,
1k+ , j) |= Fϕk . Since k Rϕk k+1, it follows that we also have ,

k Rϕk ,
1k+ .

We now have to distinguish two cases:
1. Assume that there exists an integer k ∈ {1, . . . , p} such that ,

k ≠ ,
1k+ . In that case, since

 ,
1 = rlo(), ,

1p+ = rlo(’), we have shown that there exists an IFS from to ’ w.r.t. Φ. It
 shows that rlo() >Φ rlo(’).
2. Assume now that for every k ∈ {1, . . . , p}, we have ,

k = ,
1k+ . It means that for every k ∈

 {1, . . . , p+1}, rlo(k) = rlo() = rlo(’). Moreover, since k Rϕk k+1 and (k, k+1) = n+1, we
 have (k, n + 1) |= Fϕk. It follows that (k, n + 1) |= F kϕ

−
 . Thus, since rlo(k) = rlo(), we

 have (, n + 1) |= F kϕ
−

 and ϕ 0
k ∈ Γn+1(Φ,). Now, it is easy to see that (1[n + 1] = on+1) >Γ

 (p+1[n + 1] = o ,
1n+) where Γ = Γn+1(Φ,), which completes the proof of Proposition 2. □

We now are ready to state the main result of this section. Its proof uses Lemma 2.
Theorem 6 Let Φ be a set of tcp-rules such that for every ϕ ∈ Φ, ϕ ∈ TPref*. Φ is consistent iff

for every sequence of length k > 0, Γk(Φ,) is consistent.

Proof. In order to prove that Φ is consistent, we have to show that >Φ is irreflexive. First, we

show that if for every sequence of length k > 0, Γk(Φ,) is consistent, then the relation >Φ is
irreflexive. We show this property by induction on the length of sequences.
Let = 〈o〉 be a sequence of length n = 1. If >Φ , it means that there exists an IFS from to ,

i.e. a set of sequences {〈o1〉, . . . , 〈op+1〉} and a set of tcp-rules {ϕ1, . . . , ϕp} such that o = o1 = op+1

Preferences over Objects, Sets and Sequences

69

and for every k ∈ {1, . . . , p}, 〈ok〉Rϕk 〈ok+1〉. By Definition 11, for every k ∈ {1, . . . , p}, we have

(〈ok〉, 1) |= Fϕk. Thus, we have (〈ok〉, 1) |= F k
−
ϕ and ϕ 0

k ∈ Γ1(Φ,〈ok〉) = Γ 1(Φ,〈o〉) because rlo(〈ok〉)

= rlo(〈o〉). Finally, for every k ∈ {1, . . . , p}, we have ok R 0
kϕ

 ok+1. It shows that o >Γ o with

Γ = Γ1(Φ,〈o〉), which contradicts the hypothesis that Γ k(Φ,k) is consistent for every sequence
k of length k > 0 and proves that >Φ is irreflexive on Seq1(O).
Assuming that >Φ is irreflexive on Seqn(O), we now have to prove that >Φ is a irreflexive on

Seqn+1(O). Suppose that there exists a sequence n+1 = 〈o1, . . . , on+1〉 in Seqn+1(O) such that n+1

>Φ n+1. Using Proposition 2, we have to distinguish two cases:
1. If rlo(n+1) >Φ rlo(n+1), it shows that >Φ is not irreflexive on Seqn(O), which contradicts

the hypothesis.
2. If rlo(n+1) = rlo(n+1), then we have on+1 >Γ on+1 where Γ = Γn+1(Φ,n+1). It shows that > Γ is

not irreflexive, which contradicts the hypothesis that Γk(Φ,k) is consistent for every
sequence k of length k > 0.

So, we have proved by induction that if for every sequence of length k > 0, Γk(Φ,) is
consistent, then >Φ is a SPO on Seqn(O) for every integer n ≥ 1.

We now prove that if >Φ is a SPO, then Γk(Φ,) is consistent for every sequence of length

k > 0. Assume that there exists a sequence of length k such that Γ = Γk(Φ,) is not consistent.
It means that >Φ is not irreflexive, i.e. that there exists an object ok+1 such that ok+1 > Γ ok+1. Let
k+1 be the sequence defined by k+1 = add(, ok+1). It is easy to see that k+1 >Φ k+1, which
contradicts the fact that >Φ is irreflexive and completes the proof. □
Theorem 6 is not true when the tcp-rules in Φ contain past and future components, as we
show in the following example:
Example 14 Let Φ = { ϕ1, ϕ2, ϕ3, ϕ4 } be the set of tcp-rules defined by:
• ϕ1 : Next(G = d) → (D = n) > (D = w)

• ϕ’1 : Next(G = c) → (D = w) > (D = n)

• ϕ2 : Prev(D = n) → (G = c) > (G = d)

• ϕ’2 : Prev(D = w) → (G = d) > (G = c)

Since the STL formulae ϕ1 ∧ ϕ’1 and ϕ2 ∧ ϕ’2 cannot be satisfied, it is easy to see that for every

sequence of length k, Γ = Γk(Φ,) is locally consistent. Moreover, for every sequence of

length k, G(Γk(Φ,)) = ({G,D}, 3) is acyclic. Therefore, for every sequence of length k,

Γ = Γ k(Φ,) is consistent. We now show that Φ is not consistent, which does not contradict

Theorem 6 since Φ uses past and future STL formulae in the conditions of the tcp-rules.
Given the objects o1 = (c, n), o2 = (d,w), o’1 = (c,w) and o’2 = (c,w), consider the sequences 1 =
〈o1, o2〉, 2 = 〈o’1, o2〉, 3 = 〈o’1, o’2〉 and 4 = 〈o1, o’2〉. It is easy to verify the following:
• 1 Rϕ1 2 since (1, 1) |= Next(G = d), (2, 1) |= Next(G = d), o1[D] = n and o’1[D] = w.
• 2 Rϕ’2 3 since (2, 2) |= Prev(D = w), (3, 2) |= Prev(D = w), o2[G] = d and o’2[G] = c.

 Tools in Artificial Intelligence

70

• 3 Rϕ’1 4 since (3, 1) |= Next(G = c), (4, 1) |= Next(G = c), o’1[D] = w and o1[D] = n.
• 4 Rϕ2 1 since (4, 2) |= Prev(D = n), (1, 2) |= Prev(D = n), o’2[G] = c and o2[G] = d.

Thus, we have 1 >Φ 1, which shows that >Φ is not consistent since it is not irreflexive.
Complexity Issues. In practice, the condition provided by Theorem 6 to test consistency is
unfeasible, since it involves testing consistency of the non-temporal theories Γk(Φ,) for
every sequence of length k. Fortunately, for some fragments of STL, we can find a very
satisfatory bound for the size of the sequences which must be considered in the tests.
Theorem 7 Let L(♦, ◊) be the fragment of STL whose formulae satisfy the following
conditions: (1) negation appear only in front of basic propositions; (2) the only temporal
operators are ♦ and ◊. Let F ∈ L(♦,◊) be satisfiable. Then there exists a sequence such that
|| ≤ length(F) and such that satisfies F. The length of a formula F (denoted by length(F)) is
the number of symbols appearing in F.
Proof. Let = 〈o1, ..., ok〉 be a sequence. A subsequence of σ is a sequence = 〈u1, ..., um〉 such

that for all i ∈ {1, ...,m} there exists ji ∈ {1, ..., k} such that o
ji = ui. We denote the fact that is

a subsequence of by ≺ .
Let F ∈ STL and = (o1, ..., ok) such that (, i) |= F. We will prove that there exists a
subsequence ≺ such that (1) contains the object oi, (2) | | ≤ length(F) and (3) for all

sequence ’ such that ≺ ’ ≺ we have (’, i) |= F. Particularly, we can affirm that (, i) |=

F, since ≺ ≺ .
The proof is by induction on the structure of F.
• If F is atomic and (, i) |= F, then let =< oi >. We have that ≺ , | | = 1 = length(F)

and for all ’ such that ≺ ’ ≺ we have (’, i) |= F, since ’ contains the object i.
• If F is ¬F1, where F1 is an atomic formula, the proof is similar: we take =< oi >. In this

case, | | = 1 < length(F) = 2.
• The cases where F = G∨H and F = G∧H do not present any difficulty and we omit it

here.
• If F = ◊F1 and (, i) |= F. Then there exists j > i such that (, j) |= F1. By the induction

hypothesis, we can affirm that there exist a subsequence ≺ , such that contains the
object oj , | |≤ length(F1), and for all ’ verifying ≺ ’ ≺ we have (’, j) |= F1. If
 oi ∈ we define ’ = . Otherwise, ’ is obtained from by inserting the object oi in it (in
the same order as it appears in). Then, it is clear that (’, i) |= ◊F1, since (’, j) |= F1.
Moreover, ’ ≤ + 1 = length(F). The proof is similar for F = ♦F1.

• If F = Next F1 and (, i) |= F. Then i < || and (, i+1) |= F1. By the induction
hypothesis, we can affirm that there exist a subsequence ≺ , such that contains the
object oi+1, | | ≤ length(F1), and for all ’ verifying ≺ ’ ≺ we have (’, i + 1) |= F1.
If oi ∈ we define ’ = . Otherwise, ’ is obtained from by inserting the object oi+1 in it
(following the object oi). Then, it is clear that (’, i) |= Next F1 since (’, i + 1) |= F1.
Moreover ’ ≤ + 1 = length(F). The proof is similar for F = Prev F1.

According to (Sistla & Clarke, 1985), the satifiability problem for STL is NP-complete for
L(♦, ◊) and PSPACE-complete for the logic STL.

Preferences over Objects, Sets and Sequences

71

Proposition 2 Let Φ be a set of tcp-rules in TPref* such that the temporal conditions are

formula of L(♦, ◊). Then Φ is consistent iff Γk(Φ,) is consistent for every sequence of length

≤ length(Φ), where length(Φ) = max{ length(ϕ) | ϕ ∈ Φ }.
Notice that if we place ourselves in a context where the universe of sequences is finite, then
there is no need to restrict the conditions of the tcp-rules to be formulae in L(♦, ◊). As the
whole universe of sequences is contained in Seqn(O), for some n > 0, then in order to test

consistency of a tcp theory Φ, it suffices to test the consistency of the non-temporal theories

Γk(Φ,) for each sequence of size k ≤ n. In such cases, there is no relation between the size
of the temporal conditions and the maximal size of the sequences to be tested. A situation
where restricting the type of the formulas considered in the conditions of tcp-rules is
worthwhile is when working in a context where the universe of sequences is potentially
infinite, that is, the maximal size of the sequences evolves with time (for instance, in a
temporal database context).
The following proposition relates the result stated in Theorem 4 and the result given in
Proposition 2.
Proposition 3 Let Φ be a tcp-theory and l(Φ) be the length of Φ. Let us suppose that G(Φ) is
acyclic and for every ϕ ∈ Φ, ϕ ∈ TPref*. Then, Φ is consistent iff for every sequence of
length k ≤ l(Φ), Γk(Φ,) is locally consistent. Besides, if all variables in V are binary, then

consistency of Φ can be determined in time proportional to |Γ|2 × |V | × 2 Φ)l(.

4.4 Finding optimal sequences
In this section, given a tcp-theory Φ, we show how to determine the optimal sequences in
Seqn(O), i.e. the maximal sequences in Seqn(O) with respect to >Φ that satisfy some set of
simple temporal constraints. Our approach is incremental, meaning that for every integer n,
we show how to compute the optimal sequences in Seqn+1(O) from the set of optimal
sequences in Seqn(O).
First, we specify the set of temporal constraints that we consider. For every integer k > 0, let
Atk(X = a) be the temporal formula defined as (Isk ∧(X = a))∨♦(Isk ∧(X = a)) where Isk is
defined by induction on k as: Is1 = First and Isi+1 = Prev Isi for every integer i > 0. We can see
that for every sequence ∈ Seq(O), |= Atk(X = a) iff (, k) |= (X = a). Intuitively, the
formula Atk(X = a) means that in a sequence of objects, the object at state k has value a for the
variable X.
In the following, we denote by AtState the set of formulas of the form Atk(X = a). Given a
subset C of AtState, we say that C is consistent if there exists a sequence ∈ Seq(O) such that
for every F ∈ C, satisfies F (denoted by |= C). We can easily see that C is consistent iff for
every pair (F, F’) in C 2 where F = Atk(X = a) and F’ = Atk’ (X’ = a’), if k = k’ and X = X’, then
we have a = a’. Given a consistent subset C of AtState and an integer k, we denote by: (1)
Attrk(C) the set of attributes X ∈ V such that there exists a formula Atk(X = a) in C. (1) Ck the
subset of C defined by: Ck = {Ati(X = a) ∈ C | (i ≤ k)}. (2) Tuplek(C) the set of present STL
formulae defined by: Tuplek(C) = {(X = a) | Atk(X = a) ∈ C }.

 Tools in Artificial Intelligence

72

Example 15 Let C = {At1(G = c),At2(G = d),At2 (D = n)}. It is easy to see that C is consistent.
Moreover, Tuple1(C) = {(G = c)} and Tuple2(C) = {(G = d), (D = n)}. Finally, we have C1 =
{At1(G = c)} and C2 = C.
Let C be a consistent subset of AtState. Given a consistent TPref theory Φ, we now show

how to compute for every integer n, the subset Sn(Φ, C) of Seqn(O) defined by: Sn(Φ, C) =

max>Φ{ ∈ Seqn(O) | |= Cn}. The set Sn(Φ, C) contains the optimal sequences in Seqn(O), i.e.

the maximal sequences in Seqn(O) w.r.t. >Φ that satisfy the constraints in Cn.

Let k be a sequence of length k. In the following, given the cp-theory Γ = Γ(Φ, k) and the set

of present STL formula T = Tuplek(C), we denote by BestObjs(Γ, T) the set of optimal objects

in O that satisfy T , i.e.

BestObjs(Γ, T) = max>Γ{o ∈ O | o |= T }. It is shown in (Wilson, 2004) how to compute this set
of optimal objects.
Finally, given a tcp-theory Φ such that for every tcp-rule ϕ ∈ Φ, ϕ ∈ TPref*. We can notice

that for every sequence and ’ of length n + 1, if rlo() = rlo(’), then Γn+1(Φ,) = Γn+1(Φ,’).

Therefore, for every sequence of length n, we introduce the following notation: Γ*(Φ,) =

Γn(Φ, add(, o)) where o is any object in O.

We now state the following theorem that shows how to compute Sn+1(Φ, C) from Sn(Φ, C).

Theorem 8 Let Φ be a consistent tcp-theory such that for every tcp-rule ϕ ∈ Φ, ϕ ∈ TPref*.

Let C be a consistent subset of AtState. For every sequence = 〈o1, . . . , on+1〉 ∈ Seqn+1(O), is

in Sn+1(Φ, C) iff rlo() ∈ Sn(Φ, C) and on+1 ∈ BestObjs(Γ, T) where Γ = Γ*(Φ, rlo()) and T =
Tuplen+1(C).

Proof Assume that = 〈o1, . . . , on+1〉 is in Sn+1(Φ, C). Let n = rlo(). If n ∉ Sn(Φ, C), it means

that there exists a sequence ’n ∈ Sn(Φ, C) such that ’n |= C and ’n >Φ n. Since ’n >Φ n,

there exists an IFS from ’n to n w.r.t. Φ, i.e. there exist a set of sequences {1, . . . , p+1} and a

set of tcp-rules {ϕ1, . . . , ϕp} such that 1 = ’n, p+1 = n and for every k∈ {1, . . . , p}, k Rϕk k+1.

For every k ∈{1, . . . , p + 1}, let ’k = add(k, on+1). Since for every tcp-rule Fϕk = F k
−
ϕ ∧ F 0

kϕ and

’k Rϕk ’k +1, we also have ’k Rϕk ’k +1. Thus, since ’p+1 = , there exists an IFS from ’1 to
w.r.t. Φ, i.e. ’1 >Φ . Moreover, we can easily see that ’1 |= C. Thus, we have ’1 >Φ and

’1 |= C which contradicts the fact that ∈Sn+1(Φ, C).

On the other hand, assume that on+1 ∉ BestObjs(Γ, T). It means that there exists an object o’n+1

∈ BestObjs(Γ, T) such that o’n+1 |= T and o’n+1 >Γ on+1. Let ’ = add(n, o’n+1). We can easily

show that ’ >Φ and ’ |= C where ’ = add(n, o’n+1) which contradicts the hypothesis that

 is in Sk+1(Φ, C). Thus, we have proved that if is in Sn+1(Φ, C), then rlo() ∈ Sn(Φ, C) and

on+1 ∈ BestObjs(Γ, T).

Preferences over Objects, Sets and Sequences

73

Conversely, assume that n = rlo() ∈ Sn(Φ, C) and on+1 ∈ BestObjs(Γ, T). If is not in Sn+1(Φ,

C), then there exists a sequence ’ = 〈o’1, . . . , o’n+1〉 ∈ Sn+1(Φ, C) such that ’ >Φ and ’ |= C.
Using Proposition 2, we now distinguish two cases:
• If rlo(’) >Φ rlo(), then it is easy to see that we also have rlo(’) |= Cn. Thus rlo(’) >Φ n

and rlo(’) |= Cn, which contradicts the fact that n ∈ Sn(Φ, C).
• If rlo(’) = rlo(’), then o’n+1 > Γ on+1 with Γ = Γn+1(Φ,n+1). Moreover, we can easily see that

o’n+1 |= T since ’ |= C. Thus, we have o’n+1 >Γ on+1 and o’n+1 |= T , which contradicts the
fact that on+1 ∈ BestObjs(Γ, T).

Thus, we show that if rlo() ∈ Sn(Φ, C) and on+1 ∈ BestObjs(Γ, T), then is in Sn+1(Φ, C),
which completes the proof.
Using Theorem 8, it is easy to see that for every consistent tcp-theory and every consistent
subset C of AtState, we have Sn(Φ, C) = BestSeqs(〈〉,Φ, C, n) where 〈〉 represents the empty
sequence and BestSeqs is the algorithm presented in Figure 5.

Fig. 5. Computation of Optimal Sequences

Example 16 Let Φ = {ϕ1, . . . , ϕ6} be the tcp-theory presented in our Running Example. Let C

= {At1(G = c), At3(D = w)}. We show in this example how the set S3(Φ, C) is computed using

the algorithm presented Figure 5. Initially, we compute S = BestSeqs(〈〉,Φ, C, 3). First, we

have Γ1 = Γ*(Φ, 〈〉) = {ϕ1, ϕ2} since Fϕ1 and Fϕ2 are STL formulae in Present. Moreover, we have
T1 = Tuple1(C) = {(G = c)}. Thus, we compute BestObjs(Γ1, T1) = {o1} where o1 = (G = c,D = w).

Then, we build the sequence ’1 = add(〈〉, o’1) = 〈o1〉 and compute S = BestSeqs(’1 ,Φ, C, 3).

 Tools in Artificial Intelligence

74

Computing S = BestSeqs(’1,Φ, C, 3), we successively obtain Γ2 = Γ*(Φ, 〈o1〉)= {ϕ1, ϕ2, ϕ 0
4 }, T2 =

Tuple2(C) = 3 and BestObjs(Γ2, T2) = {o2} where o2 = (G = d,D = n). Thus, we build the sequence

’2 = add(〈o1〉, o2) = 〈o1, o2〉 and compute S = BestSeqs(’2,Φ, C, 3).

Then, computing S = BestSeqs(’2 ,Φ, C, 3), we successively obtain Γ3 = Γ*(Φ, 〈o1, o2〉) = {ϕ1, ϕ2,

ϕ 0
6 }, T3 = Tuple3(C) = {(D = w)} and BestObjs(Γ3, T3) = {o3} where o3 = (G = d,D = w). Thus, we

build the sequence ’3 = add(〈o1, o2〉, o3) = 〈o1, o2, o3〉 and compute S = BestSeqs(’3 ,Φ, C, 3).
Since |’3 | = 3, we finally obtain S = BestSeqs(〈〉,Φ, C, 3) = {〈o1, o2, o3〉}. Note that in this
example, we only obtain one optimal sequence. In general, we can obtain a set of optimal
sequences since >Φ is a partial order.

5. Conclusion and further research
In this chapter, we have presented several approaches for treating preferences over objects,
sets of objects and sequences of objects. The main contribution is centered in Section 4 which
presents a method for preference elicitation and reasoning over sequence of objects. An
algorithm for finding the most preferred sequences satisfying a set of temporal constraints is
introduced. A lot of work has to be done to improve our approach. (1) Concerning the
algorithm for finding the best sequences, we intend to generalize our method in order to
treat more general temporal constraints. (2) Concerning the expressivity power of our
preference language: we note that in TPref the temporal aspect is related only to the rule
conditions, that is, only to the left side of the preference rules. We are not able, for the time
being, to treat preference statements such as I prefer “this” before “that”. (3) Concerning the
consistency test: we must investigate methods to ensure consistency when the temporal
conditions involve both past and future operators. (4) Concerning dominance queries: we
have to investigate efficient methods to determine, given two sequences, which is the
preferred one. That implies investigating efficient methods to decide, given two sequence, if
there exists a IFS between them. (5) Finally, concerning a database context, the work
proposed in this paper is a first step towards incorporating a formalism for reasoning with
preferences over sequences of objects into a temporal relational query language, and so,
building a bridge between the two disciplines (AI and Temporal Databases).

6. References
Bacchus, F.; Boutilier, C. & Grove, A. (1996). Rewarding behaviors, Proceedings of the

Thirteenth National Conference on Artificial Intelligence (AAAI-96), pp 1160–1167,
Portland, Oregon, USA, 1996. AAAI Press / The MIT Press.

Bacchus, F. & Grove, A. (1995). Graphical models for preference and utility. In Proceedings of
the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 3–10, Montreal.

Bacchus, F. & Grove, A. (1996). Utility independence in qualitative decision theory,
Proceedings of the Sixth International Conference on Principles of Knowledge
Representation and Reasoning, pp. 542–552, Cambridge.

Bienvenu, M.; Fritz, C. & McIlraith, S. A. (2006). Planning with qualitative temporal
preferences. KR, 134–144, 2006.

Preferences over Objects, Sets and Sequences

75

Boutilier, C.; Brafman, R.; Geib, C. & Poole, D. (1997). A constraint-based approach to
preference elicitation and decision making, AAAI Spring Symposium on Qualitative
Decision Theory, Stanford, 1997.

Boutilier, C.; Brafman, R.; Hoos, H. & Poole, D. (2004). Cp-nets: A tool for representing and
reasoning about conditional ceteris paribus preference statements. Journal of
Artificial Intelligence Research, 21:135–191, 2004.

Brafman, R.; Domshlak, C. & Shimony, S.E. (2006a). On graphical modeling of preference
and importance. Journal of Artificial Intelligence Research, 25:389–424, 2006.

Brafman, R.; Domshlak, C. & Shimony, S.E. (2006b). Preferences over sets. AAAI, 2006.
Chomicki, J. (2003). Preference formulas in relational queries. ACM Transactions on Database

Systems, pp. 427–466, 2003.
de Amo, S. & Giacometti, A. (2007). Temporal Conditional Preferences over Sequences of

Objects. 19th IEEE International Conference on Tools with Artificial Intelligence, Patras,
Greece, pp. 246-253, 2007.

des Jardins, M. & Wagstaff, K. (2005). Dd-pref: A language for expressing preferences over
sets. AAAI, pp. 620–626, 2005.

Domshlak, C. & Brafman, R. (2002). CP-nets - reasoning and consistency testing, Proceedings
of the Eighth International Conference on Principles of Knowledge Representation and
Reasoning, pp. 121–132, Toulouse, France, 2002.

Doyle, J.; Shoham, Y. & Wellman, M. (1991). A logic of relative desire (preliminary report),
Proceedings of the Sixth International Symposium on Methodologies for Intelligent
Systems (ISMIS 91), Lecture Notes in Computer Science, pp. 16–31. Springer-Verlag,
1991.

Endres, M. & Kießling, W. (2006). Transformation of tcp-net queries into preference database
queries. Proceedings of the ECAI 2006 Multidisciplinary Workshop on Advances in
Preference Handling Riva del Garda, Italy, August 2006, pp. 23–30.

Gabbay, D. M. (1989). The declarative past and imperative future: Executable temporal logic
for interactive systems. Lecture Notes in Computer Science, Volume 398, pp 67–89.

Springer-Verlag, 1989. Hodksinson, I. & Reynolds, M. (2005). Separation – past, present, and
future. We Will Show Them! Essays in Honour of Dov Gabbay, Volume 2, 2005.

Khatib, L.; Morris, P.; Morris, R.A. & Rossi, F. (2001). Temporal Constraint Reasoning With
Preferences. Proceedings of the 17th International Joint Conference on Artificial
Intelligence, pp. 322–327, 2001.

Kießling, W. (2002). Foundations of preferences in database systems. Proceedings of 28th
International Conference on Very Large Data Bases, Hong Kong, China, pp. 311–322,
2002.

Kießling, W. & Köstler, G. (2002). Preference SQL - design, implementation, experiences.
Proceedings of 28th International Conference on Very Large Data Bases, Hong Kong,
China, pp. 990–1001, 2002.

Kumar, T.K.S. (2007). Fast (Incremental) Algorithms for Useful Classes of Simple Temporal
Problems with Preferences. Proceedings of the Twentieth International Joint Conference
on Artificial Intelligence, 2007.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, San Mateo, 1988.

Prestwich, S. D.; Rossi, F.; Venable, K. B. & Walsh, T. (2005). Constraint-Based Preferential
Optimization. AAAI 2005, pp. 461–466, 2005.

 Tools in Artificial Intelligence

76

Prior, A. N. (1997). Past, Present and Future, Oxford: Clarendon Press, 1967.
Sistla, A. P. & Clarke, E.M. (1985). The complexity of propositional linear temporal logic.

Journal of the ACM, 32(3), pp 733–749, 1985.
Son, T.C. & Pontelli, E. (2006). Planning with preferences using logic programming.

TPLP,6(5):559–607, 2006.
Wilson, N. (2004). Extending cp-nets with stronger conditional preference statements. AAAI,
pp. 735–741, 2004.

5

Competency-based Learning Object
Sequencing using Particle Swarms

Luis de Marcos, Carmen Pagés, José Javier Martínez
and José Antonio Gutiérrez

University of Alcalá.
Spain

1. Introduction
Brusilovsky (1999) envisaged Web-based adaptive courses and systems as being able to
achieve some important features including the ability to substitute teachers and other
students support, and the ability to adapt to (and so be used in) different environments by
different users (learners). These systems may use a wide variety of techniques and methods.
Among them, curriculum sequencing technology is “to provide the student with the most
suitable individually planned sequence of knowledge units to learn and sequence of
learning tasks […] to work with”. These methods derive from the adaptive hypermedia field
(Brusilovsky, 1996) and rely on complex conceptual models, usually driven by sequencing
rules (De Bra et al., 1999; Karampiperis, 2006). E-learning traditional approaches and
paradigms, that promote reusability and interoperability, are generally ignored, thus
resulting in (adaptive) proprietary systems (such as AHA! (De Bra et al., 2003)) and non-
portable courseware.
On the other side, traditional approaches promote standards usage to ensure
interoperability but they lack of flexibility which is in increasing demand. “In offering
flexible [e-learning] programmes, providers essentially rule out the possibility of having
instructional designers set fixed paths through the curriculum” (van den Berg et al., 2005).
But offering personalized paths to each learner will impose prohibitive costs to these
providers, because sequencing process is usually performed by instructors. So, “it is critical
to automate the instructor’s role in online training, in order to reduce the cost of high quality
learning” (Barr, 2006) and, among these roles, sequencing seems to be a priority.
In this chapter an innovative sequencing technique that automates teacher´s role is
proposed. E-Learning standards and the learning object paradigm are encouraged in order
to promote and ensure interoperability. Learning units’ sequences are defined in terms of
competencies in such a way that sequencing problem can be modelled like a classical
Constraint Satisfaction Problem (CSP) and Artificial Intelligent (AI) approaches could be
used to solve it. Particle Swarm Optimization (PSO) is an AI technique and it has proven
with a good performance for solving a wide variety of problems. So, PSO is used to find a
suitable sequence within the solution space respecting the constraints. In section 2, the
conceptual model for competency-based learning object sequencing is presented. Section 3
describes the PSO approach for solving the problem. Section 4 presents the results obtained

 Tools in Artificial Intelligence

78

from the intelligent algorithm implementation and testing in a real world situation (course
sequencing in an online Master in Engineering program). And finally, in Section 5
conclusions are summarized and future research lines are presented.

2. Competency-based sequencing
Within e-learning, the learning object paradigm drives almost all initiatives. This paradigm
encourages the creation of small reusable learning units called Learning Objects (LOs).
These LOs are then assembled and/or aggregated in order to create greater units of
instruction (lessons, courses, etc) (Wiley, 2000).
LOs must be arranged in a suitable sequence prior to its delivery to learners. Currently,
sequencing is performed by instructors who do not create a personalized sequence for each
learner, but instead they create generic courses, which are targeted to generic learner
profiles. Then, these sequences are coded using a standard specification to ensure
interoperability. The most commonly used specification is SCORM (ADL, 2004). Courseware
that conforms to SCORM´s Content Aggregation Model is virtually portable among a wide
variety of Learning Management Systems (LMSs). Though, SCORM usage hinders the
automatic LO sequencing due to its system-centered view. Other metadata-driven
approaches offer better possibilities i.e. just LO metadata will enable automatic sequencing
process to be performed, and the appropriate combination of metadata and competencies
will allow personalized and automatic content sequencing. This section describes how to
overcome these problems by defining a conceptual data model for learning object
sequencing through competencies.

2.1 Competency definition
As for many other terms, there are a wide variety of definitions that try to catch the essence
of the word competency in the e-learning environment. The confusion has even been
increased by the work developed, often independently, in the three main fields that are
nowadays primarily concerned with competencies, namely, pedagogy, human resources
management and computer science. Anyway, we consider competencies as
“multidimensional, comprised of knowledge, skills and psychological factors that are
brought together in complex behavioural responses to environmental cues” (Wilkinson,
2001). This definition emphasizes that competencies are not only knowledge but a set of
factors and that competencies are employed (bring together) in real or simulated contexts
(or environments). Conceptual models for competency definitions also use to consider this
multidimensionality. As an example, RDCEO specification (IMS, 2002a) describes a
competency as four-dimensional element (fig. 1).
The competency ‘Definition’ is the record that contains general information about the
competency. Each competency can be exhibited in one or more different ‘Contexts‘. And a
set of factual data must be used to ‘Evidence’ that an individual has or has not acquired a
particular competency. Finally ‘Dimensions’ are used to relate each context with its
particular evidence and to store relation information such as the proficiency level.
Some e-learning trends (RDCEO have just been mentioned) are trying to formalize
competency definitions. It is worth quoting the following specifications: (1) IMS "Reusable
Definition of Competency or Educational Objective” (RDCEO) specification (IMS, 2002b), (2)
IEEE Learning Technology Standards Committee (LTSC) “Draft Standard for Learning

Competency-based Learning Object Sequencing using Particle Swarms

79

Technology - Standard for Reusable Competency Definitions " specification (currently an
approved draft) (IEEE, 2008), (3) HR-XML Consortium "Competencies (Measurable
Characteristics) Recommendation" (HR-XML, 2006) and (4) CEN/ISSS “A European Model
for Learner Competencies” workshop agreement (CEN/ISSS, 2006).

Fig. 1. RDCEO competency conceptual model (from (IMS, 2002a))

Every specification offers its own understanding of what a competency is (i.e. the definition
of competency) plus a formal way to define competencies (i.e. competency definitions) so
that they can be interchanged and processed by machines. A deeper analysis of these
recommendations shows that, although they do not present great differences in its own
definition of competency, great dissimilarities arise when the information that must conform
a competency definition are confronted. In this way, it could be said that IMS and IEEE
specifications are minimalist recommendations that define a small set of fields that the
competency definitions should contain (in fact, only an identifier and a name are required
for a conformant record). Deeper definitions of some dimensions that concern competencies
(namely evidence and context) are left without specification or free to developers’
interpretation. On the other hand, HR-XML specification provides competency users with a
huge set of entities, fields and relations that they must fulfil in order to get conformant
competency records (although many of them are optional too).
For the purpose of our study we just needed a universal way to define, identify and access
to competency definitions and that is exactly what RDCEO specification offers. Moreover,
RDCEO is also the oldest specification and so the most used (and the most criticized). These
factors lead us to employ RDCEO records for our competency definitions. Code fragment 1
shows a sample RDCEO competency record.

<?xml version="1.0" encoding="utf-8"?>
<rdceo xsi:schemaLocation="http://www.imsglobal.org/xsd/imsrdceo_rootv1p0"
xmlns="http://www.imsglobal.org/xsd/imsrdceo_rootv1p0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <identifier>
 http://www.uah.es/cc/comps/CompsTaxon.xml#1IntroWeb
 </identifier>
 <title>
 <langstring xml:lang="en">
 Web, Internet and Distributed Systems Introduction
 </langstring>
 </title>
</rdceo>

Code 1. Sample Competency Record.

 Tools in Artificial Intelligence

80

2.2 Competencies for interoperable learning object sequencing
According to RDCEO and IEEE nomenclature, a competency record is called ‘Reusable
Competency Definition’ (or RCD). RCDs can be attached to LOs in order to define its
prerequisites and its learning outcomes. We have used this approach to model LO
sequences. By defining a competency (or a set of competencies) as a LO outcome, and by
identifying the same competency as the prerequisite for another LO (fig. 2), a constraint
between the two LOs is established so that the first LO must precede the second one in a
valid sequence.
Meta-Data (MD) definitions are attached to LOs, and within those definitions references to
competencies (prerequisites and learning outcomes) are included. LOM (IEEE, 2002) records
have been used for specifying LO Meta-Data. LOM element 9, ‘Classification’, is used to
include competency references as recommended in by IMS (2002a). So, LOM element 9.1,
‘Purpose’, is set to ‘prerequisite’ or ‘educational objective’ from among the permitted
vocabulary for this element; and LOM element 9.2 ‘Taxon Path’, including its sub-elements,
is used to reference the competency. Note that more than one ‘Classification’ element can be
included in one single LO in order to specify more than one prerequisite and/or learning
outcome. In code fragment 2 it is shown a sample LO metadata record that holds two
competency references, a prerequisite relation and a learning outcome relation.

Fig. 2. LO sequencing through competencies

<?xml version="1.0" encoding="iso-8859-1"?>
 <lom:lom xmlns:lom="http://ltsc.ieee.org/xsd/LOM">
 <lom:general>
 <lom:title>
 <lom:string language="en">HTML</lom:string>
 </lom:title>
 <lom:language>en</lom:language>
 <lom:description>
 <lom:string language="en">HTML Course</lom:string>
 </lom:description>
 </lom:general>
 <lom:lifeCycle>
 <lom:version>
 <lom:string language="en">1.0</lom:string>
 </lom:version>

Competency-based Learning Object Sequencing using Particle Swarms

81

 <lom:contribute>
 <lom:date>
 <lom:dateTime>2007-01-10</lom:dateTime>
 </lom:date>
 </lom:contribute>
 </lom:lifeCycle>
 <lom:educational>
 <lom:difficulty>
 <lom:value>easy</lom:value>
 </lom:difficulty>
 <lom:typicalLearningTime>
 <lom:duration>PT50H</lom:duration>
 </lom:typicalLearningTime>
 <lom:language>en</lom:language>
 </lom:educational>
 <lom:classification>
 <lom:purpose>prerequisite</lom:purpose>
 <lom:taxonPath>
 <lom:source>
 <lom:string language="en">
 http://www.uah.es/cc/comps/CompsTaxon/
 </lom:string>
 </lom:source>
 <lom:id>1IntroWeb</lom:id>
 </lom:taxonPath>
 </lom:classification>
 <lom:classification>
 <lom:purpose>educational objective</lom:purpose>
 <lom:taxonPath>
 <lom:source>
 <lom:string language="en">
 http://www.uah.es/cc/comps/CompsTaxon/
 </lom:string>
 </lom:source>
 <lom:id>3HTML</lom:id>
 </lom:taxonPath>
 </lom:classification>
 </lom:lom>

Code 2. Sample LO metadata record containing competency references

Simple metadata (i.e. LOM records) is enough to model LOs’ sequences in a similar way.
Then, Why use competencies? Competency usage is encouraged, besides its usefulness for
modelling prerequisites and learning outcomes, because competencies are also useful for
modelling user current knowledge and learning initiatives’ expected outcomes (future
learner knowledge).We are proposing a wider framework (fig. 3) in which learner (user)
modelling is done in terms of competencies, which are also used to define the expected
learning outcomes from a learning program. Both sets of competencies constitute the input
for a gap analysis process. This process performs a search in local and/or distributed remote
repositories in order to identify the set of learning objects that fill the gap between learner
current knowledge and the learning objectives. Gap analysis process returns a set of
unordered LOs that must be assembled and structured in a comprehensive way, so that
basic units (LOs) are presented to the learner previously to advanced lessons. These actions
will be performed by the LO sequencing process depicted in figure 3.

 Tools in Artificial Intelligence

82

Fig. 3. Competency-driven content generation model

3. Competency-based intelligent sequencing
Given a random LOs’ sequence modelled as described above (with competencies
representing LOs prerequisites and learning outcomes), the question of finding a correct
sequence can be envisaged as a classical artificial intelligent Constraint Satisfaction Problem
(CSP). In this way, the solution space comprises all possible sequences (n! will be its size,
total number of states, for n LOs), and a (feasible) solution is a sequence that satisfies all
established constraints. LO permutations inside the sequence are the operations that define
transitions among states. So we face a permutation problem, which is a special kind of CSP.
PSO is an AI evolutionary computing technique that can be used to solve CSP problems
(among other kind of problems). This section presents a mathematical characterization of
the learning object sequencing problem so that a PSO implementation can be formally
specified. Then this PSO implementation is presented and some improvements over the
original algorithm are proposed.

3.1 Mathematical characterization
According to (Tsang, 1993) a CSP is a triple (X,D,C) where X = {xo, x1,…,xn-1} is finite set of
variables, D is a function that maps each variable to its corresponding domain D(X), and

Competency-based Learning Object Sequencing using Particle Swarms

83

Ci,j⊂ Di x Dj is a set of constraints for each pair of values (i, j) with 0 ≤ i < j < n . To solve
the CSP is to assign all variables xi in X a value from its domain D, in such a way that all
constraints are satisfied. A constraint is satisfied when (xi, xj)∈Ci,j and (xi ,xj) it is said to be a
valid assignment. If(xi ,xj)∉ C i,j then the assignment (xi , xj) violates the constraint.
If all solutions from a CSP are permutations of a given tuple then it is said that the problem
is a permutation CSP or PermutCSP. A PermutCSP is defined by a quadruple (X,D,C,P)
where (X,D,C) is a CSP and P=<v0, v1, …, vn-1> is a tuple of |X|=n values. A solution S of a
PermutCSP must be a solution of (X,D,C) and a complete permutation of P.
The learning object sequencing problem could be modeled as a PermutCSP. For example,
considering five learning objects titled 1,2,3,4 and 5, the PermutCSP which only solution is
the set S = {1,2,3,4,5} (all learning objects must be ordered) can be defined as:

 X = {x1, x2, x3, x4, x5}

 D (Xi) = {1,2,3,4,5} ∀ xi ∈X

 C = {xi+1 – xi > 0 : xi ∈X , i∈ {1,2,3,4}}

 P= <1,2,3,4,5>
As it will be demonstrated later a good definition of the constraint set C critically affects the
solving algorithm performance and even its completeness.

3.2 Particle swarm optimization
Particle Swarm Optimization (PSO) is an evolutionary computing optimization algorithm.
PSO mimics the behaviour of social insects like bees. A random initialized particles’
population (states) flies through the solution space sharing the information they gather.
Particles use this information to dynamically adjust its velocity and cooperate towards
finding a solution. Best solution found: (1) by a particle is called pbest, (2) within a set of
neighbour particles is called nbest, (3) and within the whole swarm is called gbest. Goodness
of each solution is calculated using a function called fitness function. A basic PSO
procedure, adapted from (Hu et al., 2003), is showed in code fragment 3. PSOs have been
used to solve a wide variety of problems (Hinchey et al., 2007).
The original PSO (Eberhart & Kennedy, 1995; Kennedy & Eberhart, 1995) is intended to
work on continuous spaces, and velocity is computed for each dimension xi ∈ x .
Particles’ initial position and initial velocity are randomly assigned when the population
(swarm) is initialized. A discrete binary version of the PSO was presented by Kennedy and
Eberhart (1997). This version uses the concept of velocity as a probability of changing a bit
state from zero to one or vice versa. A version that deals with permutation problems was
introduced by Hu et al., (2003). In this latter version, velocity is computed for each element
in the sequence, and this velocity is also used as a probability of changing the element, but
in this case, the element is swapped establishing its value to the value in the same position
in nbest. Velocity is updated using the same formula for each variable in the permutation set
(xi∈X), but it is also normalized to the range 0 to 1 by dividing each xi by the maximum
range of the particle (i.e. maximum value of all xi∈X). The mutation concept is also
introduced in this permutation PSO version; after updating each particle´s velocity, if the
current particle is equal to nbest then two randomly selected positions from the particle

 Tools in Artificial Intelligence

84

sequence are swapped. Hu et al., (2003) have also demonstrated that permutation PSO
outperforms genetic algorithms for the N-Queens problem. So we decided to try PSO, before
any other technique, for the LO sequencing problem.

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness > pBest)
 set pbest = current value
 }
 nbest = particle with the best fitness value of all the topological neighbors
 for each particle {
 Calculate new velocity as

 V new=w x V old + c1 x rand () x (P best - X) + c2 x rand() x (P nbest- X)
 Update particle position

 X new= X old + V new
 }
} until termination criterion is met

Code 3. PSO Procedure Pseudo-code

rand() is a function that returns a random number between 0 and 1. Each instance of rand() in
the algorithm represents a new call to the function, i.e. a new random number is computed
and returned.
Each particle shares its information with a, usually fixed, number of neighbor particles to
determine nbest value. Determining the number of neighbor particles (the neighbor size) and
how neighborhood is implemented has been a subject of deep research in an area that has
been called sociometry. Topologies define structures that determine neighborhood relations,
and several of them (ring, four cluster, pyramid, square and all topologies) have been
studied. It has been proved that fully informed approaches outperform all other methods
(Mendes et al., 2004). The fully informed approach prompts using an ‘all’ topology and a
neighborhood size equal to the total number of particles in the swarm (i.e. every particle is
connected with all other particles when nbest values are calculated, hence gbest is always
equal to nbest).

3.3 PSO for learning object sequencing
Discrete full-informed version of the PSO was implemented in order to test its performance
for solving the LO sequencing problem. Code fragment 4 shows the basic procedure for LO
sequencing pseudo code. Several other issues concerning design and implementation have
to be decided. In the rest of this section each of these issues is discussed and the selection
criteria are explained.
Fitness Function. It is critical to choose a function that accurately represents the goodness of
a solution (Robinson & Rahmat-Samii, 2004). In PSO, like in other evolutionary techniques
algorithms and meta-heuristics search procedures, there is usually no objective function to
be maximized. A common used fitness function when dealing with CSP problems is a
standard penalty function (Schoofs & Naudts, 2000):

Competency-based Learning Object Sequencing using Particle Swarms

85

 ,
0

() (,)i j i j
i j n

f X V x x
≤ < <

= ∑ (1)

where Vi,j : Di x Dj →{0,1} is the violation function

 i j ,
, i j

0 if (x , x)
(x , x)

1
i j

i j

C
V

otherwise
∈⎧

⎨
⎩

 (2)

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness < gBest)
 set gbest = currentValue
 if (new fitness < pBest)
 set pbest = currentValue
 Calculate new velocity as

 V new = w x V old + c1 x rand() x (P pbest - X) + c2 x rand() x (P gbest - X)
 Normalize Velocity as

 V norm = V new /max (V new)
 Update particle value

 for each v[i] in V norm {
 if(rand() < v[i])
 swap currentValue[i] for indexOf(currentValue, gBest[i])
 }
 Check Mutation
 if (currentValue = gBest) swap two random positions from currentValue
 }
} until termination criterion is met

Code 4. PSO Procedure for LO Sequencing

The standard penalty function returns the number of constraints violated, so PSO objective
is to minimize that function (sentence if (new fitness > pBest) was changed to if (new fitness
< pBest)). When a particle returns a fitness value of 0, a sequence that satisfies all constraints
has been found and the algorithm processing is finished.
This fitness function works well if the constraint set C for the PermutCSP has been
accurately defined. In the example presented in section 3.1 that represents a 5 LO sequence
with only one feasible solution, the restriction set was defined as C={xi+1–xi > 0: xi∈X,
i∈ {1,2,3,4}}. A more accurate definition will be C= {xi-xj>0: xi∈ X, xj∈ {x1,…,xi}}. If we
consider the sequence {2,3,4,5,1} the standard penalty function will return 1 if the first
definition of C is used, while the returned value will be 4 if the second definition is used.
The second definition is more accurate because it returns a better representation of the
number of swaps required to turn the permutation into the valid solution. Moreover, the
first definition of C has additional disadvantages because some really different sequences (in
terms of its distance to the solution) return the same fitness value. For example sequences

 Tools in Artificial Intelligence

86

{2,3,4,5,1}, {1,3,4,5,2}, {1,2,4,5,3} and {1,2,3,5,4} will return a fitness value of 1. Fortunately, the
accurate constraint definition problem could be solved programmatically. A function that
recursively processes all restrictions and calculates the most precise set of restrictions
violated by a given sequence was developed and called over the input PSO sequence. This
process was called the ‘real’ constraint calculator. The user (instructor, content provider,…)
will usually define the minimum necessary number of constraints and the system will
compute real constraints in order to ensure algorithm convergence, so user obligations are
lightened simultaneously.
PSO Parameters. One important PSO advantage is that it uses a relatively small number of
parameters compared with other techniques like genetic algorithms. However, much
literature on PSO parameter selection has been written. Among it, Hu et. al. (2003)
established the set of parameters in such a way that PSO works properly for solving
permutation problems. So we decided to follow their recommendations, and parameters
were set as follows: Learning rates (c1, c2) are set to 1.49445 and the inertial weight (w) is
computed according to the equation (3).

 w= 0.5 + (rand()/2) (3)

where rand() represents a call to a function that returns a random number between 0 and 1.
Population size was set to 20 particles. As the fully informed was used, it was not necessary
to make any consideration concerning the neighborhood size.
Initialization. The algorithm receives an initial sequence I as an input. This input is used to
initialize the first particle. All other particles are initialized randomly by permuting I. Initial
velocity for each particle is also randomly initialized as follows: Each vi ∈ V is randomly
assigned a value from the range {0,|I|}, where|I| is the total number of learning objects in
the sequence.
Termination criteria. Agent processing stops when a fitness evaluation of a particle returns
0 or when a fixed maximum number of iterations is reached. So the number of iterations was
also defined as an input parameter. It was used as a measurement of the number of calls to
the fitness function that were allowed to find a solution. It should be noted that some
problems may not have a solution, so the number of iterations setting can avoid infinite
computing.
Proposed improvements. During the initial agent development we found that in some
situations the algorithm got stuck in a local minimum, and it was not able to find a feasible
solution. For that reason, two enhancements were envisaged in order to improve algorithm
performance for LO sequencing. First improvement was to decide randomly whether the
permutation of a particle’s position was performed from gbest or from pbest (p=0.5). In the
original version all permutations were done regarding gbest. The second improvement was
consisted in changing pbest and gbest values when an equal or best fitness value was found
by a particle. In other words all particle’s comparisons concerning pbest and gbest against the
actual state were set to less or equal (<=) because the fitness function is to be minimized. The
original algorithm determines that pbest and gbest only change if a better state is found
(comparisons strictly <). Code fragment 5 presents the final sequencing algorithm pseudo
code that includes these improvements. Changes respecting the basic procedure are showed
underscored.
These changes resemble to be quite logical ways for increasing particles’ mobility and for
avoiding quick convergence to local minimums. And they were tested later in the results
phase.

Competency-based Learning Object Sequencing using Particle Swarms

87

initialize the population
do {
 for each particle {
 calculate fitness value
 if (new fitness <= gBest)
 set gbest = currentValue
 if (new fitness <= pBest)
 set pbest = currentValue
 Calculate new velocity as

 V new = w x V old + c1 x rand() x (P pbest - X) + c2 x ran() x (P gbest - X)
 Normalize Velocity as

 V norm = V new /max (V new)
 Update particle value

 for each v[i] in V norm {
 if(rand() < v[i])
 if(rand() < 0.5)
 swap currentValue[i] for currentValue[indexOf(currentValue, pBest[i]])
 else
 swap currentValue[i] for currentValue[indexOf(currentValue, gBest[i]])
 }
 Check Mutation
 if (currentValue = gBest) swap two random positions from currentValue
 }
} until termination criterion is met

Code 5. Improvements on PSO Procedure

4. Experimental results and discussion
The PSO algorithm for LOs sequencing described above was designed and implemented
using the object oriented paradigm. We wanted to test its performance in a real scenario so a
problem concerning course sequencing for a Master in Engineering (M.Eng.) program in our
institution, the Computer Science School from the University of Alcalá in Madrid (Spain),
was chosen for testing. The (web engineering) M.Eng, program comprises 23 courses
(subjects) grouped in:
• Basic courses (7) that must be taken before any other (kind of course). There may be

restrictions between two basic courses, for example ‘HTML’ course must precede
Javascript course.

• ‘Itinerary’ courses (5) that must be taken in a fixed ordered sequence.
• Compulsory courses (5). There may be restrictions between two compulsory courses.
• Elective courses (6). Additional constraints with respect to any other course may be set.
All courses have an expected learning time that ranges from 30 to 50 hours. They are
delivered online using a LMS, namely EDVI LMS (Barchino et al., 2005), and every course
has its metadata record. Competency records were created to specify LOs’ restrictions, and
LOM metadata records were updated to reflect prerequisite and learning outcome

 Tools in Artificial Intelligence

88

competencies as detailed in section 2. A feasible sequence must have 23 LOs satisfying all
constraints. The graph showing all LOs and constraints is very complex, and so it is to
calculate the exact number of feasible solutions. Some estimations have been used, we have
estimated that the relation among feasible solutions and total solutions order is 8,9x1012.
This number reflects the number of states (non-feasible solutions) for each feasible solution.
Once the problem was established, PSO agent parameters were set to test four different
configurations that reflect all possibilities concerning proposed improvements introduced in
Section 3. These configurations are:
• Configuration 1. Permutation of the particle position is randomly selected from gbest or

from pbest. Comparison for changing particle pbest and gbest values is set to less or equal
(<=).

• Configuration 2. Permutations from gbest/pbest. Comparison set to strictly less (<).
• Configuration 3. All permutations are performed from gbest. Comparison set to less or

equal (<=).
• Configuration 4. Permutations from gbest. Comparison set to strictly less (<).
Figure 4 shows the results. Each configuration was run 1000 times allowing 20, 30, 40, 50, 75,
100, 150, 200, 300 and 500 iterations, and the succeed ratio was observed. From the results, it
can be seen that all configurations converge to a feasible solution, but configuration 4
(original settings) outperform all others. Figure 4 also shows that original settings need less
fitness evaluations. This argument is supported by table 1 results, where it is showed the
mean number of evaluation function calls required for each configuration to find a solution
(1000 runs) if the number of iterations parameter is set to a number high enough (i.e. a
number of iterations that ensures a success ratio of 1 for each configuration).

Fig. 4. PSO Configurations Comparison

An example of the PSO sequencing agent execution for the test case is shown in figure 5. The
input is a random sequence of learning objects and the output is a valid sequence (i.e. a
sequence that satisfies all restrictions). In the output sequence (1) all basic courses are placed

Competency-based Learning Object Sequencing using Particle Swarms

89

in the initial positions of the sequence, (2) itinerary courses are properly ordered, and (3)
compulsory, itinerary and elective courses are intercalated respecting all constraints. Output
is also complemented by the number of fitness function calls required to find the solution.
The tested scenario may seem to have many feasible solutions that would make doubtful
PSO performance in not-so-kind scenarios, so PSO agent was tested in ‘more’ difficult
situations. Test sequences containing 5, 10, 20, 30, 40, 50, 60, 75 and 100 learning objects with
only one feasible solution in the solution space were designed. Configuration 4 was used
because it showed the best performance for the above test case and unlimited iterations were
allowed to find the solution. Fitness evaluation means were observed for 100 runs (fig. 6).
Although fitness evaluations does not increase linearly to the number of learning objects, it
should be noted that learning objects increment entails an exponential explosion of solution
space size (remember that solution space size for n learning objects will be n!). For example,
the solution space with 100 learning objects will be 1048 times bigger than the solution space
with 75 learning objects, but the number of fitness evaluations required for finding a
solution is only twice bigger. In other words, X-axis could also be interpreted as the solution
space size expressed in a logarithmic scale. Therefore, the intelligent agent also handles
reasonably the combinatorial explosion inherent to many AI problems.

 Fitness Evaluations
Configuration 1 1412
Configuration 2 1817
Configuration 3 1237
Configuration 4 1158

Table 1. Number of Fitness Evaluations

Fig. 5. PSO Agent Execution Example

 Tools in Artificial Intelligence

90

5. Conclusions
Automated LO sequencing is a recurring problem in the e-learning field that could be
undertaken employing models that ensure interoperability and artificial intelligent
techniques. The purpose of the study was to design, develop and test a PSO agent that
performs automatic LO sequencing through competencies. A model that employs
competencies as a mean for defining constraints between learning object has been presented,
so that a sequence of LOs is defined by relations among LOs and competencies. New
sequences can be derived if permutation operations are allowed between LOs in the
sequence. Hence the sequencing problem is turn into a permutation problem, and the aim is
to find a sequence that satisfies all restrictions expressed in the original model. The PSO for
permutation problem has been extended to LO sequencing problem. Testing two envisaged
improvements was also performed. Results show that: (1) PSO succeeds in solving the
problem, and (2) the original configuration is the best one.

Fig. 6. Number of fitness evaluations required for different number of LOs

Further implications arise from the model proposal and from the study conclusions: (1) E-
learning standards are promoted. XML records and bindings are used, so elements will be
easily interchanged and processed by compliant systems. (2) Instructor’s role is automated
reducing costs. Sequencing process works even in complex scenarios where humans face
difficulties. Instructors could spend saved time in performing other activities within the
learning action. And (3), the model can be extended to an automated intelligent system for
building personalized e-learning experiences. But this third implication is linked to future
work. This model has been envisaged and it was depicted in figure 3 (Section 2.2).
Sequencing process can be complemented with gap analysis process and competency
learner modelling techniques to build personalized courses. These courses could also be
SCORM (ADL, 2004) compliant, so they could be imported to current LMSs.

6. Acknowledgments
This research is co-funded by: (1) the University of Alcalá FPI research staff education
program, (2) the Spanish Ministry of Industry, Tourism and Commerce PROFIT program

Competency-based Learning Object Sequencing using Particle Swarms

91

(grants FIT-350200-2007-6 and FIT-350101-2007-9) and Plan Avanza program (grant PAV-
070000-2007-103), (3) the Spanish Ministry of Education and Science PROFIT program (grant
CIT-410000-2007-5), (4) Castilla-La Mancha autonomous community under the educational
innovation cooperation program (grant EM2007-004) by (5) research groups’ support
program from the University of Alcalá and CAM Madrid Region (grant CCG06-UAH/TIC-
0732).

7. References
ADL (2004) Shareable Content Object Reference Model (SCORM). The SCORM 2004

Overview. Advanced Distributed Learning (ADL) Initiative.
Barchino, R.; Gutiérrez, J. M. & Otón, S. (2005) An Example of Learning Management System. In

Isaías, P., Baptista, M. & Palma, A. (Eds.) IADIS Virtual Multi Conference on
Computer Science and Information Systems (MCCSIS 2005). Virtual, IADIS Press.

Barr, A. (2006) Revisiting the -ilities: Adjusting the Distributed Learning Marketplace,
Again? Learning Technology Newsletter, 8, 3-4.

Brusilovsky, P. (1996) Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction, 6, 87-129.

Brusilovsky, P. (1999) Adaptive and Intelligent Technologies for Web-based Education.
Künstliche Intelligenz, Special Issue on Intelligent Systems and Teleteaching, 4, 19-25.

CEN/ISSS (2006) European Model for Learner Competencies. Comité Européen de
Normalisation / Information Society Standardization System (CEN/ISSS).

De Bra, P.; Aerts, A.; Berden, B.; Lange, B. D.; Rousseau, B.; Santic, T.; Smits, D. & Stash, N.
(2003) AHA! The adaptive hypermedia architecture. Proceedings of the fourteenth
ACM conference on Hypertext and hypermedia. Nottingham, UK, ACM Press.

De Bra, P., Houben, G.-J. & Wu, H. (1999) AHAM: a Dexter-based reference model for
adaptive hypermedia. Proceedings of the tenth ACM Conference on Hypertext and
hypermedia. Darmstadt, Germany, ACM Press.

Eberhart, R. & Kennedy, J. (1995) A new optimizer using particle swarm theory. Proceedings
of the Sixth International Symposium on Micro Machine and Human Science. MHS '95.
Nagoya, Japan.

Hinchey, M. G., Sterritt, R. & Rouff, C. (2007) Swarms and Swarm Intelligence. Computer, 40,
111-113.

HR-XML (2006) Competencies (Measurable Characteristics) Recommendation. HR-XML
Consortium.

Hu, X., Eberhart, R. C. & Shi, Y. (2003) Swarm intelligence for permutation optimization: a
case study of n-queens problem. Proceedings of the 2003 IEEE Swarm Intelligence
Symposium. Indianapolis, USA, IEEE Press.

IEEE (2002) Learning Technology Standards Committee (LTSC). Learning Object Metadata
(LOM). 1484.12.1. IEEE.

IEEE (2008) Learning Technology Standards Committee (LTSC). Standard for
LearningTechnology - Data Model for Reusable Competency Definitions. IEEE.

IMS (2002a) Reusable Definition of Competency or Educational Objective - Best Practice and
Implementation Guide. IMS Global Learning Consortium.

IMS (2002b) Reusable Definition of Competency or Educational Objective - Information
Model. IMS Global Learning Consortium.

 Tools in Artificial Intelligence

92

Karampiperis, P. (2006) Automatic Learning Object Selection and Sequencing in Web-Based
Intelligent Learning Systems. IN ZONGMIN, M. (Ed.) Web-Based Intelligent E-
Learning Systems: Technologies and Applications. London. UK., Idea Group.

Kennedy, J. & Eberhart, R. (1995) Particle swarm optimization. Proceedings., IEEE
International Conference on Neural Networks. Perth, WA, Australia.

Kennedy, J. & Eberhart, R. C. (1997) A discrete binary version of the particle swarm
algorithm. 1997 IEEE International Conference on Systems, Man, and Cybernetics.
'Computational Cybernetics and Simulation'.

Mendes, R., Kennedy, J. & Neves, J. (2004) The fully informed particle swarm: simpler,
maybe better. Evolutionary Computation, IEEE Transactions on, 8, 204-210.

Robinson, J. & Rahmat-Samii, Y. (2004) Particle swarm optimization in electromagnetics.
Antennas and Propagation, IEEE Transactions on, 52, 397-407.

Schoofs, L. & Naudts, B. (2000) Ant colonies are good at solving constraint satisfaction
problems. Proceedings of the 2000 Congress on Evolutionary Computation. La Jolla, CA.

Tsang, E. (1993) Foundations of Constraint Satisfaction, Academic Press.
Van Den Berg, B., Van Es, R., Tattersall, C., Janssen, J., Manderveld, J., Brouns, F., Kurvers,

H. & Koper, R. (2005) Swarm-based sequencing recommendations in e-learning.
Proceedings 5th International Conference on Intelligent Systems Design and Applications,
2005. ISDA '05. Wroclaw, Poland.

Wiley, D. A. (2000) Connecting learning objects to instructional design theory: A definition,
a metaphor, and a taxonomy. IN WILEY, D. A. (Ed.) The Instructional Use of Learning
Objects.

Wilkinson, J. (2001) A matter of life or death: re-engineering competency-based education
through the use of a multimedia CD-ROM. IEEE International Conference on
Advanced Learning Technologies, 2001. Proceedings.

6

Image Thresholding of Historical Documents
Based on Genetic Algorithms

Carmelo Bastos Filho, Carlos Alexandre Mello, Júlio Andrade,
Marília Lima, Wellington dos Santos, Adriano Oliveira and Davi Falcão

Department of Computing and Systems, University of Pernambuco
Brazil

1. Introduction
Digital Libraries have been developed nowadays as a way to dispose digital information
through the Internet. This is particularly very useful when the information comes from
historical documents. This research takes place in the PROHIST Project [Mello et al., 2008]
which aims the creation of a digital library with methods to preserve and broadcast images
of historical documents. In general, the access to original documents has to be done carefully
as, because of its age, the paper is more susceptible to the wear and tear over time. In order
to make the documents more easily accessible, digitization comes as the most efficient
solution. In a digital media, as digital images, the documents can be visualized and copied.
This also helps the preservation of the documents as they are digitized in high resolution
and in true color format. It is common to use JPEG file format (Sayood, 1996) to store these
images ensuring a good space storage/quality ratio. However, even in this format, to access
an archive of thousands of high quality true color images is not an easy task even with the
extended use of broad band Internet.
The storage space of the images can be reduced with its conversion to black-and-white
images. In this bi-level format and stored using GIF file format, the size of the file can be five
times lower than the original true color JPEG image. Binarization or thresholding (Parker,
1997) is the process that converts an image into black-and-white: a threshold value is
defined and the colors above that value are converted into white, while the colors below it
are converted into black. This is a very simple process in digital image processing when one
has a document with black ink written on a white paper. Historical documents, however,
have several types of noises. The degradation yellows the sheet of paper and creates some
noise that is perceptible to the digitizing process. Even more, in some cases, the ink has
faded. This is particularly important when the document is written on both sides of the
paper. In some cases, the ink of one side interferes in the other creating an effect called “ink
bleeding”. Because of these problems, it is very difficult to find the best threshold value that
separates the colors that belong to the paper from the colors that belong to the ink. An
example of such a document is presented in Figure 1-left.
In this paper, we present a new thresholding algorithm for color quantization based on
genetic algorithms and image fidelity metrics. These metrics are used to define the
convergence point of the genetic algorithm. The quantized image is then binarized based on

 Tools in Artificial Intelligence

94

the number of classes defined in the quantization phase. The algorithm is adjusted to work
on images of historical documents. Figure1-centre presents the final bi-level image of Figure
1-left. This is the final kind of image that we are looking for in our method. Fig. 1-right
presents the results of an incorrect choice of a threshold value. The comprehension of the
foreground text is severely damaged.

Fig. 1. (left) Zooming into part of an historical document written on both sides of the paper,
presenting the ink bleeding effect, (centre) the ideal bi-level image and (right) an incorrect
threshold value can create a highly noisy image.

In the next Section, we briefly review some important aspects of color quantization, genetic
algorithms and image fidelity assessment. Section 3 describes our method while Section 4
presents and analyzes the results. Section 5 concludes the Chapter.

2. Fundamentals
2.1 Color quantization
Color quantization (Parker, 1997) is the process of selecting a set of significant colors to
represent an image. This must be necessary to show images in devices which have limited
color support or broadcast capacity as hand held devices as PDA’s (Personal Digital
Assistants), mobile phones, etc. After a color quantization, an image has its color resolution
decreased to a specific quantity. This process can reduce the quality of the image if the
process were not applied with high precision and specific algorithms. The images produced
by the color quantization must be as similar as possible as the original ones which can be
evaluated with the use of image fidelity indexes.
Color quantization algorithms can be classified into two classes: splitting algorithms and
clustering algorithms. Splitting algorithms divide the color space of an image interactively
into disjoint cells according to some criteria until the number of desired cells is reached.
Some of the splitting algorithms are: popularity algorithm (Heckbert, 1982), median-cut
(Heckbert, 1982), error diffusion (Kang, 1999), Floyd-Steinberg (Kang, 1999), and Stucki
(Stucki, 1981). Clustering-based algorithms perform a clustering of the color space into K-
desired clusters. The methods involve an initial selection of color map followed by
repeatedly updating cluster representatives. C-Means (Parker, 1997) is the most common
algorithm of this class.
Algorithms for dithering also work with the reduction of the color space. A review about
dithering algorithms is shown in (Alasseur et al, 2003). Dithering is not the best solution for
some applications as image processing of historical documents where the background (the
paper) must be removed for a character recognition process. A dithering algorithm based on
genetic algorithms (GA) and K-Means is proposed in (Freisleben & Schrader, 1997).
The use of computational intelligence for quantization is not new: a technique based on
Competitive Hopfield Neural Networks is presented in (Wu et al. 2001). However, this
algorithm converges rapidly but it easily finds a local minimum as the solution.

Image Thresholding of Historical Documents Based on Genetic Algorithms

95

Another problem associated with color quantization is the analysis of the performance of
color quantization algorithms. The authors in (Tremeau et al., 1994) define two metrics: LSE
(Local Squared Error) and SCAP (Spatial Correlation Among Pixels). Nowadays, however,
there are most appropriated metrics as the use of the concepts of image fidelity indexes
(Janssen, 2001). We use herein image fidelity metrics in order to evaluate the similarity of
the quantized image and the original one.
Thresholding or binarization is a specific type of color quantization that reduces the color
palette to just two colors; in general, black and white tones. Some well-known algorithms
are: Pun, Kapur, Renyi, Brink, Otsu, Kittler, Percentage of Black and C-Means, for example.
Details on these and other algorithms can be found in (Sezgin & Sankur, 2004).

2.2 Image fidelity assessment
Image quality can be defined (Janssen, 2001) “in terms of the satisfaction of two
requirements: usefulness (i.e. discriminality of image content) and naturalness
(identifiability of image content)”. When one has two images and wants to compare them, it
is a fidelity value that is searched. This is the main problem of fidelity metrics: the
requirement of two images (a reference image and a target one) to make this comparison.
The definition of image fidelity metrics is subject of several studies that come from
subjective measures as Mean Opinion Score (MOS) to objective ones as Peak Signal-to-Noise
Ratio (PSNR) and Mean Square Error (MSE). Our interest is in objective measures as our
work involves sets of thousand of images. PSNR (in dB) is evaluated by:

2

1010log ()CPSNR
MSE

= (1)

where C represents the maximum color value (for images).
A fidelity index, Q, is defined in (Wang & Bovik, 2001) in terms of the linear correlation
coefficient and the similarities between the mean and variance of two images. This index is
defined as:

)).((

...4
2222
yxyx

xyyxQ
σσμμ

σμμ

++
= (2)

where x and y are the original and tested images respectively, μx and μy are their means, σx
and σy are their variances and σxy is the correlation. As defined in (Wang & Bovik, 2001), the
range of Q is [-1, 1]. The value of 1 happens when the images are the same (or yi = xi, for
every i). The lowest value, i.e. Q = -1, occurs when yi = 2.μx - xi, for every i.

2.3 Genetic algorithms
Genetic algorithms are very useful to solve search problems (Mitchell, 1998), especially for
complex, multivariable and non-analytical problems. Therefore, it can be used to solve
problems such as identify grayscale levels and the limits between them in a quantization
process. This intelligent computing technique is important for the thresholding process
proposed herein.
The Genetic Algorithm used in our method follows the flow chart presented in Fig. 2. First,
an initial population with P individuals is created. In our method, each individual

 Tools in Artificial Intelligence

96

represents a set of grayscale levels involved in the process codified in a bit string. For each
individual, a simulation tool is run and the fitness function value is returned. Therefore,
individuals with the best performance are the stronger ones. For each generation, new
individuals are created through crossover processes to compose the next generation. The
mutation operator helps to avoid local minimum. The selection operation finds the P
individuals with higher fitness function and deletes the weakest individuals. At the end of
the selection operation, the algorithm checks if the predefined number of generations was
reached. The algorithm keeps running until it reaches the limit of generations or it finds a
predefined condition.

Fig. 2. Flow chart of the genetic algorithm used in our simulations.

The crossover operation is applied to two individuals and it generates two new individuals
mixing information of the parents bit strings. Only new individuals are added to the
population, clones are discarded. Two individuals in the population have a probability Pc of
performing crossover in each generation. In this work we used Pc = 50%.
The mutation operation is applied in a single individual. It consists of complementing bits in
the individual string of bits. An individual in the population have a probability Pm of
suffering mutation in each generation and, considering mutation in an individual, each bit
has a probability of suffering mutation Pmb. We used Pm = 5% and Pmb = 10% in our
simulations.

3. Proposed thresholding algorithm
The main objective of this method is to generate a bi-level image from a historical document.
This image shall represent the text as black and background or back-to-front interference as
white. So forth, we introduced an intelligent algorithm using genetic algorithm to quantize
the original image. The target is to reduce the palette so that the remaining colors (or gray
levels) represent classes such as text, background or back-to-front interference. Notice that
those classes can be represented by more than one color.
Furthermore, supposing that the text is composed by the darkest grayscale levels, the
process is followed by a threshold to classify the pixels as text or non-text, excluding the
background and the back-to-front interference. The thresholding divides the classes as text
(darkest remaining colors) and non-text.
We used historical documents images stored in 256 gray levels. The information about each
gray level that represents a class was codified into a binary bit string. We also codified the

Image Thresholding of Historical Documents Based on Genetic Algorithms

97

limits that define the threshold in the quantization process. We used 8 bits to represent each
color and each limit. Therefore, the individual consists of a bit string with 2z-1 segments,
where z is the number of gray levels in the novel palette. We used Wang and Bovik’s fidelity
index (Q) as the fitness function. The fitness for an individual is obtained by performing the
Q factor comparison between the image after the quantization process and the original
image. We observed that the Q values obtained in our simulation were always in the
interval [0, 1]; so this range is considered instead of [-1, 1] as defined by Wang and Bovik.
After crossover or mutation, the individual segments shall be sorted according their values.
To illustrate the method we present an example: consider the Figure 1-left as the document
to be treated. Figure 1-center shows the best result achieved from binarization and manual
exclusion of non desired information. Therefore the target is to define the method to achieve
automatically images as showed in Figure 1-center without a priori knowledge.
The first step is to execute the quantization based on genetic algorithm, maximizing the Q
factor.
The second step is to define which of the new gray levels from the quantization should be
classified as text. If one considers the image presented in Fig. 1-Left quantized to 4 gray
levels, there are three different possibilities to threshold that image: the first one is to classify
the darkest grayscale level as text and the others as non text (up ahead classify just the
darkest grayscale level will be called limit1); the second possibility is to classify the two
darkest grayscale levels as text and the others as non text (up ahead classify the two darkest
grayscale levels will be called limit2). The last possibility is to classify the three darkest
grayscale levels as text and the other as non text (from now on this classification will be
called limit3). Figure 2 shows the resultant images after binarization considering these three
limits. The threshold limits were defined as 53, 106 and 137, for limit1, limit2 and limit3,
respectively. Visually, the best image was achieved for limit1.

Fig. 3. Thresholding images of the example for binarization with threshold (left) 53, (center)
106 and (right) 137, after the intelligent quantization.

4. Results
It is necessary to determine how many gray levels should be used in the quantization to
achieve the best results. For the first step (quantization), the Q factor compared with the
original grayscale image increases as the number of the gray levels increases. We achieved Q
= 0.949594, Q = 0.967749, Q = 0.978475, Q = 0.980648, Q = 0.985494, Q = 0.987862, Q =
0.987115, Q = 0.99008, Q = 0.991768 and Q = 0.992203 for 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12 gray
levels, respectively. But it must be observed that as our final purpose is binarization as the
number of gray levels increases more difficult is to find the better threshold value.
A visual approach is not the best way to quantify the quality of an image. To provide an
efficient way to validate the method and to find the optimum point, we compared Q factor,
PSNR (Peak Signal-to-Noise Ratio) and ROC (Receiver Operating Characteristics) curves of

 Tools in Artificial Intelligence

98

the generated images to the perfect binary image of the example. Figure 3 shows the Q
factor and PSNR results of the binarized images as a function of the number of grayscale
levels in the GA quantization and the number of grayscale levels classified as text (the
darkest ones). The best results were obtained for 3 gray levels in the quantization process
and limit1 (Q = 0.577892 and PSNR = 15.18) and 10 gray levels in the quantization process
and limit2 (Q = 0.5533 and PSNR = 15.86). The second option presents the best Q factor and
PSNR. In spite of this, all the three options are quite similar and the first option seems to be
more adequate to generalize the data for a group of documents.

2 4 6 8 10 12

0,30
0,32
0,34
0,36
0,38
0,40
0,42
0,44
0,46
0,48
0,50
0,52
0,54
0,56
0,58

Q
 fa

ct
or

Number of grayscale levels in GA quantization

 lim1
 lim2
 lim3
 lim4

2 4 6 8 10 12

0

2

4

6

8

10

12

14

16

18

PS
N

R

Number of grayscale levels in GA quantization

 lim1
 lim2
 lim3
 lim4

Fig. 3. (left) Q factor and (right) PSNR results as a function of the number of grayscale levels
in the GA quantization for each limit case defined.

Another way to evaluate the method is using some measures from Signal Detection Theory
(McMillan & Creelman, 2005): precision, recall, accuracy and specificity. Figure 4 presents
the plotting of these measures for limit1 and limit2 cases.

2 4 6 8 10 12

0,65

0,70

0,75

0,80

0,85

0,90

0,95

1,00
Limit 1

Number of grayscale levels in GA quantization

 Precision
 Recall
 Accuracy
 Specificity

2 4 6 8 10 12
0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Limit 2

Number of grayscale levels in GA quantization

 Precision
 Recall
 Accuracy
 Specificity

Fig. 4. Precision, recall, accuracy and specificity for (left) Limit 1 and (right) Limit 2 cases as
a function of the number of grayscale levels in the GA quantization for each limit case
defined.

In order to evaluate the performance of the algorithm using these metrics, a “clean” image
was produced for each image in a set of 140 documents. This “clean” image is a bi-level
document with only the pixels of the ink. These images were generated manually by visual
inspection. With these clean images, we can evaluate the values precision, recall, accuracy
and specificity. An efficient algorithm must have these four measures tending to 1.
Table 1 presents the average result for these measures in a comparison between a set of 140
documents binarized by classical algorithms (Sezgin & Sankur, 2004) and the best response

Image Thresholding of Historical Documents Based on Genetic Algorithms

99

achieved by the new proposed algorithm (images with the higher Q value) with their
“clean” images. The new algorithm (labeled as GA) achieved high values for all four
measures. Table 1 also presents the average values of PSNR and MSE for this set.

Algorithm Precision Recall Accuracy Specificity PSNR MSE
GA 0.8290 0.8273 0.9851 0.9694 21.5167 0.0306

Bernsen 0.839 0.8135 0.9636 0.9847 21.4086 0.0364
Brink 0.8972 0.7176 0.9378 0.9898 20.5486 0.0622

C-Means 0.9656 0.4752 0.7276 0.9919 15.5124 0.2724
daSilva-Lins-Rocha 0.8882 0.7277 0.9459 0.9908 20.3931 0.0541

Fisher 0.9085 0.7274 0.9329 0.9903 20.5406 0.0671
Huang 0.9174 0.6946 0.9146 0.9904 19.8345 0.0854

Johannsen 0.9398 0.6548 0.9317 0.9942 19.3038 0.0683
Kapur 0.0148 0.4073 0.9021 0.9013 16.8976 0.0979
Kittler 0.8587 0.7982 0.9429 0.9847 21.1809 0.0571
Li-Lee 0.872 0.7313 0.9447 0.9899 20.3123 0.0553

Mean Grey Level 0.9116 0.7518 0.9654 0.9891 21.11 0.0346
Niblack 0.862 0.3911 0.8531 0.985 14.6877 0.1469

Otsu 0.8431 0.7128 0.9422 0.9683 19.1462 0.0578
Percentage of Black 0.9902 0.2156 0.6165 0.9985 10.3754 0.3835

Pun 0.941 0.6513 0.9395 0.9957 19.3791 0.0605
Renyi 0.9894 0.1716 0.3683 0.9011 8.6996 0.6317

Sauvola 0.8925 0.1888 0.6045 0.9755 10.0915 0.3955
Iterative Selection 0.3368 0.3356 0.9418 0.9514 18.9542 0.0582

TwoPeaks 0.9402 0.6288 0.9236 0.9947 18.7636 0.0764
White 0.3855 0.757 0.7348 0.9524 15.6284 0.2652
Wu-Lu 0.7792 0.7711 0.9411 0.9595 19.7098 0.0589
Yager 0.7985 0.2502 0.7475 0.9609 12.0418 0.2525
Yen 0.5276 0.8058 0.9358 0.944 19.0102 0.0642

Table 1. Average value of precision (P), recall (R), accuracy (A), specificity (S), PSNR and
MSE evaluated by a comparison of bi-level images without noise and the images generated
by classical algorithms and the new proposal (labeled GA).

7. Conclusion
It is presented in this paper a technique for automatic thresholding images of historical
documents, in special, documents written on both sides of the paper, presenting back-to-
front interference. The new method uses genetic algorithms to achieve a quantized image
and proceed with a binarization. The resulting images were analyzed using a fidelity index,
PSNR and measures from signal detection theory. The method can also be extended to
optimize quantization processes for other types of images.
The method proved to be more efficient than several other classical thresholding algorithms
in an evaluation using precision, recall, accuracy and specificity.
Currently the bi-level images are being used to improve several steps on an optical character
recognition process of these documents such as text segmentation and the recognition per se.

 Tools in Artificial Intelligence

100

8. References
Mello, C.A.B.; Oliveira, A.L.I.; Sanchez, A. Historical Document Image Binarization,

Proceedings of the International Conference on Computer Vision Theory and Applications,
pp. 108-113, ISBN 9789898111210, Funchal, January 2008, INSTICC, Portugal.

Sayood, K. (1996). Introduction to data Compression, Morgan Kauffman, ISBN 1558603468, San
Francisco.

Parker, J.R. (1997). Algorithms for Image Processing and Computer Vision, John Wiley and Sons,
ISBN 0471140562, New York.

Heckbert, P. (1982). Color image quantization for frame buffer display. ACM SIGGRAPH
Computer Graphics, Vol. 16, No. 3, (July 1982), pp. 297-307, ISSN 00978930.

Stucki, P. (1981). MECCA - A multiple error correcting computation algorithm for bilevel
image hardcopy reproduction, Research Report RZ1060, IBM Research Laboratory,
Zurich, Switzerland.

Alasseur, C. ; Constantinides, A.G. ; Husson, L. (2003). Colour Quantisation Through
Dithering Techniques, Proceedings of International Conference on Image Processing, pp.
469-472, ISBN 0780377516, Barcelona, September 2003, IEEE Press, New Jersey.

Freisleben, B.; Schrader, A. (1997). Color Quantization with a Hybrid Genetic Algorithm,
Proceedings of the International Conference on Image Processing and its Applications, pp.
86-90, ISBN 085296692X, Ireland, July 1997, IEEE Press, New Jersey.

Wu, Y.; C.Yang; T.Wang. (2001). A New Approach of Color Quantization of Image Based on
Neural Networks, Poceedings of International Joint Conference on Neural Networks, pp.
973-977, ISBN 0780370465, Washington, USA, July 2001, IEEE Press, New Jersey.

Tremeau, A.; Calonnier, M. ; Laget, B. (1994). Color Quantization Error in Terms of
Perceived Image Quality, Proceedings of the International Conference on Acoustic,
Speech and Signal Processing, pp. V93-V96, ISBN 078031775094, Adelaide, Australia,
June 1994, IEEE Press, New Jersey.

Janssen, T.J.W.M. (2001). Understanding image quality, Proceedings of the International
Conference on Image Processing, pp. 7, ISBN 0780367251, Thessaloniki, Greece,
October 2001, IEEE Press, New Jersey.

Sezgin, M.; Sankur, B. (2004). Survey over image thresholding techniques and quantitative
performance evaluation, Journal of Electronic Imaging, Vol. 1, No.13, (January 2004),
pp. 146-165, ISSN 10179909.

Wang, Z.; Bovik, A.C. (2002). A Universal Image Quality Index. IEEE Signal Processing
Letters, Vol. 9, No. 3, (March 2002), pp. 81-84, ISSN 10709908.

Mitchell, M. (1998). An Introduction to Genetic Algorithms, MIT Press, ISBN 0262631857,
Cambridge.

McMillan, N.A.; Creelman, C.D. (2005). Detection Theory. LEA Publishing, ISBN 0805842306,
New Jersey.

7

Segmentation of Greek Texts by
 Dynamic Programming

Pavlina Fragkou1, Athanassios Kehagias2 and Vassilios Petridis1

1Department of Electrical and Computer Engineering,
2Department of Math., Phys., and Computer Sciences,

 Faculty of Engineering, Aristotle University of Thessaloniki,
 Greece

1. Introduction
In this paper we present an approach for the segmentation of concatenated texts. The text
segmentation problem can be stated as follows: given a text which consists of several parts
(each part dealing with a different subject) it is required to find the boundaries between the
parts. In other words, the goal is to divide a text into homogeneous segments so that each
segment deals with a particular subject while contiguous segments deal with different
subjects. In this manner, documents relevant to a query can be retrieved from a large
database of unformatted (or loosely formatted) text. The problem appears often in
information retrieval and text processing.
Our approach combines elements from several previously published text segmentation
algorithms and achieves a significant improvement in segmentation accuracy by following a
supervised approach. More specifically, we perform linear segmentation of concatenated
texts by minimizing a segmentation cost which consists of two parts: (a) within-segment
word similarity (expressed in terms of dotplot density) and (b) prior information about
segment length. The minimization is effected by dynamic programming, which guarantees
that the globally optimal segmentation is obtained. We are concerned with linear text
segmentation, which should be distinguished from hierarchical text segmentation (Yaari,
1997; Yaari, 1999); the latter attempts to find a tree-like structure in the text segments, while
linear segmentation is based on the assumption that text has a linear structure thus
segments appear in sequential “flat” order. Let us note that hierarchical segmentation is
perhaps more appropriate for discourse segmentation because it creates a hierarchy of all
topics discussed. Every sub-topic is appropriately related to the topic with which is related
to in a deeper level placed in a form of “leaf”.
Our method has successfully applied to Greek texts proving to be very innovating and
promising. Results regarding segmentation of English texts can be found in (Kehagias et al.,
2004(a); Kehagias et al., 2004(b)). The remainder of the paper is organized as follows: in
Section 2 we present research approaches on the area of text segmentation, in Section 3 we
introduce our algorithm, in Section 4 we present experiments to evaluate the algorithm.
Finally, in Section 5 we discuss our results.

 Tools in Artificial Intelligence

102

2. Related work
Text segmentation approaches are based in the theory of Halliday and Hasan (Halliday &
Hasan, 1976) according to which, each text is described by two complementing elements:
cohesion and coherence. Cohesion is described as the quality property of a text and is detected
by the simultaneous appearance of semantically similar words. Cohesion is present when an
element in the text is best interpreted in light of a previously (or rarely a subsequent)
element within the text. Coherence on the other hand holds between two tokens in the text
which are either of the same type or are semantically related in a particular way (such as a
word or group of words having a clearly definable relationship with a previously used
word i.e. belonging to the same theme or topic). According to Halliday and Hasan semantic
coherence and cohesion are identified by the following five semantic relations: (1) repetition
with similarity, (2) repetition without similarity (3) repetition through reference to a higher
category in which the aforementioned word entity belongs to (4) systematic semantic
relationship (5) non- systematic semantic relationship. In the same spirit, Raskin and Weiser
(Raskin & Weiser, 1987) defined as a criterion for cohesion and coherence word repetition
and comparative apposition, where the first focus on word repetition or synonyms of them
and the latter on words that present the tendency to co-occur within a document.
In this paper, the focus is stressed towards (concatenated) text segmentation, which is often
distinguished from discourse segmentation. The goal of discourse segmentation is to split a
single large text into its constituent parts (e.g. to segment an article into sections); this
problem is addressed, for instance, in (Hearst, 1994; Hearst & Plaunt, 1993; Heinonen, 1998;
Yaari, 1997; Yaari, 1999). On the other hand, the goal of (concatenated) text segmentation is
to split a stream of independent, concatenated texts (e.g. to segment a transcript of news into
separate stories); this problem is addressed, for example, in (Beeferman et al., 1999; Choi,
2000; Choi et al., 2001; Ponte & Croft, 1997; Reynar, 1994; Reynar & Ratnaparkhi, 1997;
Utiyama & Isahara, 2001). The two problems are similar but not identical; our algorithm
could conceivably be applied to discourse segmentation, but our main interest is in
concatenated text segmentation and all the experiments we present here fall into this
category.
Generally speaking, text segmentation is a two step procedure. The first step involves the
calculation of segment homogeneity while the second the identification of segment
boundaries. The calculation of segment homogeneity (or alternatively heterogeneity)
performed by methods appearing in the literature presents a strong variation. On the one
hand, a family of methods makes use of linguistic criteria such as cue phrases, punctuation
marks, prosodic features, reference, syntax and lexical attraction (Beeferman et al. (1997),
Hirschberg & Litman (1993), Passoneau & Litman (1993)). On the other hand the second
family, following Halliday and Hasan’s theory (Halliday & Hasan (1976)), utilizes statistical
similarity measures such as word co-occurrence. Roughly speaking, two parts of the text are
considered similar if they have many words in common. This is a popular approach,
according to which parts of a text having similar vocabulary are likely to belong to a
coherent topic segment. For example the linear discourse segmentation algorithm proposed
by Morris and Hirst (Morris & Hirst (1991)) is based on lexical cohesion relations determined
by use of Roget’s thesaurus (Roget (1977)). In the same direction Kozima’s algorithm
(Kozima (1993), Kozima & Furugori (1993)) computes the semantic similarity between
words using a semantic network constructed from a subset of the Longman Dictionary of
Contemporary English. Local minima of the similarity scores correspond to the positions of

Segmentation of Greek Texts by Dynamic Programming

103

topic boundaries in the text. Other authors have used fairly sophisticated word co-
occurrence statistics such as LSA, LCA, ranking etc. Choi, 2000; Choi et al., 2001; Hearst,
1994; Hearst & Plaunt, 1993; Utiyama & Isahara, 2001).
The identification of segment boundaries usually requires the minimization of a
segmentation cost function. An efficient way to perform this is by the use of techniques such
as dynamic programming. This is due to the fact that dynamic programming is based on the
intuition that a longer problem can be solved by properly combining the solution to various
sub-problems. For example, consider the sequence or “path” of transformed words that
comprise the minimum edit distance between the strings “intention” and “exention”.
Imagine one string (perhaps it is exention) that is in this optimal path (whatever it is). The
intuition of dynamic programming is that if exention is in the optimal operation list, then
the optimal sequence must also include the optional path from intention to exention. This is
because, if there were a shorter path from intention to exention then we could use it instead,
resulting in the shortest path and the optimal sequence wouldn’t be optimal, thus leading to
contradiction. Another benefit of dynamic programming is that at every point of execution
the optimal solution from the previously examined observations was calculated avoiding
thus backtracking (Berteskas, 1987). This approach has been used in the past (in Heinonen,
1998; Ponte & Croft, 1997; Xiang & Hongyuan, 2003) and also, implicitly, in (Utiyama &
Isahara, 2001). Other authors do not cast segmentation as a formal optimization problem;
rather they construct a similarity matrix which they segment using divisive clustering,
which can be considered as a form of approximate and local optimization (Choi, 2000; Choi
et al., 2001; Reynar, 1994; Reynar & Ratnaparkhi, 1997; Yaari, 1997; Yaari, 1999).
As we have already mentioned, we formulate segmentation as the minimization of a
segmentation cost which depends on within-segment homogeneity and deviation from
expected segment length. We measure within-segment homogeneity by word co-occurrence
by operating at the sentence level and consider two sentences to be similar if they have even
a single word in common. We use a “global” similarity comparison, i.e. we evaluate the
similarity between all parts of a text (for example between every pair of sentences that
appear in the text, even if they are not adjacent to each other). This approach is used by
several authors (Choi, 2000; Choi et al., 2001; Ponte & Croft, 1997; Reynar, 1994; Reynar &
Ratnaparkhi, 1997; Xiang & Hongyuan, 2003), but it should be noted that “local”
comparison (i.e. only between adjacent sentences) has also been used in the past (Hearst,
1994; Hearst & Plaunt, 1993; Heinonen, 1998). To penalize deviations from the expected
segment length we use a “length-model”; this approach has been used in the past by several
authors (Heinonen, 1998; Ponte & Croft, 1997). We find the globally minimal segmentation
cost by dynamic programming.
Current approaches to text segmentation include an improvement of the dotplotting
technique (Ye et al., 2005) introduced by Reynar (Reynar, 2004), an improvement of Latent
Semantic Analysis for text segmentation (Bestgen, 2006), a model of text segmentation based
on ideas from multilabel classification for segmenting sentences into tokens (McDonald et
al., 2005) as well as a novel parameter-free unsupervised text segmentation method, which
is formulated as (variational) Bayes estimation of an HMM from an input text stream
(Koshinaka et al., 2005). Teo Yung Kiat’ master thesis present an attempt to extend and
improve our method (Kiat, 2005). Advances to topic segmentation (closely related to text
segmentation) include methods performing topic segmentation method based on weighted
lexical chains (Sitbon & Bellot, 2005), as well as a new informative similarity measure based
on word co-occurrences (Dias & Alves, 2005).

 Tools in Artificial Intelligence

104

It is worth mentioning that text segmentation is widely used in other closely related
scientific areas such as speech segmentation i.e. to identify breaks and discourse boundaries
by expert and/or naive listeners (Auran et al., 2005), spoken multiparty dialogue and
tutorial dialogue segmentation (Olney & Cai, 2005; Hsueh et al., 2006). Text segmentation
techniques are also applied to entity extraction and noun-phrase chunking (Ursu et al., 2005)
as well as to semantic annotation of transcripts of television news broadcasts produced
through automatic speech recognition (ASR) (Dowman et al., 2005). Text segmentation
proves to be beneficial in a number of scientific areas such as corpus linguistics, discourse
psychology and even education. This is due to the fact that text segmentation is based on
topic change. Topic change or topic coherence is highly related to the vocabulary used by
each author, the subconscious mechanism of language variation, the part of speech of words
that he/she uses which may reveal positivity, sociability, complexity or negativity, self
concern emphasis and implicitness. In psychological perspective, text segmentation may
reveal if an author express its subject in question by following a coherence and progressive
apposition of his arguments or it interrupts his argumentation by making references to less
important or even non relevant subjects. Thus, text segmentation can be found useful in
studies concerning topic and authorship attribution where topic change can highly be
related to the vocabulary used by each author (Stamatatos et al., 2001). Finally, text
segmentation can easily be applied as a preliminary step to text summarization.

3. Method and algorithm
3.1 Text representation
A text consists of words which are organized in sentences. We assume that sentence
boundaries are correctly marked in the text. Hence we will assume from now on that the
basic text unit is the sentence and that segment boundaries occur only at the end of
sentences. Consider a text which contains T sentences and L distinct words (i.e. a vocabulary
of size L). We define a T x T similarity matrix D as follows (s, t = 1, 2,…, T)

⎭
⎬
⎫

⎩
⎨
⎧ ≠

=
otherwise

tsandwordcommonaleastathavetandssentencesif
,0

,1
ts,D (1)

It is worth mentioning that, by the term “words” we mean any word used by the author of
that segment but not its grammatical form. In our study we do not perform an in depth
linguistic process i.e. grammatical parsing and co-reference resolution in order to discover
the context under which each word appears or the sequence of appearance of words. Our
research is based on the hypothesis that each segment corresponds to a different topic. The
description of that topic tends to be performed by using a small number of characteristic
words that belong to a limited size vocabulary. On the other hand, highly informative
words tend to appear more that one times, thus, the importance of them is reinforced in the
similarity matrix. Finally, it is worth mentioning that, none of the algorithms dealing with
the same problem make use of grammatical items. An opposite approach would lead to a
misleading comparison of obtained results. Additionally, it is our belief that, it is the choice
of words that the authors use in order to express their topic than the grammatical property
of those that it acts as a discriminative factor in the topic i.e. segment change identification.
Lastly, we believe that in case where high informative combination of words i.e. n-grams
appear in the segment, the fact that the information that they contain is represented not as a

Segmentation of Greek Texts by Dynamic Programming

105

whole but with their consisting words as individuals does not lead to “loss” of the
information contained.
Hence, if 1=ts,D we assume that the s-th and t-th sentence are similar. Figure 1 provides

the dotplot (Choi, 2000; Choi et al., 2001; Reynar, 1994; Reynar & Ratnaparkhi, 1997) of a D
matrix corresponding to a 91-sentences text; black squares correspond to 1’s and white
squares to 0’s. Consecutive groups of sentences which have many words in common
appears as submatrices of D with many 1’s; in Figure 1 they appear as high density squares.
Candidate segments appear, for example, between sentences 11 and 18, 41 and 52 etc. Hence
the dotplot gives a visual representation of the structure of the text.

Figure 1: The similarity matrix D corresponding to a text containing 91 sentences, hence D is
a 91 x 91 matrix. A black dot at position (s, t) indicates that the s-th and t-th sentence have at
least one word in common

It is worth mentioning that, the total number of shared words is indirectly depicted in the
dotplot similarity matrix. Sentences that have an important number of shared words lead to
regions containing a lot of ‘1’s. Sentence length is not considered here, as it would require
the calculation of the total number of words belonging to each sentence, the number of
common and non common words between sentences as well as sentence length
normalization. Such approach is left for future research.

3.2 Segmentation cost
A segmentation is a partition of the set {1,2,…,T} into K subsets (i.e. segments) of the form
{1,2,.., 1t }, { 1+1t , 2+1t ,…, 2t }, ..., { 1+1-Kt , 2+1-Kt ,…,T}(where K is a variable
number and K ≤ T). A more economical description of the segmentation is given by a
(variable length) vector t = (0t , 1t ,…., Kt), where, 0t , 1t , …., Kt are the segment
boundaries which satisfy 0 = 0t ,< 1t < ….< 1−Kt < Kt = T.
We now introduce a “segmentation cost” function J(t): for every segmentation t, J(t) returns
a real number; J(t) will be designed in such a way that it achieves small values when t
designates high-density submatrices of D. We start with the function

 Tools in Artificial Intelligence

106

 ()
,

1 11 1

1

()

k k

s t
k k

t t

D
s t t t

r

k k

t
t t
− −= + = +

−

=
−

∑ ∑
J
0 (2)

which can be interpreted as follows. The numerator is the total number of 1’s contained into
the D submatrix which corresponds to the k-th segment { 1+1-kt , 2+1-kt ,…, kt }. When

the parameter r=2, the denominator ()r1-kt - kt corresponds to the area of the sub-matrix
and)(t0J is the “segment density”. In the case r≠2,)(t0J corresponds to a “generalized
density” which balances the degree of influence of the surface with regard to the
“information” (i.e. the number of 1’s) included in it. A “good” segmentation t is
characterized by large values of)(t0J , which indicate strong within-segment similarity.
In many cases some information will be available regarding the expected segment length;
for instance we may use training data to estimate its mean value μ and standard
deviationσ . We incorporate this information into a function:

 ()∑
=

−

•

−−
=

K

k

kk ttt
1

2

2
1

2
)(

σ
μ

1J (3)

A “good” segmentation t is characterized by small values of)(t1J , which indicate small
deviation from the expected segment length (1).
Finally, we form J by a weighted combination of 0J and 1J :

()

()
1 1

2 ,
1 11

2
1

1

() (1) () (1)
2

k k

k k

t t

Ds tK
s t t tk k

r
k

k k

t t
t t

t t
μ

μ σ γ γ γ γ γ
σ

− −= + = +−

=
−

⎡ ⎤− −
= • − − • = • − − •⎢ ⎥

• −⎢ ⎥⎣ ⎦

∑ ∑
∑J(t; , , r,) J J1 0 (4)

where we stress the dependence of J on the parameters, μ , σ , r and γ .

3.3 Minimization by dynamic programming
A “good” segmentation vector t yields a small value of the corresponding) r, , , J(t; γσμ (i.e.
segments with high density and small deviation from average segment length). The optimal

segmentation
^
t is the one which yields the global minimum of) r, , , J(t; γσμ ; note that

^
t

specifies not only the optimal positions of the segment boundaries 0t , 1t ,…., Kt but also the
optimal number of segments K; in other words, our algorithm automatically determines the
optimal K.

1 Many other functional forms can be used for)(t1J ; in Kehagias et al., 2004(a) and
Kehagias et al., 2004(b), we have explored some alternatives but we have found that the
form used here gives the best results.

Segmentation of Greek Texts by Dynamic Programming

107

Our) r, , , J(t; γσμ has an additive form which is well suited for the global minimization by
dynamic programming. The following algorithm implements the basic dynamic
programming idea (for a detailed justification the reader can consult (Bertsekas, 1987)).
Dynamic Programming for Text Segmentation
Input: The T x T similarity matrix D; the parameters μ ,σ , r, γ :
Initialization
For t = 1, 2,…,T
q = 0
 For s = 1,2, ..., t -1
 q = q+ ts,D

 rst
q

)(−
=+ t1,sS

 End
End
Minimization

0,0 == 0Z0C
For t = 1, 2,…,T

∞=tC
 For s = 0, 1, ..., t -1
 If

()
tCsC ≤•−−

•

−−
•+ + tsSst

,12

2
)1(

2
γ

σ
μγ

 Then
()

tsSst
,12

2
)1(

2
+•−−

•

−−
•+= γ

σ
μγsCtC

 s=tZ
 EndIf
 End
End
BackTracking
K = 0, T=Ks

While 0>
KsZ

 K = K + 1

1−
=

KsZKs

End

K = K + 1, 0=Ks , 0
^
=0t

For k = 1, 2,…,K

 kKS −=
^

kt

End

 Tools in Artificial Intelligence

108

Output: The optimal segmentation vector
^
t = (

^

0t ,
^

1t ,…,
^

Kt).
Upon completion of the minimization part of the algorithm we have computed the optimal
segmentation cost for sentences 1 until T, i.e. for the entire text. The backtracking part first
creates the sequence Ks1s0s ,..,, which are the optimal segment boundaries in reverse order

and then reverses this sequence to produce the optimal
^
t = (

^

0t ,
^

1t ,…,
^

Kt). Note that K, the
optimal number of segments is computed automatically.

4. Experiments - results
In this section we present the experiments we conducted to evaluate our algorithm. We
evaluate the algorithm using the following three indices: Precision, Recall and Beeferman’s

kP metric (Beeferman et al., 1999). Precision is defined as “the number of the estimated
segment boundaries which are actual segment boundaries” divided by “the number of the
estimated segment boundaries”. Recall is defined as “the number of the estimated segment
boundaries which are actual segment boundaries” divided by “the number of the true
segment boundaries”. It is worth mentioning that the F measure, which combines the results
of Precision and Recall, is not used here, due to the fact that both Precision and Recall
penalize equally segment boundaries that are “close” to the actual i.e. true boundaries with
those that are less close to the true boundary. For that reason, Beeferman proposed an new
metric kP which measures segmentation inaccuracy; intuitively, kP measures the
proportion of “sentences which are wrongly predicted to belong to different segments
(while actually they belong to the same segment)” or “sentences which are wrongly
predicted to belong to the same segment (while actually they belong in different segments)”
(for a precise definition of kP see (Beeferman et al., 1999).
The variation of the kP measure named WindowDiff index which was proposed by Pevzner
and Hearst (Pevzer & Hearst, 2002) and remedies several problems of the kP measure is not
used in this paper due to the number of experiments conducted and the fact that already
published results used for comparison are only reported in terms of kP .
While several papers regarding the segmentation of English texts have appeared in the
literature, we are not aware of any similar work regarding Greek texts. Furthermore,
because Greek is a highly inflected language (much more than English) the segmentation
problem is harder for Greek, as will be explained in the following. Hence some
enhancements to the basic segmentation algorithm are required.
In the sequel we present experiments which use a Greek text collection compiled from
Stamatatos’corpus 2(Stamatatos et al., 2001) comprising of text downloaded from the
website http://tovima.dolnet.gr of the newspaper entitled ‘To Vima’. This newspaper
contains articles belonging to one of the following categories: 1) Editorial, diaries, reportage,
politics, international affairs, sport reviews 2) cultural supplement 3) Review magazine 4)
Business, finance 5) Personal Finance 6) Issue of the week 7) Book review supplement 8) Art
review supplement 9) Travel supplement. Stamatatos et al. (Stamatatos et al., 2001)

2 The authors would like to thank professor E. Stamatatos for providing us the corpus of
Greek articles.

Segmentation of Greek Texts by Dynamic Programming

109

constructed a corpus collecting texts from supplement no. 2) which includes essays on
science, culture, history etc. Stamatatos et al. selected 10 authors and used 30 texts per
author. They didn’t perform any manual text preprocessing or text sampling; however, they
removed all the unnecessary heading irrelevant to the text itself. In order to minimize the
potential change of the personal style of an author over time, they chose to download texts
taken from the issues published from 1997 till early 1999. The thematic areas of each author
are shown in Table 1.
Due to the nature of the newspaper supplement, texts included in, undergo some low-level
post editing -as opposed to editorial or reportage articles, which are subject to a stricter
editing- so that they conform to the overall style of the newspaper. Therefore, the style of the
specific authors is more personal and independent of outer influences. An example of those
documents is listed in Appendix B.

Author Thematic Area
Alachiotis Biology
Babiniotis Linguistics
Dertilis History, Society
Kiosse Archeology
Liakos History, Society
Maronitis Culture, Society
Ploritis Culture, History
Tassios Technology, Society
Tsukalas International Affairs
Vokos Philosophy

Table 1. List of Authors and their Thematic Areas in the Stamatatos’s collection of Greek texts.

We created several texts, each consisting of segments by various authors. Each author is
characterized by her/his vocabulary hence our goal is to segment the text into the parts
written by the various authors. Before creating the actual texts, some preprocessing
(performed in a totally automatic manner) of the Stamatatos collection was necessary.
Because Greek is a heavily inflected language, a word may appear in many different forms.
Then, if one considers each inflected form as a separate element of the vocabulary, the result
is a larger vocabulary, which considerably complicates the segmentation problem. To
address this issue, we must identify various inflected forms as belonging to the same word;
but for Greek this cannot be done using a simple approach such as stemming. Instead, we
used the POS tagger developed by Orphanos et al. (see Orphanos & Christodoulakis, 1999;
Orphanos & Tsalidis,1999) and the Appendix A, 3) to substitute each word by a “canonical”,
lemmatized form. More specifically, at the first stage, punctuation marks and numbers were
removed as well as all words that aren’t either nouns, verbs, adjectives or adverbs (the stop
list used here is very similar to the one used for English texts). After that, every remaining
word in the text was substituted by its lemma, determined by the tagger. In case the tagger
could not find the lemma of a particular word (usually this happened because the word was

3 The authors would like to thank professor G. Orphanos for kindly letting us use the POS
Tagger.

 Tools in Artificial Intelligence

110

not contained in the tagger Lexicon) no substitution was made and the word was kept in the
form appearing in the text. We also kept the information regarding sentence ends.
We present two groups of experiments, which differ in the length of segments created and
the number of authors used for the creation of the texts to segment.

4.1 Experiment group 1
The collection of texts used for the first group of experiments consists of 6 datasets: Set0,...,
Set5. Each of those datasets differ in the number of authors used for the generation of the
texts to segment and consequently in the number of texts used from the entire collection, as
listed in Table 2.
For each of the above datasets, we constructed four subsets, which differ in the number of
the sentences appearing in each segment. Let minL and maxL be the smallest and largest
number of sentences which a segment may contain. We have used four different
(minL , maxL) pairs: (3,11), (3,5), (6,8) and (9,11). Hence Set0 contains 4 subsets: Set01,
Set02, Set03 and similarly for Set1, Set2, ..., Set5. The datasets Set*1 are the ones with
(minL , maxL) = (3,11), the datasets Set*2 are the ones with (minL , maxL) =(3,5), and so
on. Let also { }nX1X ,..., be the authors contributing to the generation of the dataset. We
generated the texts in the dataset by the following procedure.
Each text is the concatenation of ten segments. For each segment we do the following.
1. We select randomly an author from { }nX1X ,..., . Let I be the selected author.
2. We select randomly a text among the 30 available that belong to the I author. Let k be

the selected text of author I.
3. We select randomly a number l ∈ (minL , maxL).
4. We extract l consecutive lines from text k (starting at the first sentence of the text).

Those sentences constitute the generated segment.
Once we have created a dataset, we split it into a training set and a test set, we use the
training data to compute μ, σ and optimal γ and r values (by the validation procedure
explained in the sequel) and finally run our algorithm on the test data.

Dataset Authors No. of docs per set
Set0 Kiosse, Alachiotis 60
Set1 Kiosse, Maronitis 60
Set2 Kiosse, Alachiotis, Maronitis 90
Set3 Kiosse, Alachiotis, Maronitis, Ploritis 120
Set4 Kiosse, Alachiotis, Maronitis, Ploritis, Vokos 150
Dataset All Authors 300

Table 2. List of the sets complied in the 1st group of experiments using Greek texts and the
author’s texts used for each of those.
Recall that the segmentation algorithm uses four parameters: μ ,σ , r and γ . As already
mentioned μ andσ can be interpreted as the average and standard deviation of segment
length; it is not immediately obvious how to choose values for r and γ . We use training data
and a parameter validation procedure to determine appropriate μ ,σ , r and γ values; then
we evaluate the algorithm on (previously unseen) test data. More specifically:

Segmentation of Greek Texts by Dynamic Programming

111

1. We choose randomly half of the texts in the dataset to be used as training texts; the rest
of the samples are set aside to be used as test texts.

2. We determine appropriate μ andσ values using all the training texts and the standard
statistical estimators.

3. We determine appropriate r and γ values by running (on the training texts) the
segmentation algorithm with 80 possible combinations of r and γ values; namely we let
γ take the 20 values 0.00, 0.01, 0.02, ... , 0.09, 0.1, 0.2, 0.3, ... , 1.0 and let r take the values
0.33, 0.5, 0.66, 1. The optimal (γ , r) combination is the one which yields the minimum

kP value.
4. We apply the algorithm to the test texts using previously estimated μ ,σ , r

and γ values.
The aforementioned procedure is repeated five times for all sets; the resulting values of
Precision, Recall and kP are averaged. This is performed in order to avoid any problems
that can arise from the fact that the various sets of corpus are composed of many segments
repeatedly drawn from a small number of different texts. Moreover the fact that texts
consisting the training and testing set are randomly selected and the aforementioned
procedure is repeated five times, minimizes the probability that a (probably) significant part
of the training and testing set is in fact in common. Even this was the case the remaining not
common texts would act as “negative” examples i.e. as far as the calculation of the mean and
standard deviation is concerned.
In Table 3 we give the values of Precision, Recall and kP obtained by our algorithm. We also
run Choi’s and Utiyama’s algorithms on the same task; the results are given in Tables 4 and 5.
In Tables 6, 7 and 8 we give the same results averaged over all datasets which have
segments of same length. It can be seen that in all cases our algorithm performs significantly
better than both Choi’s and Utiyama’s algorithms. Let us note that the best performance has
been achieved for γ in the range [0.08, 0.4] and for r equal to either 0.5 or 0.66.

4.2 Experiment group 2
The second group of experiments also uses Stamatatos’s collection; however, the texts are
generated using a somewhat different procedure. We constructed a single dataset which
contains 200 texts, with every author represented (in other words, the author set is always
{ }10X2X1X ,...,,). Each text is the concatenation of ten segments. For each segment we do the
following:
1. We select randomly an author from { }10X2X1X ,...,, . Let I be the selected author.
2. We select randomly a text among the 30 available that belong to the I author. Let k be

the selected text of author I. The selected text is read and scanned in order to determine
the number of paragraphs it contains. Let Z be the number of paragraphs that k-th text
contains.

3. We select randomly a number p { }Z1,...,∈ corresponding to the number of paragraphs
that the generated segment will contain.

4. We select randomly a number m { }p-Z1,...,∈ corresponding to the “starting
paragraph”. Thus the segment contains all the paragraphs of text k starting from
paragraph m and ending at the paragraph m + p.

 Tools in Artificial Intelligence

112

The procedure described above gives texts which are longer than the ones used in
Experiment Group 1. Hence the segmentation task in the current group of experiments
segmentation of such texts is more difficult than the previous one. Table 9 lists the results
we obtained using our algorithm and the ones by Choi and Utiyama. It can be seen again
that our algorithm performs better than both Choi’s and Utiyama’s algorithms.

Dataset Precision Recall kP Dataset Precision Recall kP

Set01(3-11) 70.65% 71.11% 14.04% Set31 (3-11) 59.99% 58.67% 17.93%
Set02 (3-5) 86.82% 87.11% 6.20% Set32 (3-5) 84.44% 83.56% 7.36%
Set03 (6-8) 96.44% 96.44% 0.82% Set33 (6-8) 86.22% 86.22% 3.28%
Set04(9-11) 93.33% 93.33% 0.84% Set34 (9-11) 91.11% 91.11% 1.45%
Set11(3-11) 63.86% 67.11% 15.82% Set41 (3-11) 57.99% 51.11% 17.38%
Set12 (3-5) 82.98% 83.56% 8.47% Set42 (3-5) 85.00% 84.89% 6.76%
Set13 (6-8) 91.11% 91.11% 2.81% Set43 (6-8) 88.89% 88.89% 2.65%
Set14(9-11) 94.67% 94.67% 0.98% Set44 (9-11) 91.11% 91.11% 1.39%
Set21(3-11) 71.14% 60.89% 14.42% Set51 (3-11) 65.74% 61.78% 14.54%
Set22 (3-5) 90.00% 89.78% 3.45% Set52 (3-5) 81.56% 81.78% 6.49%
Set23 (6-8) 91.11% 91.11% 2.15% Set53 (6-8) 89.33% 89.33% 3.57%
Set24(9-11) 92.44 92.44 1.25% Set54 (9-11) 88.89% 88.89% 1.86%

Table 3. The precision, recall and kP values obtained by our algorithm for the 1st group of
experiments using Greek texts.

Dataset Precision Recall kP Dataset Precision Recall kP

Set01 (3-11) 65.75% 65.75% 17.06% Set31 (3-11) 57.75% 57.75% 20.38%
Set02 (3-5) 74.50% 74.50% 16.68% Set32 (3-5) 70.75% 70.75% 17.40%
Set03 (6-8) 76.50% 76.50% 11.72% Set33 (6-8) 62.00% 62.00% 17.12%
Set04 (9-11) 64.75% 64.75% 15.08% Set34 (9-11) 62.00% 62.00% 16.10%
Set11 (3-11) 67.50% 67.50% 16.91% Set41 (3-11) 57.50% 57.50% 17.38%
Set12 (3-5) 67.75% 67.75% 19.23% Set42 (3-5) 73.25% 73.25% 15.76%
Set13 (6-8) 72.50% 72.50% 14.74% Set43 (6-8) 62.50% 62.50% 17.41%
Set14 (9-11) 68.25% 68.25% 14.00% Set44 (9-11) 63.75% 63.75% 13.70%
Set21 (3-11) 61.00% 61.00% 19.93% Set51 (3-11) 60.36% 60.50% 17.63%
Set22 (3-5) 73.50% 73.50% 16.15% Set52 (3-5) 70.50% 70.50% 16.39%
Set23 (6-8) 69.00% 69.00% 15.40% Set53 (6-8) 67.25% 67.25% 15.85%
Set24 (9-11) 71.75% 71.75% 12.26% Set54 (9-11) 70.00% 70.00% 12.43%

Table 4. The precision, recall and kP values obtained by Choi’s algorithm for the 1st group
of experiments using Greek texts.

Segmentation of Greek Texts by Dynamic Programming

113

Dataset Precision Recall kP Dataset Precision Recall kP

Set01 (3-11) 69.94% 65.55% 15.33% Set31 (3-11) 61.25% 58.44% 17.64%
Set02 (3-5) 74.16% 59.11% 19.99% Set32 (3-5) 66.45% 52.88% 20.98%
Set03 (6-8) 80.60% 76.88% 8.94% Set33 (6-8) 71.88% 70.66% 11.80%
Set04 (9-11) 76.18% 74.45% 8.84% Set34 (9-11) 67.60% 71.78% 8.75%
Set11 (3-11) 71.41% 68.44% 14.99% Set41(3-11) 57.77% 56.44% 20.61%
Set12 (3-5) 74.75% 59.11% 18.70% Set42 (3-5) 71.25% 56.22% 20.07%
Set13 (6-8) 84.77% 83.33% 7.08% Set43 (6-8) 67.96% 66.44% 12.64%
Set14 (9-11) 81.71% 79.11% 9.10% Set44 (9-11) 70.23% 72.88% 8.50%
Set21 (3-11) 63.59% 61.11% 18.26% Set51 (3-11) 60.00% 56.61% 17.41%
Set22 (3-5) 70.57% 53.33% 21.51% Set52 (3-5) 62.83% 47.55% 23.51%
Set23 (6-8) 77.73% 74.00% 10.75% Set53 (6-8) 69.56% 66.89% 13.84%
Set24 (9-11) 74.53% 77.33% 7.80% Set54 (9-11) 68.55% 70.22% 9.99%

Table 5. The precision, recall and Pk values obtained by Utiyama and Isahara’s algorithm for
the 1st group of experiments using Greek texts.

Dataset Precision Recall kP
Set*1 (3-11) 64.90% 61.77% 15.69%

Set*2 (3-5) 85.13% 85.11% 6.45%
Set*3 (6-8) 90.51% 90.51% 2.54%
Set*4 (9-11) 91.92% 91.92% 1.29%

Table 6. The precision, recall and Pk values obtained by our algorithm for the 1st group of
experiments using Greek texts, averaged over datasets with same-length segments.

Dataset Precision Recall kP
Set*1 (3-11) 61.64% 61.66% 18.43%

Set*2(3-5) 71.70% 71.70% 16.93%
Set*3 (6-8) 68.29% 68.29% 15.37%
Set*4 (9-11) 66.75% 66.75% 13.93%

Table 7. The precision, recall and Pk values obtained by Choi’s algorithm for the 1st group of
experiments using Greek texts, averaged over datasets with same-length segments

Dataset Precision Recall kP
Set*1 (3-11) 64.00% 61.10% 17.37%

Set*2 (3-5) 70.00% 54.70% 20.79%
Set*3 (6-8) 75.42% 73.03% 10.84%
Set*4 (9-11) 73.13% 74.29% 8.83%

Table 8. The precision, recall and Pk values obtained by Utiyama and Isahara’s algorithm for
the 1st group of experiments using Greek texts, averaged over datasets with same-length
segments.

 Tools in Artificial Intelligence

114

Algorithm Precision Recall kP
Ours 60.60% 57.00% 11.07%

Choi 44.62% 44.62% 19.44%
Utiyama 56.76% 67.22% 12.28%

Table 9. The precision, recall and Pk values for the 2nd group of experiments using Greek
texts.

It is worth mentioning that, the experiments were conducted in a Pentium III 600 MHz with
256 Mbyte RAM memory. The training time of each group was calculated and proved that it
is less than two minutes. The average time of calculation for the segmentation of a text by
our algorithm was 0.91 seconds.

5. Conclusion
We have presented a text segmentation algorithm following a supervised approach which
we applied to the segmentation of Greek texts. On greek text collection our algorithm
outperforms Choi’s and Utiyama’s algorithms. This is largely important particularly in the
case of texts exhibiting strong variation as far as the average length is concerned. Let us
conclude this paper by discussing the reasons for this performance.
Our algorithm is characterized by (a) the use of dotplot similarity, (b) the form of our
similarity function, (c) the use of a length model, (d) the use of dynamic programming, (e)
the use of training data. We discuss each of these items in turn.
1. Dotplot similarity. We use a very simple similarity criterion but it is based on the

dotplot and hence it captures global similarities, i.e. similarities between every pair of
sentences in the document. Dotplots have also been used by Choi (Choi, 2000; Choi et
al., 2001), Reynar (Reynar, 1994; Reynar & Ratnaparkhi, 1997) and Xiang and Hongyuan
(Xiang & Hongyuan. 2003). On the other hand, Hearst (Hearst, 1994; Hearst & Plaunt,
1993), and Heinonen (Heinonen, 1998) use a cost function which depends only on the
similarity of adjacent sentences, hence it is local. Utiyama and Isahara (Utiyama &
Isahara, 2001) take an intermediate position: they use a cost function which depends on
within-segment statistics, hence it is “somewhat” global, i.e. it considers similarities of
all sentences within each segment. Ponte and Croft (Ponte and Croft, 1997) also use an
intermediate approach, computing the similarities of all sentences which are at most n
sentences apart.

2. Generalized density. We use a very simple similarity function based on a single very
simple feature (i.e. we consider sentences similar when they share even a single word).
However there is a special characteristic in our function, which we believe to be crucial
to the success of our algorithm. Namely, we use the “generalized density” (i.e. r ≠ 2)
and this greatly improves the performance of our algorithm. Other authors have only
used dotplot densities with r = 2 only (Choi, 2000; Choi et al., 2001; Utiyama & Isahara,
2001; Xiang & Hongyuan, 2003).

3. Length model. A term for the expected length of segments has been used by Ponte and
Croft (Ponte and Croft, 1997) and Heinonen (Heinonen, 1998). Utiyama and Isahara
(Utiyama & Isahara, 2001) mention the possibility but do not seem to actually use such
a model. However, Choi (Choi, 2000; Choi et al., 2001), Reynar (Reynar, 1994; Reynar &

Segmentation of Greek Texts by Dynamic Programming

115

Ratnaparkhi, 1997) and several other authors do not use a length model. We have
noticed that the use of the length model greatly enhances the performance of our
algorithm.

4. Dynamic programming effects global optimization of the cost function and hence is a
very critical factor in the success of our algorithm. As far as we know, the only other
authors who have used dynamic programming are Ponte and Croft (Ponte and Croft,
1997), Heinonen (Heinonen, 1998), Xiang (Xiang & Hongyuan, 2003) and, implicitly,
Utiyama and Isahara (Utiyama & Isahara, 2001) (their shortest path algorithm is
actually a dynamic programming algorithm). On the other hand Choi (Choi, 2000; Choi
et al., 2001) and Reynar (Reynar, 1994; Reynar & Ratnaparkhi, 1997) use divisive
clustering which, strictly speaking, does not solve an optimization problem; in fact
clustering performs a greedy, local optimization. Note also the heuristic approach to
segmentation, first used by Hearst (Hearst, 1994; Hearst & Plaunt, 1993) and then by
several other authors.

5. Training data. It should not be overlooked that our algorithm depends crucially on the
availability of training data, for the estimation of the parameters μ ,σ , r and γ .
Training data are also used by Choi (Choi, 2000; Choi et al., 2001) for a tuning step of
his clustering algorithm; Utiyama and Isahara’s algorithm does not depend on training
data. However, we should note that in many practical segmentation problems training
data will be available (see also (Beeferman et al., 1999)).

6. Finally, for the segmentation of Greek texts we should not overlook the importance of
the POS tagger; if the Greek words were not lemmatized, the vocabulary of the text
collection would increase by an order of magnitude, making the segmentation problem
much harder.

In short, we believe that our algorithm outperforms Choi’s and Utiyama’s algorithms
because it performs global optimization of a global cost function. This should be compared
to the local optimization of global information (used by Choi) and the global optimization of
local information (used by Utiyama and Isahara).
In future work, we plan to apply our dynamic programming method to other similarity
metrics such as the one proposed by Hearst (WindowDiff) in order to assess the difference
in segmentation accuracy.
An interesting point would be to test our algorithm in text of continuous stream i.e. longer
texts than the one used for the second experiment for the greek texts. Another interesting
point to examine is to enhance the vector space model used in order to calculate the
similarity between sentences with the ranking (3x3 grid which is roughly equal to the one
common word measure) measure in order to avoid any stability issues that may rise by the
similarity metric used by our algorithm.
In order to combine our algorithm with psychological issues such as the words used by
different authors, we plan to examine some of the at least well known 1000 textual attributes
relevant to authorship. The selection of those variables is based on their ability to reveal
subconscious mechanisms of language variation which are unique to each author and have
an impact on the discrimination of the author among every possible author, thus in our case,
topic i.e. segment change. As it was proposed by Bestgen (Bestgen, 2006) our algorithm can
benefit from the addition of semantic knowledge for capturing semantic relations between
words appearing in sentences, which will be a future step.

 Tools in Artificial Intelligence

116

6. References
Auran, C. ; Colas, A. ; Portes, C. & Vion, M. (2005). Perception of breaks and discourse

boundaries in spontaneous speech: developing an on-line technique. IDP05 -
Discours et Prosodie comme Interface Complexe.

Beeferman, D.; Berger, A. & Lafferty, J. (1999). Statistical models for text segmentation.
Machine Learning, vol. 34, pp. 177-210.

Beeferman, D.; Berger, A. & Lafferty, J. (1997). Text segmentation using exponential models.
In Proceedings of the 2nd Conference on Empirical Methods in Natural Language
Processing, pp. 35-46.

Bertsekas, D. (1987). Dynamic Programming: Deterministic and Stochastic Models. Prentice
Hall.

Bestgen, Y. (2006). Improving Text Segmentation Using Latent Semantic Analysis: A
Reanalysis of Choi, Wiemer-Hastings Deterministic and Moore (2001).
Computational Linguistics, vol. 1, pp. 5-12.

Choi, F.Y.Y. (2000). Advances in domain independent linear text segmentation. In
Proceedings of the 1st Meeting of the North American Chapter of the Association for
Computational Linguistics, pp. 26-33.

Choi, F.Y.Y.; Wiemer-Hastings, P. & Moore, J. (2001). Latent semantic analysis for text
segmentation. In Proceedings of the 6th Conference on Empirical Methods in Natural
Language Processing, pp. 109-117.

Dias, G. & Alves, E. (2005). Unsupervised Topic Segmentation Based on Word Cooccurrence
and Multi-Word Units for Text Summarization. ELECTRA Workshop Methodologies
and Evaluation of Lexical Cohesion Techniques in Real-world Applications Beyond Bag of
Words (in association with SIGIR-2005), pp. 41-48.

Dowman, M.; Tablan, V.; Cunningham, H.; Ursu, C. & Popov, B. (2005). Semantically
Enhanced Television News through Web and Video Integration. In Proceedings of
the ESWC05 Workshop on Multimedia and the Semantic Web.

Halliday, M. & Hasan, R. (1976). Cohesion in English. Longman.
Hearst, M. A. (1994). Multi-paragraph segmentation of expository texts. In Proceedings of the

32nd Annual Meeting of the Association for Computational Linguistic, pp. 9-16.
Hearst, M. A. & Plaunt, C. (1993). Subtopic structuring for full-length document access. In

Proceedings of the 16th Annual International Conference on Research and Development in
information Retrieval of the Association of Computer Machinery - Special Interest Group
on Information Retrieval (ACM-SIGIR), pp. 59-68.

Heinonen, O. (1998). Optimal Multi-Paragraph Text Segmentation by Dynamic
Programming. In Proceedings of 17th International Conference on Computational
Linguistics (COLING-ACL’98), pp. 1484-1486.

Hirschberg, J. & Litman, D. (1993). Empirical studies on the disambiguation and cue
phrases. Computational Linguistics, vol.19, pp. 501-530.

Hsueh, P-Y.; Moore, J.D. & Renals, S. (2006). Automatic Segmentation of Multiparty
Dialogue. In Proceedings of the 11th Conference of the European Chapter of the
Association for Computational Linguistics (EACL) 2006, pp. 273-280.

Kehagias, Ath.; Nicolaou A. ; Fragkou P. & Petridis V. (2004)(a). Text Segmentation by
Product Partition Models and Dynamic Programming. Mathematical and Computer
Modeling, vol. 39, pp. 209-217.

Segmentation of Greek Texts by Dynamic Programming

117

Kehagias, Ath.; Fragkou P. & Petridis V. (2004)(b). A Dynamic Programming Algorithm for
Linear Text Segmentation. Journal of Int. Information Systems, vol. 23, pp. 179-197.

Kiat T.Y. (2005). Linear and Hierarchical Text Segmentation Using Product Partition Models.
Master Thesis, Department of Computer Science, School of Computing, National
University of Singapore 2004/2005.

Koshinaka, T.; Iso, K.-I. & Okumura, A. (2005). An HMM-based text segmentation method
using variational Bayes approach and its application to LVCSR for broadcast news.
IEEE International Conference on Acoustics, Speech, and Signal Processing, vol.1, pp.
485- 488.

Kozima, H. (1993). Text Segmentation based on similarity between words. In Proceedings of
the 31st Annual Meeting of the Association for Computational Linguistics, pp. 286-288.

Kozima, H & Furugori, T. (1993). Similarity between words computed by spreading
activation on an English dictionary. In Proceedings of 6th Conference of the European
Chapter of the Association or Computational Linguistics, pp. 232-239.

McDonald, R.; Crammer, K. & Pereira, F. (2005). Flexible Text Segmentation with Structured
Multilabel Classification. In Proceedings of Human Language Technology Conference
and Conference on Empirical Methods in Natural Language Processing (HLT/EMNLP),
Association for Computational Linguistics, pp. 987–994.

Morris, J. & Hirst, G. (1991). Lexical cohesion computed by thesaural relations as an
indicator of the structure of text. Computational Linguistics, vol. 17, pp. 21-42.

Olney, A. & Cai, Z. (2005). An Orthonormal Basis for Topic Segmentation in Tutorial
Dialogue. In Proceedings of Human Language Technology Conference and Conference on
Empirical Methods in Natural Language Processing, 2005, AAAI Press, pp. 971-978.

Orphanos, G. & Christodoulakis, D. (1999). Part-of-speech disambiguation and unknown
word guessing with decision trees. In Proceedings of EACL’99.

Orphanos, G. & Tsalidis, C. (1999). Combining handcrafted and corpus-acquired lexical
knowledge into a morphosyntactic tagger. In Proceedings of the 2nd Research
Colloquium for Computational Linguistics in United Kingdom (CLUK).

Passoneau, R. & Litman, D.J. (1993). Intention - based segmentation: Human reliability and
correlation ith linguistic cues. In Proceedings of the 31st Meeting of the Association for
Computational Linguistics, pp. 148-155.

Pevzner, L. & Hearst, M. (2002). A critique and improvement of an evaluation metric for text
segmentation. Computational Linguistics, vol.28(1), pp. 19–36.

Ponte, J. M. & Croft, W. B. (1997). Text segmentation by topic. In Proceedings of the 1st
European Conference on Research and Advanced Technology for Digital Libraries, pp. 120
- 129.

Raskin, V., & Weiser, J. (1987). Language and Writiing: Applications of linguistics to rhetoric
and composition. Norwood, New Jersey: ABLEX: Publishing Corporation.

Reynar, J.C. (1994). An automatic method of finding topic boundaries. In Proceedings of the
32nd Annual Meeting of the Association for Computational Linguistics, pp. 331-333.

Reynar, J.C. & Ratnaparkhi, A. (1997). A maximum entropy approach to identifying
sentence boundaries. In Proceedings of the 5th Conference on Applied Natural Language
Processing, pp. 16-19.

Roget, P.M. (1977). Roget’s International Thesaurus. Harper and Row, 4th edition.
Sitbon, L. & Bellot, P. (2005). Segmentation thématique par chaînes lexicales pondérées.

Actes de TALN 2005, Dourdan, France.

 Tools in Artificial Intelligence

118

Stamatatos, E.; Fakotakis, N. & Kokkinakis, G. (2001). Computer-based authorship
attribution without lexical measures. Computer and the Humanities, Kluwer
Academic Publishers, vol. 35, pp. 193 - 214.

Utiyama, M., & Isahara, H. (2001). A statistical model for domain - independent text
segmentation. In Proceedings of the 9th Conference of the European Chapter of the
Association for Computational Linguistics, pp. 491-498.

Ursu, C.; Tablan, V. & Cunningham, H. (2005). Semantic Analysis for tomorrow’s audio-
visual digital archives. In Proceedings of 2nd European Workshop on the Integration of
Knowledge, Semantic and Digital Media Technologies (EWIMT-2005).

Xiang J. & Hongyuan Z. (2003). Domain-independent Text Segmentation Using Anisotropic
Diffusion and Dynamic Programming. In Proceedings of the 26th ACM SIGIR
Conference. on Research and Development in Information Retrieval.

Yaari, Y. (1997). Segmentation of expository texts by hierarchical agglomerative clustering.
In Proceedings of the Conference on Recent Advances in Natural Language Processing, pp.
59-65.

Yaari, Y. (1999). Intelligent exploration of expository texts. Ph.D. thesis. Dept. of Computer
Science, Bar-Ilan University.

Ye, N.; Zhu, J.; Luo, H.; Wang, H. & Zhang, B. (2005). Improvement of the dotplotting
method for linear text segmentation. Natural Language Processing and Knowledge
Engineering, pp. 636- 641.

Appendix A: The Morphosyntactic Tagger
The Greek texts were preprocessed using the morphosyntactic tagger (better known as Part-
Of-Speech tagger) developed by Ophanos et al. (Orphanos & Christodoulakis, 1999;
Orphanos & Tsalidis, 1999). This is a Part-Of-Speech (POS) tagger for modern Greek (a high
inflectional language) and is based on a Lexicon capable of assigning full morphosyntactic
attributes (i.e. Part-Of-Speech, Number, Gender, Tense, Voice, Mood and Lemma) to 876.000
Greek word forms. Orphanos et al. created a tagged corpus capable of exhibiting the
capability of the POS tagger to identify and resolve all POS ambiguity schemes present in
Modern Greek (e.g. Pronoun-Clitic-Article, Pronoun-Clitic, Adjective-Adverb, Verb-Noun,
etc) as well as the characteristics of unknown words by using the Lexicon. They used this
corpus in order to induce decision trees, which along with the Lexicon are integrated into a
robust POS tagger for Modern Greek texts. The tagger has three parts: the Tokenizer, the
Lexicon and finally the Disambiguator and Guesser. The Tokenizer takes as input raw text
and converts it into a stream of tokens. The Tokenizer resolves non-word tokens (e.g.
punctuation marks, numbers, dates etc.) and provides them a tag corresponding to their
category. As for the word tokens, they are looked up in the Lexicon and those found receive
one or more tags. The Disambiguator/Guesser takes as input words that received more than
one tags and words that were not found in the Lexicon and decides their contextually
appropriate tag. The Disambiguator/Guesser is a ‘forest’ of decision trees, one tree for each
ambiguity scheme present in Modern Greek and one tree for unknown guessing. The
ambiguity scheme of words that received by the Lexicon more than one tag is identified and
the corresponding decision tree is selected. This tree is traversed according to the values of
the morphosyntactic features extracted from contextual tags. The result of this traversal is

Segmentation of Greek Texts by Dynamic Programming

119

the contextually appropriate POS tag along with its corresponding lemma. In order to
resolve the ambiguity, tag(s) with different POS than the one returned by the decision tree,
is (are) eliminated. In order to determine the POS of an unknown word, the decision tree for
unknown words is traversed and examines contextual features along with the word ending
and capitalization. As a result the open class POS and the corresponding lemma of the
unknown word are returned.

Appendix B

<CC>
Γ. ∆ΕΡΤΙΛΗΣ ΤΟ ΒΗΜΑ, 23-03-1997 Κωδικός άρθρου: B12421B062 </CC>
<TITLE>
Σαφήνεια και αµφιβολία
</TITLE>
<TEXT>
Προϋπόθεση του καλού ύφους, η σαφήνεια είναι αναγκαία τόσο στη λογοτεχνία όσο και
στην επιστηµονική γραφή. Αλλά πρόκειται για δύο διαφορετικές σαφήνειες. Η µία είναι
ποιητική, η άλλη εξηγηµατική.
Με τη σαφήνεια του ύφους του, ο λογοτέχνης «ποιεί» την πολυσηµία. Ετσι ανοίγει
µπροστά στον αναγνώστη ένα ριπίδιο αναγνώσεων: τον ευκολύνει να διαβάσει και να
ερµηνεύσει το πολύσηµο κείµενο µε πολλαπλούς τρόπους.
Αλλά ο συγγραφέας ενός επιστηµονικού έργου (αυτός που κυρίως θα µας απασχολήσει
σήµερα) εξαφανίζει µε τη σαφήνεια του ύφους του όλες τις αµφισηµίες και πολυσηµίες
του κειµένου. Αποκλείει έτσι τις αµφιβολίες του αναγνώστη για τα όσα ο συγγραφέας
ισχυρίζεται και διευκολύνει τον ανα-γνωστικό, επιστηµονικό έλεγχο. Η πολυσηµία που
προσπαθεί να εκφράσει ο λογοτέχνης µοιάζει, εξάλλου, αλλά δεν ταυτίζεται µε την
αµφιβολία που κάποτε εκφράζει στο κείµενό του ένας επιστήµονας. Την εκφράζει επειδή
συναισθάνεται τα όρια του εαυτού του, του συγκεκριµένου έργου του, των προσωπικών
του θεωριών, ακόµη και της επιστήµης του. Αλλά παραµένει η ανάγκη να είναι σαφείς
οι θεωρίες του, σαφές και το κείµενό του. Ετσι, ο συγγραφέας από τη µια καταγράφει
την αµφιβολία, από την άλλη όµως υποστηρίζει µε σαφήνεια τη συλλογιστική του, τις
απόψεις και τις ερµηνείες του: επειδή ο επιστηµονικός λόγος, εξ ορισµού, δεν επιδέχεται
αντιφάσεις.
Οπως είναι φυσικό, ο κανόνας της σαφήνειας δεν έχει ενιαία εφαρµογή. Υπάρχουν οι
διαφοροποιήσεις που εξαρτώνται από την προσωπικότητα και τις ικανότητες του κάθε
συγγραφέα. Ενας επιστήµονας µε καλό συγγραφικό ταλέντο µπορεί ίσως να βρει
ελευθεριότερους τρόπους παρουσίασης των ιδεών του, να επεκταθεί σε υπαινιγµούς, σε
αµφισηµίες και σε αποσιωπήσεις που έχουν τη δική τους λειτουργία και αισθητική.
Αλλά αυτό δεν αναιρεί την επιστηµονική του υποχρέωση να δείξει µε σαφήνεια, σε άλλα
σηµεία του κειµένου, τις απόψεις και τις ερµηνείες του.
Υπάρχουν έπειτα διαφοροποιήσεις ανάλογες µε τα γνωστικά αντικείµενα και τα είδη
του γραπτού επιστηµονικού λόγου. Η Ιστορία, π.χ., αφήνει περισσότερες υφολογικές
δυνατότητες στον συγγραφέα από οποιαδήποτε άλλη επιστήµη. Του επιτρέπει, κάποτε
του επιβάλλει κιόλας, να αναδείξει τις εσωτερικές αντιφάσεις του ανθρώπου και των
ανθρωπίνων κοινωνιών· τον ρόλο των ανθρωπίνων παθών· τη σηµασία των
συµπτώσεων και της τύχης· το βάρος των µαζικών κοινωνικών δυνάµεων· τους

 Tools in Artificial Intelligence

120

αναπόδραστους φραγµούς της φύσης.
Ωστόσο, ο ιστορικός δεν δείχνει τις αντιφάσεις ουσίας µε αντιφάσεις ύφους, αλλά µε
σαφήνεια. Τα πάθη δεν τα δείχνει µε ψευδοροµαντική ασάφεια, αλλά µε τη σαφήνεια
εκείνη που θα αναδείξει την αιχµηρότητά τους. Τονίζει τις συµπτώσεις και την
τυχαιότητα µε ύφος σαφές και όχι τυχάρπαστο. Τη «µοίρα» δεν την αποδίδει σε
µεταφυσικές δυνάµεις - εφόσον κάνει επιστήµη. Μπορεί να την ταυτίζει µε δυνάµεις που
θεωρούσαν ανεξήγητες και µεταφυσικές οι άνθρωποι που µελετά· αλλά ο ίδιος δίνει
όνοµα στις δυνάµεις αυτές· και τις εντάσσει, µε σαφήνεια, σε έναν αιτιακό συλλογισµό,
σε ένα ερµηνευτικό σχήµα.
Ενα ευτυχές ιστοριογραφικό έργο απαιτεί έναν καλό συγκερασµό της επιστήµης µε την
τέχνη του ύφους. Από εκεί και πέρα, υπάρχει µόνο η υπέρβαση και της επιστήµης και
του ύφους. Στον υπερβατικό αυτό χώρο, εκεί όπου ο συγκερασµός γίνεται ταύτιση
γνώσης και τέχνης, οδηγεί ένας δρόµος σχεδόν άβατος. Τόπος που ονειρεύονται πολλοί,
επιστήµονες και τεχνίτες, τόπος άφθαστος για µας τους πολλούς - όχι, όµως, ουτοπία.
Μας τον έχουν δείξει οι ελάχιστοι που έφτασαν εκεί, οι δάσκαλοί µας, ο καθένας µε τη
µεγάλη και τη µικρή του ιστορία, όντα διόλου µεταφυσικά, πολύ ανθρώπινα. Ενας
απλός άνθρωπος δεν ήταν άραγε ο δάσκαλος που, πριν από δυόµισι αιώνες, σκάρωνε
κάθε µέρα τη φυγή του προς τα εκεί, µε ένα απλό, αλλά καλώς συγκερασµένο
κλειδοκύµβαλο;
Ο κ. Γ. Β. ∆ερτιλής είναι καθηγητής της Ιστορίας στο Πανεπιστήµιο Αθηνών.
</TEXT>

8

Applying Artificial Intelligence to Predict the
Performance of Data-dependent Applications

Paula Fritzsche, Dolores Rexachs and Emilio Luque
DACSO, University Autonoma of Barcelona

Spain

1. Introduction
Computational science (CS) is an emerging discipline that unites science and mathematics
with disciplinary experience in biology, chemistry, physics, and other applied scientific
fields. Within the scientific method, it is often referred to as the third science paradigm,
complementing both theoretical and laboratory science (Miller & Boxer, 2005). In this work,
CS involves the collaboration of the computing discipline, the mathematical support
represented by the knowledge discovery process and by the models, and the computing
parallel environment capability. Central to this computational science problem is the
performance prediction of data-dependent applications, as shown on Figure 1. By the way,
CS allows doing things that were previously too difficult to do due to the complexity of the
mathematics, the large number of calculations involved, or a combination of both.
Therefore, new challenges are continuously arising although CS is still at an early stage of
development.

Figure 1. Computational science complementing both theoretical and laboratory science

Parallel computers provide an efficient and economical way to solve large-scale and/or
time-constrained scientific, engineering, medicine, industry, and commerce problems. It is
an alternative that makes easy to reach a solution in a fraction of the original time that
would consume a single computer. Consequently, the research community, the computer

 Tools in Artificial Intelligence

122

designers, the professional engineers, and the end-users of these systems have a vested
interest in knowing and predicting the performance order of parallel algorithms. Although
measuring the performance of a parallel algorithm for all possible input values would allow
answering any question about how the algorithm will respond under any set of conditions,
it is impossible to make it. The situation is even worse for data-dependent algorithms where
similar input data sets may cause significant variability in execution times. For this kind of
algorithms, the performance does not depend only on the number of processors used (P)
and on the data size (N). Other parameters have to be taken into account, the values of
which are data-dependent. Great examples of this type of programs are the sorting
algorithms, the searching algorithms, the satisfiability problem, the graph partition, the
knapsack problem, the bin packing, the motion planning, and the traveling salesman
problem (TSP). Furthermore, there are important cases of practical problems that can be
formulated as TSP problems and many other problems are generalizations of this problem.
The goal of this chapter is to present a general novel methodology to the problem of
predicting the performance of data-dependent algorithms. This is a good starting point for
understanding some facts related with the non-deterministic algorithms. Briefly, the
methodology works as follows. It begins by designing a certain number of instances and
measuring their execution times. A well-designed instance guides the experimenters in
choosing what experiments actually need to be performed in order to provide a
representative sample. A data mining process then explores the collected data in search of
patterns and /or relationships detecting the main parameters that affect performance. These
common properties are modelled numerically so as to generate an analytical formulation of
the execution time, a multiple-linear-regression model. Finally, the regression equation
allows predicting how the algorithm will perform when given new input data sets.
A global pruning algorithm (GP-TSP) is used to analyze the influence of indeterminism in
performance prediction, and also to show the usefulness of the proposed methodology. It is
a branch-and-bound algorithm which recursively searches all possible paths and prunes
large parts of the search space by maintaining a global variable containing the length of the
shortest path found so far. If the length of a partial path is bigger than the current minimal
length, this path is not expanded further and a part of the search space is pruned.
The GP-TSP execution time depends on the number of processors (P), number of cities (C),
and other parameters. As a result of this investigation, right now the sum of the distances
from one city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the
numerical parameters characterizing the different input data beyond the number of cities.
The preliminary experimental results of predictions are quite promising. An important fact
has been reached beyond was originally sought. Choosing the city which has minimum SD
associated value, it is possible to obtain the exact TSP solution investing less amount of time.
This chapter is organized as follows. The next section presents the novel methodology to the
problem of predicting the performance of data-dependent algorithms. Section 3 reviews the
traveling salesman problem (TSP) and provides detailed coverage of a parallel TSP
implementation called GP-TSP. Section 4 focuses on the discovering process carried out to
find the significant input parameters for the GP-TSP algorithm. Section 5 explains how to
build a prediction model and then the evaluation process in order to estimate times. Finally,
Section 6 summarizes and draws the main conclusions of this chapter identifying
challenging future research.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

123

2. Entire approach
The general novel methodology attempts to estimate the performance order of a parallel
algorithm that solves a data-dependent problem. The defined methodology consists of three
main phases: the design and composition of experiments to obtain and fit the prediction
model, the validation of the model, and the use of the model developed, see Figure 2.

Figure 2. The performance prediction methodology

2.1 Design and composition of experiments to obtain and fit the prediction model
In principle, it is important to understand the application domain and the relevant prior
knowledge, and to analyze their behavior step by step, in a deep way. It is a try-and-error
method that requires specialists to manually or automatically identify the relevant
parameters that can affect the execution time of the algorithm studied. Discovering the
proper set of parameters is the basis to obtain a good capacity of prediction. Including too
many parameters may lead to an accurate but too complicated or even unsolvable model.
Hence, great care should be taken in selecting parameters and a reasonable trade-off should
be made.
Designing an experiment involves articulating a goal, choosing an output that characterizes
an aspect of that goal and specifying the data that will be used in the study. A well-designed
instance guides the experimenters in choosing what experiments actually need to be
assessed. Once a training data has been defined, the studied parallel algorithm reads and
processes the experiments one by one obtaining their execution times.
A data mining application analyzes the quantitative measured values of the main
parameters that affect performance and summarizes these into a useful multiple-linear-

 Tools in Artificial Intelligence

124

regression model (MLR model, T=b0+b1x1+…+ bpxp). It allows including the effects of several
input variables that are all linearly related to a single output variable (T). This is a first
approximation to deal with the problem. Figure 3 shows the knowledge construction model.
Note that the instances must provide a representative sample (a training data set) first to
obtain and fit the model and then to estimate the regression coefficients.

Figure 3. The knowledge construction model

2.2 Validation of the model
A new data set is used to be able to validate the created model. The validation data set
constitutes a hold-out sample and is not used in building of the model. This enables to
estimate the error in the predictions without having the assume that the execution times
follow a particular distribution.
The training data set is used to estimate the regression coefficients (b0,…,bp). These
coefficients are used to make predictions for each case in the validation data. The quality
analysis is a relevant issue in this stage and has to include interest measurements. The
prediction for each case is then compared to the value of the dependent variable that was
actually observed in the validation data obtaining the prediction error. The average of the
square of this error enables to compare different models and to assess the accuracy of the
model in making predictions. Figure 4 exhibits the model validation phase.

Figure 4. The validation of the model

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

125

Great care should be taken in analyzing the first approximations because it is difficult to
know the degree of complexity of the relationship between the parameters and execution
time. It is important to take in mind that the model aids in testing hypothesis and finding
solution to performance prediction problems.
From the scientific point of view is essential to find confidence intervals for the regression
parameters to provide some indication of how well they model the measured values. Taking
this as a basis, it could determine the necessary number of elements in the sample.

2.3 Prediction of performance order
Once a MLR model has been fit, it is used to predict how the studied parallel algorithm will
perform when given a new input data set. The b0,…,bp values are the estimated regression
parameters. To predict the dependent value (T), it is necessary to replace the independent
values x1,…,xp with known values.
At this point, it is necessary to emphasize that the MLR model provides a prediction
framework easy to use and useful, see Figure 5.

Figure 5. The prediction framework

3. Traveling salesman problem
The traveling salesman problem (TSP) is one of the most famous problems (and the best one
perhaps studied) in the field of combinatorial optimization. In spite of the apparent
simplicity of its formulation, the TSP is a complex data-dependent. Not only the complexity
of its solution has been a continue challenge to the researchers but also the prediction of its
performance due to there are many practical problems that can be formulated as TSP
problems.

3.1 Problem statement
The TSP for C cities is the problem of finding a tour visiting all the cities exactly once and
returning to the starting city such that the sum of the distances between consecutive cities is
minimized (TSP, 2008). The requirement of returning to the starting city does not change the
computational complexity of the problem.

3.2 TSP computational complexity
The TSP has been shown to be NP-hard (Karp, 1972). More precisely, it is complete for the
complexity class (FPNP)1, and the decision problem version is NP-complete. If an efficient

1 The class NP is the set of decision problems that can be solved by a non-deterministic
Turing machine in polynomial time. FP means function problems.

 Tools in Artificial Intelligence

126

algorithm is found for the TSP problem, then efficient algorithms could be found for all
other problems in the NP-complete class. Although it has been shown that, theoretically, the
Euclidean TSP is equally hard with respect to the general TSP (Garey et al., 1976), it is
known that there exists a sub exponential time algorithm for it.
The most direct solution for a TSP problem would be to calculate the number of different
tours through C cities. Given a starting city, it has C-1 choices for the second city, C-2 choices
for the third city, etc. Multiplying these together it gets (C-1)! for one city and C! for the C
cities. Another solution is to try all the permutations (ordered combinations) and see which
one is cheapest. At the end, the order is also factorial of the number of cities. Generally, the
presented solutions are quite similar.

3.3 TSP practical problems
Besides the drilling of printed circuits boards (Duman, 2004), transportation and logistics
areas (TSP, 2008), problems having the TSP structure occur in the analysis of the structure of
crystals (Bland & Shallcross, 1989), in material handling in a warehouse (Ratliff & Rosenthal,
1983), in clustering of data arrays (Lenstra & Kan, 1975), in sequencing of jobs on a single
machine (Gilmore & Gomory, 1964), in physical mapping problems (Alizadeh et al., 1993),
in genome rearrangement (Sankoff & Blanchette, 1997), and in phylogenetic tree
construction (Korostensky & Gonnet, 2000) among others. Related variations on the TSP
include the resource constrained traveling salesman problem which has applications in
scheduling with an aggregate deadline (Miller & Pekny, 1991). The prize collecting TSP
(Balas, 1989) and the orienteering problem (Golden et al., 1987) are special cases of the
resource constrained TSP. The problem of finding a tour of maximum length is the objective
in MAX TSP (Barvinok et al., 2003). The maximum scatter TSP is the problem of computing
a path on a set of points in order to maximize the minimum edge length in the path. It is
motivated by applications in manufacturing and medical imaging (Arkin et al., 1996). Most
importantly, the TSP often comes up as a subproblem in more complex combinatorial
problems, the best known and important one of which is the vehicle routing problem, that
is, the problem of determining for a fleet of vehicles which customers should be served by
each vehicle and in what order each vehicle should visit the customers assigned to it
(Christofides, 1985).

3.4 GP-TSP algorithm
An implementation, called global pruning algorithm (GP-TSP), to obtain the exact TSP
Euclidean solution in a parallel machine has been used. For simplicity of implementation,
they were considered cities in R2 instead of Rn. The most straightforward way of computing
distances between cities in a two-dimensional space is to compute Euclidean distances.
Anyway, the election of distance measure (Euclidean, Manhattan, Chebychev) is irrelevant.
Also would be the same to work with an equivalent formulation in terms of graph theory.
This is 'given a complete weighted graph (where the vertices would represent the cities, the
edges would represent the roads, and the weights would be the cost or distance of that
road), find a Hamiltonian circuit with the least weight' (Gutin & Punnen, 2006). Therefore,
the ideas of this paper can be generalized.
The GP-TSP algorithm analyzes the influence of indeterminism in performance prediction. It
is a branch-and-bound algorithm which recursively search all possible paths. It follows the
Master-Worker programming paradigm (Fritzsche, 2007). Each city is represented by two

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

127

coordinates in the Euclidean plane. Considering C different cities, the Master defines a
certain level L to divide the tasks. Tasks are the possible permutations of C-1 cities in L
elements. The granularity G of a task is the number of cities that defines the task sub-tree: G
= C - L. At the execution start-up the Master sends the cities coordinates to every Worker.
A diagram of the possible permutations for 5 cities, considering the salesman starts and
ends his trip at the city 1, can be seen in Figure 6. The Master can divide this problem into 1
task of level 0 or 4 tasks of level 1 or 12 tasks of level 2 for example. The tasks of the first
level would be represented by the cities 1 and 2 for the first task, 1 and 3 for the second,
followed by 1 and 4 and 1 and 5. The requirement of returning to the starting city is without
detracting from the generality. In this closed cycle the salesman may begin and end in the
city who wants.

Figure 6. Possible paths for the salesman considering 5 cities

Workers are responsible for calculating the distance of the permutations left in the task and
sending to the Master the best path and distance of these permutations. One of the
characteristics of the TSP is that once the distance for a path is superior to the already
computed minimum distance it is possible to prune this path tree.

Figure 7. (a) Matrix of distances between cities (b) Pruning process in the GP-TSP algorithm

 Tools in Artificial Intelligence

128

Figure 7(a) shows a strictly lower triangular matrix of distances; meanwhile Figure 7(b)
exhibits the pruning process for the GP-TSP algorithm where each arrow has the distance
between the two cities it connects. Analyzing Figure 7(b), the total distance for the first
followed path (in the left) is of 40 units. The distance between 1 and 2 on the second path (in
the right) is already of 42 units. It is then not necessary for the algorithm to keep calculating
distances from the city 2 on because it is impossible to reach a better distance for this branch.

4. Discovering the significant GP-TSP input parameters
It is clear that the GP-TSP execution time order depends on the number of processors (P), on
the number of cities (C), and ‘other parameters’. Discovering the ‘other parameters’ is the
key to obtain a good or an acceptable prediction of performance order. Undoubtedly, the
knowledge discovery in databases process (KDD process) has been one of the most
profitable stages in the scientific examination. A huge amount of data sets was processed
with the only goal of finding some common properties. First intuitions guided the different
tests in order to determine the characteristics, the relationships, and the patterns between
the data sets. As a result of the investigation, right now the sum of the distances from one
city to the other cities (SD) and the mean deviation of SDs values (MDSD) are the numerical
parameters characterizing the different input data beyond the number of cities (C). But how
these final parameters have been obtained? Next, it is described the followed way to
discover the above mentioned dependencies (SD and MDSD), the construction of a model,
and finally the evaluation of the obtained regression equation.

4.1 First hypothesis location of the cities (geographical pattern)
For simplicity, only a particular training data set is analyzed and shown along different
sections. It consists of five different geographical patterns of fifteen cities each one (named
G1 to G5). Figure 8 illustrates the five patterns handled at the beginning.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40

(a) G1 (b) G2 (c) G3 (d) G4 (e) G5

(1,2)

(3,15)

(1,4) (1,6) (1,8)

(5,15)
(7,15) (9,15)

(1,15)

Figure 8. Five patterns defined for fifteen cities

The GP-TSP implementation receives the number of cities and their coordinates, and the
level as input parameters. In order to find the shortest path, it proceeds recursively
searching all possible paths and applying the global pruning strategy whenever it is feasible.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

129

Hence before continuing, there are two important concepts to refresh. The main objective of
data mining is finding useful patterns and knowledge in data. Clustering is one of the major
data mining techniques, grouping objects together into clusters that exhibit internal
cohesion (similar execution time) and external isolation.
As depicted in Figure 9, five clusters were found using a k-means algorithm (MacQueen,
1967) included in Cluster-Frame environment, see Appendix B for extra information. The
idea was to obtain quite similar groups with respect to the groups (patterns) used at the
beginning. The initial centroids were randomly selected by the clustering application and
the squared error function, Equation (1), was the selected objective function

 () 2

1 1
| |

k n
j

i j
j i

x c
= =

−∑∑ (1)

where |xi(j)-cj|2 is a chosen distance measure between a data point xi(j) and the cluster
centroid cj. The entire function is an indicator of the distance of the n data points from their
respective cluster centroids.

Figure 9. Cluster-Frame environment

Table 1 presents the obtained GP-TSP execution times (in sec.) by pattern (columns G1 to
G5) and starting city using 8 nodes of the parallel machine described in Appendix A.
Columns Cl1,.., Cl5 show the assigned cluster for each sample after running k-means
algorithm. For the clusters 1 to 5, the final centroids values were 92.22 sec., 16.94 sec., 37.17
sec., 10.19 sec., and 7.94 sec., respectively. A simple remark derived from pattern columns is
that the execution times belonging to a group are quite similar except for some cases.
The quality evaluation involves the validation of the above mentioned hypothesis. For each
sample, the assigned cluster was confronted with the previously defined graphic pattern.
The percentage of hits expresses the capacity of prediction. A simple observation is that the
execution times were clustered in a similar way to patterns fixed at starting; the capacity of

 Tools in Artificial Intelligence

130

prediction was of 75% for this example (56 hits on 75 possibilities). There was a close
relationship between the patterns and the execution times.

Pattern
Starting

city G1 Cl1 G2 Cl2 G3 Cl3 G4 Cl4 G5 Cl5

1 216.17 1 36.50 3 15.34 2 10.51 4 8.03 5
2 214.44 1 36.82 3 15.19 2 10.49 4 7.82 5
3 77.25 1 38.09 3 15.57 2 10.02 4 7.71 5
4 72.64 1 37.29 3 15.02 2 10.30 4 7.91 5
5 70.94 1 18.54 2 15.84 2 10.41 4 7.83 5
6 74.21 1 17.83 2 15.24 2 10.24 4 7.71 5
7 75.59 1 18.16 2 10.31 4 10.36 4 7.93 5
8 73.72 1 18.03 2 10.34 4 10.26 4 7.87 5
9 69.47 1 17.79 2 10.27 4 9.98 4 8.14 5

10 74.96 1 17.48 2 10.23 4 9.88 4 8.22 5
11 75.89 1 17.07 2 10.24 4 9.85 4 8.04 5
12 70.17 1 17.39 2 10.28 4 9.87 4 8.12 5
13 73.73 1 18.10 2 10.36 4 9.88 4 7.98 5
14 70.87 1 17.37 2 10.17 4 9.95 4 8.02 5
15 73.30 1 18.00 2 10.32 4 9.97 4 7.78 5

Mean 92.23 22.97 12.32 10.14 7.94

Table 1. Execution times (in sec.) and assigned cluster for the GP-TSP algorithm

Conclusions: The initial hypothesis for the GP-TSP was corroborated. At this stage, the
asymptotic time complexity was defined as O(C, P, pattern). The capacity of prediction was
greater than 70% for the full range of experiments worked. This value gave evidence of the
existence of other significant parameters. Therefore, a deep analysis of results revealed an
open issue remained for discussion and resolution, the singular execution times by pattern.
Another major hypothesis was formulated.

4.2 Second hypothesis location of the cities and starting city
Comparing Figure 8 with Table 1 it is easy to infer some important facts. The two far cities
in Figure 8(a) correspond with the two higher time values of Table 1(G1). The four far cities
in Figure 8(b) correspond with the four higher execution time values of Table 1(G2). The six
far cities in Figure 8(c) correspond with the six higher time values of Table 1(G3). The cities
in Figure 8(d) are distributed among two zones so, the times turn out to be enough similar,
see Table 1(G4). Finally, the cities in Figure 8(e) are enough closed so, the times are quite
similar, see Table 1(G5).
An additional important observation is that the mean of execution times by pattern
decreases as the cities approach (92.23, …, 7.94).
Conclusions: Without doubt, the location of the cities and the starting city (C1) play an
important role in execution times; the hypothesis was corroborated. At this point, the
asymptotic time complexity for the GP-TSP was redefined as O(C, P, pattern, C1). Anyway,

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

131

an open issue remained for discussion and resolution, how to relate a pattern (in general)
with the value of the execution time. This relationship would be able to establish a
numerical characterization of patterns. On this basis, a new original hypothesis was
formulated.

4.3 Third hypothesis sum of distances and mean deviation of sum of distances
What parameters could be used to quantitatively characterize different geographical
patterns in the distribution of cities? Right now for each pattern, the sum of the distances
from one city to the other cities (SDj), as shown on Equation (2) and the mean deviation of
SDs values (MDSD) are the worked inputs.

 () ()2 2

1
:1

C
j i j i

j
i

x x y yj j C SD
=

− + −
∀ ≤ ≤ = ∑ (2)

In the following sub sections, three different kinds of experimentations are done. One of
these is useful to see the necessity to include the both SD and MDSD parameters in the
complexity expression. Another one proves that a pattern is univariate regardless of their
scale or position. The last one is a singular case where the cities are uniformly distributed in
a circumference.

4.3.1 Experimentation 1
Columns SD1,.., SD5 in Table 2 show the values obtained by applying the Equation (2) to
each pattern and starting city. If a particular city j is very remote of the others, its SDj will be
considerably greater to the rest and consequently the execution time will grow also.

Pattern Starting
city G1 SD1 G2 SD2 G3 SD3 G4 SD4 G5 SD5

1 216.17 853.94 36.50 746.10 15.34 664.60 10.51 643.75 8.03 148.74
2 214.44 887.44 36.82 740.49 15.19 649.14 10.49 635.54 7.82 104.16
3 * 77.25 * 315.51 38.09 820.63 15.57 707.70 10.02 555.70 7.71 141.15
4 ◊ 72.64 ◊ 230.11 37.29 789.80 15.02 678.07 10.30 599.99 7.91 103.35
5 70.94 226.88 18.54 345.83 15.84 643.65 10.41 611.45 7.83 111.79
6 74.21 244.56 17.83 330.76 15.24 638.04 10.24 595.58 7.71 102.81
7 75.59 276.09 18.16 369.56 10.31 467.99 10.36 592.68 7.93 111.28
8 73.72 294.62 18.03 383.38 10.34 490.55 10.26 639.61 7.87 147.14
9 69.47 233.53 17.79 370.10 10.27 491.52 9.98 574.23 8.14 123.19

10 ◊ 74.96 ◊ 234.84 * 17.48 * 323.12 10.23 446.48 9.88 578.78 8.22 172.52
11 75.89 259.19 17.07 332.87 10.24 477.42 9.85 544.61 8.04 124.64
12 70.17 234.22 17.39 325.19 10.28 449.03 9.87 534.91 8.12 131.68
13 73.73 306.99 18.10 383.11 10.36 504.79 9.88 530.72 7.98 109.78
14 70.87 239.19 17.37 327.02 10.17 451.21 9.95 574.97 8.02 124.96
15 73.30 295.27 18.00 372.00 10.32 494.09 9.97 534.36 7.78 96.29

MDSD 140.94 165.47 90.60 31.56 16.78

Table 2. Execution times (in sec.) and sum of the distances for the GP-TSP algorithm

 Tools in Artificial Intelligence

132

Why is it needed to consider MDSD in addition to SD as a significant parameter? Quite
similar SD values from the same experiment (same column) of Table 2 imply similar
execution times. The SD1 values for the starting cities 4 and 10 are 230.11 and 234.84,
respectively. Their execution times (G1) are similar 72.64 and 74.96 (labelled with the symbol
◊). Instead, this relation is not true considering similar SD values from different patterns
(different columns). The SD1 value for starting city 3 and the SD2 value for the starting city
10 are similar (315.51 and 323.12, respectively) but the execution times are completely
dissimilar (labelled with the symbol *). Therefore, the different MDSD(SD1) and MDSD(SD2)
values explain the different execution times for similar SD1 and SD2 values.

4.3.2 Experimentation 2
Make geometric transformations (shifting, scaling, and rotation) to well-known patterns is a
fundamental test. The idea is to prove that a given pattern is univariate regardless of their
scale or position. Applying each one of the transformations to a data set, similar times are
expected using the same algorithm.
The coordinates of a city shifted by Δx in the x-dimension and Δy in the y-dimension are
given by

 ´ ´x x x y y y= + Δ = + Δ (3)

where x and y are the original and x’ and y’ are the new coordinates.
The coordinates of a city scaled by a factor Sx in the x-direction and y-direction (the city is
enlarged in size when Sx is greater than 1 and reduced in size when Sx is between 0 and 1)
are given by

 ´ ´x yx xS y yS= = (4)

The coordinates of a city rotated through an angle θ about the origin of the coordinate
system are given by

 ´ cos sin ´ sin cosx x y y x yθ θ θ θ= + = − + (5)

A data set consisting of fifteen cities is chosen from the historical database (Hist). The
shifting and rotation transformations are obtained interchanging x-coordinate by y-
coordinate (Sh+Rot), and the scaling transformation dividing by two both coordinates
(Scaled). While Figure 10 shows these three patterns together, Table 3 exhibits a comparison
of the execution times by pattern and starting city using 32 nodes of the parallel described in
Appendix A. Analyzing the information by row, the historical execution times and the
execution times of the geometric transformations for a sample are quite similar as it was to
be expected. The mean deviations are smaller than 2%.

4.3.3 Experimentation 3
A singular case is to have the cities uniformly distributed in a circumference. The MDSD
will be near to 0 so, similar times are expected applying any worked algorithm. Different
patterns consisting of 15 to 24 cities have been studied. One of these circumferences which is
composed of 24 cities is shown in Figure 11.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

133

0

5000

10000

15000

20000

25000

30000

35000

0 5000 10000 15000 20000 25000 30000 35000
x-coordinate

y-
co
or
di
na
te

Hist
Sh+Rot
Scaled

Figure 10. A historical pattern, a shifted and rotated historical pattern, and a scaled
historical pattern consisting of fifteen cities

Pattern Starting
city Hist Sh+Rot Scaled

MDev

1 46.25 48.52 47.30 0.78
2 100.30 105.60 102.77 1.81
3 73.48 76.34 74.52 1.04
4 32.92 34.52 33.75 0.54
5 30.83 31.96 31.35 0.39
6 30.49 31.92 31.22 0.48
7 31.77 33.00 32.21 0.45
8 30.10 31.06 30.43 0.35
9 31.08 32.13 31.92 0.42

10 30.98 32.24 31.60 0.42
11 29.94 31.09 30.36 0.42
12 30.33 31.53 30.85 0.42
13 31.45 32.82 32.14 0.46
14 32.67 33.44 32.53 0.37
15 32.49 33.49 32.89 0.36

Table 3. Comparison of execution times (in sec.) for the three patterns using 32 nodes

 Tools in Artificial Intelligence

134

850

900

950

1000

1050

1100

1150

850 900 950 1000 1050 1100 1150

x-coordinate

y-
co

or
di

na
te

Figure 11. A circumference pattern composed of 24 uniformly distributed cities

Table 4 shows a comparative study of behaviour of different circumference patterns
applying the GP-TSP algorithm. As it can be appreciated in Table 4, there is a minimum
progressive increase in the times. It is remarkable that in every case, the mean deviations of
execution times were smaller than 1%.

#Cities 15 16 17 18 19 20 21 22 23 24
Mean 12.71 17.47 23.42 32.93 42.95 54.94 68.67 129.53 367.29 1085.57
Mean

deviation 0.03 0.04 0.08 0.08 0.07 0.10 0.10 0.11 0.30 2.12

Table 4. Mean and mean deviation of execution times (in sec.) by number of cities for the
GP-TSP algorithm using 32 nodes

Conclusions: It is important to emphasize that the GP-TSP algorithm obtains good results of
prediction. Their asymptotic time complexity should be defined as O(C, P, SD, MDSD).
Another important fact has been reached beyond what was originally sought. Choosing the
city which has minimum SD associated value, it is possible to obtain the exact TSP solution
investing less amount of time.

5. Predicting the GP-TSP execution time
The GP-TSP algorithm has been executed for a great amount of training patterns in order to
take enough experimental data to validate this experimental approach. At this point, the
methodology views the algorithm being study as a black box in which the normalized
measured values for the input variables (C, P, SD, MDSD) arrive, are processed, and then
produce a MLR model. A desired normalization converts values to a common basis for
comparison. It is important to take in mind that the MLR model is a first approximation to
deal with the performance prediction problem.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

135

5.1 Building a MLR model for the GP-TSP algorithm
There are four independent input variables (C, P, SD, MDSD) and the basis form of the four-
dimensional regression model for the execution time (T) is

 0 1 2 3 4T b b C b P b SD b MDSD= + + + + (6)

where b0, b1, b2, b3, and b4 are the regression parameters to estimate. There exist m
measurements of the output T for various combinations of the inputs C, P, SD, and MDSD.
Each measurement can be expressed as

 0 1 2 3 4i i i i i iT b b C b P b SD b MDSD e= + + + + + (7)

where ei is the residual for the data (Ci, Pi, SDi, MDSDi, Ti).
To find the regression parameters, it is necessary to minimize the sum of squares of the
residuals, denoted SSE.

 2 2
0 1 2 3 4

1 1
()

m m

i i i i i i
i i

SSE e T b b C b P b SD b MDSD
= =

= = − − − − −∑ ∑ (8)

The Equation (8) takes on its minimum value when the partial derivatives of SSE with
respect to b0, b1, b2, b3, and b4 are all set to zero. This procedure then leads to a system of five
equations. The solution could be found by using any of the standard methods for solving
systems of equations, or using any available software package designed for this purpose
(Lilja, 2000).

5.2 Evaluating the regression equation
Finally, the regression equation is used to predict how the GP-TSP algorithm will perform
when given new input data sets. Replacing C, P, SD, and MDSM with real values in
Equation (6), it is possible to estimate the time required (T) to find the shortest path for this
master-worker global pruning TSP algorithm.

6. Conclusions
This chapter introduces a general novel methodology to estimate the performance order of
data-dependent parallel algorithms. It is important to understand that the parallel
performance achieved depends on several factors, including the application, the parallel
computer, the data distribution, and also the methods used for partitioning the application
and mapping its components onto the architecture.
Briefly, the general methodology works as follows. It begins by designing a certain number
of instances and collecting their execution-time data. A well-designed instance guides the
experimenters in choosing what experiments actually need to be performed in order to
provide a representative sample. A data-mining process then explores these collected data
in search of patterns and/or relationships detecting the main parameters that affect
performance. These common properties are modelled numerically so as to generate an
analytical formulation of the execution time. The methodology views the algorithm being
study as a black box in which the measured values for this limited number of inputs arrive,
are processed, and then produce a multiple-linear-regression model. Finally, the regression
equation allows for predicting how the algorithm will perform when given new input data
sets.

 Tools in Artificial Intelligence

136

 A TSP parallel implementation has been studied. The GP-TSP algorithm analyzes the
influence of indeterminism in performance prediction, and also shows the usefulness and
the profits of the methodology. Their execution time depends on the number of cities (C),
the number of processors (P), and other parameters. As a result of the investigation, right
now the sum of the distances from one city to the other cities (SD) and the mean deviation of
SDs values (MDSD) are the numerical parameters characterizing the different input data
beyond the number of cities (C). The followed way to discover these proper set of
parameters has been exhaustively described. Finally, their asymptotic time complexity has
been defined O(C, P, SD, MDSD).
Building a MLR model with the four independent input variables (C, P, SD, MDSD) and,
then, using the regression equation, a prediction of performance order for a new data set it is
possible to give. Another important fact has been reached beyond what was originally
sought. Choosing the city which has minimum SD associated value, it is possible to obtain
the exact TSP solution investing less amount of time.
This work has raised certain issues that it would be interesting to address. The utility,
applicability and implementation of the methodology to other data-dependent problem still
remain to be studied. Another issue concerns the problem of the obtained performance
model. The existence of more or less parameters that affect performance may suggest
strategies to fit the final model. Last but not least, how to provide automatic useful feedback
in order to asses more studies and experiments.

Appendix
A. Specification of the parallel machine
The execution were reached with a 32 node homogeneous PC Cluster Pentium IV 3.0GHz.,
1Gb DDR-DSRAM 400Mhz., Gigabit Ethernet) at the Computer Architecture and Operating
Systems Department, University Autonoma of Barcelona. All the communications have been
accomplished using a switched network with a mean distance between two communication
end-points of two hops. The switches enable dynamic routes in order to overlap
communication.

B. Specification of Cluster-Frame environment
Cluster-Frame is a dynamic and open environment of clustering (Fritzsche, 2007). It permits
the evaluation of clustering methods such as K-Means, K-Prototypes, K-Modes, K-Medoid,
K-Means+, K-Means++ for the same data set. Using Cluster-Frame, the results reached
applying different methods and using several parameters can be analyzed and compared.

6. References
Alizadeh, F.; Karp, R.; Newberg, L. & Weisser, D. (1993). Physical mapping of chromosomes:

A combinatorial problem in molecular biology. Symposium on Discrete Algorithms,
pp. 371-381, ACM Press.

Arkin, E.; Chiang, Y. ; Mitchell, J.; Skiena, S. & Yang, T. (1996). On the Maximum Scatter
TSP, In Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 97), pp. 211-220, ACM New York.

Applying Artificial Intelligence to Predict the Performance of Data-dependent Applications

137

Balas, E. (1989). The Prize Collecting Traveling Salesman Problem. Networks, Vol.19, pp. 621-
636.

Barvinok, A.; Tamir, A.; Fekete, S.; Woeginger, G; Johnson, D. & Woodroofe, R. (2003). The
Geometric Maximum Traveling Salesman Problem. Journal of the ACM, Vol.50,
No.5, pp. 641-664.

Bland, R. & Shallcross, D. (1989). Large Traveling Salesman Problems Arising from
Experiments in X-ray Crystallography: a Preliminary Report on Computation.
Operations Research Letters, Vol.8, pp. 125-128.

Christofides, N. (1985). Vehicle Routing. N. Christofides, A. Mingozzi, P. Toth, and C. Sandi,
editors, Combinatorial Optimization, pp. 315-338, Wiley, Chichester, UK.

Duman, E. & Or, I. (2004). Precedence constrained TSP arising in printed circuit board
assembly. International Journal of Production Research, Vol.42, No.1, pp. 67-78, 1
January 2004, Taylor and Francis Ltd.

Fritzsche, P. (2007). ¿Podemos Predecir en Algoritmos Paralelos No-Deterministas?, PhD
Thesis, University Autonoma of Barcelona, Computer Architecture and Operating Systems
Department, Spain. http://caos.uab.es/

Garey, M.; Graham, R. & Johnson, D. (1976). Some NP-complete geometric problems, STOC
'76: Proceedings of the eighth annual ACM symposium on Theory of computing,
pp. 10-22, Hershey, Pennsylvania, United States, ACM, New York, NY, USA.

Gilmore, P. & Gomory, R. (1964). Sequencing a One-State-Variable Machine: A Solvable
Case of the Traveling Salesman Problem. Operations Research, Vol.12, No.5, pp.
655-679.

Golden, B.; Levy, L. & Vohra, R. (1987). The Orienteering Problem. Naval Research Logistics,
Vol.34, pp. 307-318.

Gutin, G. & Punnen, P. (2006). The Traveling Salesman Problem and Its Variations, Springer, 0-
387-44459-9, New York.

Karp, R. (1972). Reducibility among combinatorial problems: In Complexity of Computer
Computations. Plenum Press, pp. 85-103. New York.

Korostensky, C. & Gonnet, G. (2000). Using traveling salesman problem algorithms for
evolutionary tree construction. BIOINF: Bioinformatics, Vol.16, No.7, pp. 619-627.

Lenstra, J. & Kan, A. (1975). Some simple applications of the Travelling Salesman Problem.
Operations Research Quarterly, Vol.26, No.4, pp. 717-732.

Lilja, D. (2000). Measuring computer performance: a practitioner's guide, Cambridge University
Press, ISBN: 0-521-64105-5, New York, NY, USA.

MacQueen, J. (1967). Some Methods for Classification and Analysis of MultiVariate
Observations, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and
Probability, Vol.1, pp. 281-297, L. M. Le Cam and J. Neyman, University of
California Press.

Miller, D. & Pekny, J. (1991). Exact Solution of Large Asymmetric Traveling Salesman
Problems. Science, Vol.251, pp. 754-761.

Miller, R. & Boxer, L. (2005). Algorithms Sequential and Parallel: A Unified Approach, Charles
River Media. Computer Engineering Series, 1-58450-412-9.

 Tools in Artificial Intelligence

138

Ratliff, H. & Rosenthal, A. (1983). Order-Picking in a Rectangular Warehouse: A Solvable
Case for the Traveling Salesman Problem. Operations Research, Vol.31, No.3, pp.
507-521.

Sankoff, D. & Blanchette, M. (1997). The median problem for breakpoints in comparative
genomics, Proceedings of the 3rd Annual International Conference on Computing and
Combinatorics (COCOON'97), Vol.1276, pp. 251-264, New York.

TSP page (2008). http://www.tsp.gatech.edu/history/.

9

Agent Systems in Software Engineering
Vasilios S. Lazarou1, Spyridon K. Gardikiotis2 and Nicos Malevris2

1National & Kapodistrian University of Athens
 2Athens University of Economics and Business

Greece

1. Introduction
During the last decade the continuous growth of the Web resulted in a significant development
shift from simple types of software applications to distributed multi-tier web-based
applications. In general, distributed systems are by nature more complex than centralized
systems. As a result, the software engineering tasks of these systems are also complicated.
Unlike traditional software applications, Web-based applications are associated with a
plethora of special characteristics that impede the appliance of conventional software
engineering techniques. Among them, the most important include the distributed and
stateless nature of the Web, the impressively high changing frequency of implementation
technologies and the spread of dynamic Web pages. Furthermore, the vital role of databases
in both web and distributed applications raises a demand for introducing software
engineering techniques tailored for these applications. These applications, known as
database applications (DA), contain embedded SQL statements in the source code. Similarly
to web applications, the presence of such special statements turns out to impose a number of
limitations to the applicability of existing software engineering techniques while also
originating new issues.
In this chapter, the use of agent technology to confront with the software engineering task
will be illustrated. More precisely, the focus will be on the application of agent systems in
order to confront with the requirements of the software engineering process for distributed
software systems in general, paying particular attention to distributed database applications
and web applications.
Software agents can be described as intelligent and autonomous software entities that have
the ability to exhibit proactive behaviour and to collaborate with each other. The software
engineering process can be greatly enhanced by utilising agent technology and adopting the
architecture of an intelligent, flexible and extensible agent system. The multi-tier
architecture of most distributed applications offers a suitable foundation because of its
inherent complication that highlights the significant and novel contribution of a multi-agent
architecture.
The rationale behind utilizing agent technology has to do with the interoperability of the
software resources belonging to potentially disparate application components and disparate
domains. Towards this direction, agents offer a unified platform of interaction through
agent communication.
The application of agent technology for the software engineering task is certainly a new and
promising research area. However, a variety of approaches that attempt to exploit the

 Tools in Artificial Intelligence

140

benefits of agent technology have already made their appearance and it is expected that this
tendency will further evolve. At this point, it needs to be clarified that the chapter will not
focus on the research area that deals with the employment of software engineering
technology for agent systems. Although similar in title, this research area deals with
applying software engineering methodologies to assist the creation of multi-agent systems;
something completely different.
The first one has as a goal to provide an agent infrastructure to support software testing.
This is realised by suggesting multi-agent frameworks that can be used as a model to build
agent systems for testing service-oriented web applications. This research track aims at
presenting an agent system for tackling the issues of software maintenance and testing of
distributed applications.
Illustrating the research attempts that employ software agents on software engineering
tasks, they can be categorised according to two key target levels. The first one has an
infrastructural target. Some research work focuses on presenting communication and
coordination infrastructures for agents engaged in web software testing. Another research
direction targets the creation of a multi-agent framework for software testing but the goal is
on how an agent infrastructural framework can assist the job of constructing concrete agents
systems for service-oriented applications.
The second one has a more applied target. As a representative work, research in which
multi-agent system architectures are used in software testing of web-based applications can
be mentioned. Moreover, there is ongoing research where an agent system is being utilised
for the software engineering of distributed database applications. The first primary objective
is to assess the maintainability and to facilitate the maintenance of such applications in the
presence of changes on the schema of the underlying database. The second primary
objective is to support another major software engineering task namely structural and
regression software testing.
The remainder of this chapter is organised as follows. Section 2 outlines the fundamental
background scientific areas of Agent Systems and Software Engineering. Section 3
introduces the first primary research direction where agent frameworks are used in software
engineering. Section 4 continues the illustration covering the second primary research
direction where multi-agent systems are used in software engineering. Section 5 is about
Agent-Oriented Software Engineering and gives a brief description of the opposite view
where the idea of an agent is being utilised as a generic software engineering model. Finally,
section 6 concludes the chapter by offering an overall analysis of the current research status
by highlighting the commonalities and the differences of the above research approaches, in
a form of comparative evaluation, and providing a view of the scope of the current
approaches and potential future research courses of action.

2. Background concepts
In this section, the background concepts relevant to the chapter are going to be illustrated.
However, besides the primary concepts of Software Engineering and Agent Systems, some
special topics within the research area of Software Engineering, namely Web-based Software
Systems and Service-Oriented Systems, will be particularly described. The reason is that a
significant amount of research that applies agent system technology to software engineering
has been evolved around these topics. This section concludes by describing the current
convergence of the two main concepts of this chapter.

Agent Systems in Software Engineering

141

2.1 Software engineering
Software engineering is the application of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance of software (IEEE, 1990). The discipline of
software engineering includes knowledge, tools, and methods for software requirements,
software design, software construction, software testing, and software maintenance tasks
(SWEBOK, 2004). Among them, the interest is focused on the processes of software
engineering that can be performed by fully automated computing techniques. In particular,
such processes are software testing and software maintenance.
Software testing is the process used to assess the quality of computer software. Towards
this direction, two objectives are usually identified: the verification and validation of the
software. Software verification examines the way that the software is built and verifies that
this matches its specifications. Software validation examines the derived software and
validates that this product matches the customer requirements. In practice, software testing
accomplishes its intended scope by revealing the amount of embedded software faults. Its
results guide the software engineering process to reduce the amount of these faults ending
up in an acceptable defect rate according to the specific software’s nature. Software testing
techniques are traditionally divided into black box and white box techniques. The former type
treats the software as a black-box without any understanding of internal behaviour and
aims to test its functionality according to its requirements. Examples of black box testing
techniques include random testing, equivalence partitioning, boundary value analysis,
model-based testing etc. The latter type of testing presumes that the tester has access to the
source code of the software and derives tests that satisfy some code coverage or data
adequacy criteria. Examples of such criteria include control flow based criteria (e.g. path,
branch and statement coverage), text-based adequacy criteria (e.g. LCSAJ) and data flow
criteria (e.g. definitions, uses, predicate uses, computational uses etc.).
Software maintenance is the modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to adapt the product to a modified
environment (IEEE, 2004). Thus, software maintenance includes a number of both pre-
delivery and post-delivery processes, which according to (IEEE, 1996) are summarized to
the following: process implementation, problem and modification analysis, modification
implementation, maintenance review/acceptance, migration and retirement. The
maintenance processes can further be classified into categories. Among many alternative
suggestions, the (ISO, 2006) proposes the four major categories of software maintenance:
• Corrective maintenance is the reactive modification of a software product performed

after delivery to correct discovered problems.
• Adaptive maintenance is the modification of a software product performed after

delivery to keep a software product usable in a changed or changing environment.
• Perfective maintenance is the modification of a software product after delivery to

improve performance or maintainability.
Preventive maintenance is the modification of a software product after delivery to detect
and correct latent faults in the software product before they become effective faults.

2.1.1 Service oriented architecture
Service oriented computing (SOC) is an emerging cross-disciplinary paradigm for
distributed computing that is changing the way software applications are designed,
architected, delivered and consumed (Erl, 2005). Service Oriented Architecture (SOA) is a
form of distributed system architecture; its properties are consolidated by the W3C working

 Tools in Artificial Intelligence

142

group of web service architecture. Services are autonomous and platform-independent
computational elements that can be used to build networks of collaborating applications
distributed within and across organizational boundaries.
Service-Oriented Architecture (SOA) and its Web implementation Web Services (WS)
promote an open standard-based and loosely coupled architecture for integrating
applications in a distributed heterogeneous environment. Such applications are
characterized by service orientation, task distribution, collaboration among development
parties, run-time behaviour and open standards for interfacing among their components.
Service dependability is critical for establishing a trustworthy service-oriented computing
environment. However, the paradigm shift from product-oriented software development to
SOA and WS brings many new issues to traditional verification and validation techniques.
In SOA, an application is created by dynamically discovering, binding to, and integrating
the discovered services from the Internet, possibly created by third party service providers.
Due to the open standards and open platform, a large number of services satisfying the
same requirements can co-exist, and new services can be published at any time. Hence,
during system evolution, the application can dynamically rebind to different services and
the architecture can be reconfigured at runtime. The dynamic and collaborative nature of
SOA brings new challenges to testing WS applications including system complexity due to
the flexibility of system configuration, interoperability among third-party developed
components, runtime fault detection and reliability evaluation, dynamic re-composition,
and implementation transparency.

2.1.2 Web application testing
A Web application can be considered as a distributed system, with a client-server or multi-
tier architecture, including the following main characteristics:
1. A wide number of users distributed all over the world and accessing it concurrently.
2. Heterogeneous execution environments composed of different hardware, network

connections, operating systems, Web servers and Web browsers.
3. An extremely heterogeneous nature that depends on the large variety of software

components that it usually includes. These components can be constructed of different
technologies (i.e., different programming languages and models), and can be of
different natures (i.e., new components generated from scratch, legacy ones,
hypermedia components).

4. The ability of generating software components at run time according to user inputs and
server status.

Web applications are difficult to understand and test due to lack of abstraction, highly
unstructured, heterogeneous representation, mixture of presentation and application logic
and dynamic page generation. Web applications testing need to address challenges
introduced by new control structures like hyperlinks (navigation, request and redirection),
new data flow issues (e.g., scripts that are not compiler checked, HTML/XML documents as
variables, storing data as hidden elements, JSP tags-defined variables and parameters and
passing data via HTTP hyperlinks) and new dynamic behaviour like navigation behaviour
and Web state behaviour.
In (Di Lucca & Fasolino, 2006), they considered testing of the functional requirements with
respect to four main aspects, i.e., testing scopes, test models, test strategies, and testing tools.
More specifically, testing strategies define the approaches for designing test cases. They can

Agent Systems in Software Engineering

143

be responsibility based (also known as black box), implementation based (or white box), or
hybrid (also known as grey box). In (Nguyen, 2000) it is said that ‘Gray-box testing is well
suited for Web application testing because it factors in high-level design, environment, and
interoperability conditions. It will reveal problems that are not as easily considered by a
black-box or white-box analysis, especially problems of end-to-end information flow and
distributed hardware/software system configuration and compatibility. Context-specific
errors that are germane to Web systems are commonly uncovered in this process.

2.2 Agents and multi-agent systems
Agents and multi-agent systems (MAS) have recently emerged as a powerful technology to
face the complexity of a variety of modern Information Systems (Zambonelli & Omicini,
2004). For instance, several industrial experiences already testify to the advantages of using
agents in Web services and Web-based computational markets and distributed network
management. In addition, several studies advise on the possibility of exploiting agents and
MAS as enabling technologies for a variety of future scenarios, i.e., pervasive computing,
grid computing and semantic web.
The core concept of agent-based computing is, of course, that of an agent. However, the
definition of an agent comes along with a further set of relevant agent-specific concepts and
abstractions. Generally speaking, an agent can be viewed as a software entity with the
following characteristics (Jennings, 2001):
• Autonomous: an agent is not passively subject to a global, external flow of control in its

actions. That is, an agent has its own internal execution activity (whether a Java thread
or some other sort of goal-driven intelligent engine, this is irrelevant in this context),
and it is pro-actively oriented to the achievement of a specific task on user’s behalf.

• Situated: an agent performs its actions while situated in a particular environment,
whether a computational (e.g., a Web site) or a physical one (e.g., a manufacturing
pipeline), and it is able to sense and affect (portions of) such an environment in order to
meet its design objectives.

• Social: in the majority of cases, agents work in open operational environments hosting
the execution of a multiplicity of agents, possibly belonging to different stakeholders
(think, e.g., of agent-mediated marketplaces). In these MAS, the global behaviour
derives from the interactions among the constituent agents. In fact, agents may
communicate/coordinate with each other (in a dynamic way and possibly according to
high-level languages and protocols) either to achieve a common objective or because
this is necessary for them to achieve their own objectives.

It is clear that an agent system cannot be simply reduced to a group of interacting agents.
Instead, the complete modelling of the system requires explicitly focusing also on the
environment in which the MAS and its constituent agents are situated and on the society
that a group of interacting agents give rise to. Modelling the environment implies
identifying its basic features, the resources that can be found in the environment, and the
way via which agents can interact with it. Modelling agent societies implies identifying the
overall rules that should drive the expected evolution of the MAS and the various roles that
agents can play in such a society (Zambonelli et al., 2003).

2.3 Agent systems and software engineering
The emergent general understanding is that agent systems, more than an effective
technology, represent indeed a novel general-purpose paradigm for software development.

 Tools in Artificial Intelligence

144

Agent-based computing promotes designing and developing applications in terms of
autonomous software entities (agents), situated in an environment, and that can flexibly
achieve their goals by interacting with one another in terms of high-level protocols and
languages.
These features are well suited to tackle the complexity of developing software in modern
scenarios since:
1. The autonomy of application components reflects the intrinsically decentralised nature

of modern distributed systems and can be considered as the natural extension to the
notions of system modularity and encapsulation;

2. The flexible way in which agents operate and interact (both with each other and with
the environment) is suited to the dynamic and unpredictable scenarios where software
is expected to operate (Zambonelli et al., 2001);

3. The concept of agency provides for a unified view of artificial intelligence (AI) results
and achievements, by making agents and MAS act as sound and manageable
repositories of intelligent behaviours (Russel & Norvig, 2003).

2.3.1 Agent systems and web systems
Engineering distributed systems is a challenging task due to issues such as concurrency,
fault tolerance, security and interoperability (Sommerville, 2004; Tsai et al., 2003). With
respect to engineering web service systems, applying agent techniques to service orientation
field has proven a natural choice. The research on agent-based applications has so far
demonstrated that agents can glue together independently developed legacy systems. The
control of a system can be distributed among autonomous agents and still maintain global
coherence. Moreover, system’s capability improves greatly when systems (represented by
agents) cooperate.
Therefore, applying the MAS technique in WS has been a focus of WS research, such as
service discovery, selection, and orchestration (Buhler & Vidal, 2003; Maamar et al., 2005;
Richards et al., 2003; Sycara et al., 2001).
However, agents correspond to a broader concept with respect to services. In (Qi et al.,
2005), the notion of agent-based web services (AWS) is proposed, including architecture and
meta-model and integration. The key challenge is to develop an integration framework for
the two paradigms, agent- and service-oriented, in a way that capitalizes on their individual
strengths.

3. Agent infrastructures in software engineering
In this section, the research work relevant to defining agent infrastructural frameworks will
be covered. This work targets distributed software systems in general but also web services
and web-based applications in particular.

3.1 A multi-agent framework for testing distributed systems
In (Yamany et al., 2006), a design for testing distributed systems is proposed. They use a
three-tier distributed system structure consisting of a server, middleware and multiple
clients. The server contains the data repository of the distributed application, whereas the
middleware is considered to be the software bus associated with those clients.

Agent Systems in Software Engineering

145

Agents in the proposed multi-agent architecture consist typically of two generic types: social
(immobile) agents and mobile agents. Social agents are used to monitor the three-tier
architecture of these distributed systems (i.e. server, middleware and clients) and to execute
various scheduled testing types such as unit testing and integration testing. Moreover,
mobile agents are used to carry out an urgent testing such as regression testing specified by
a tester (i.e. human or an agent). In addition to that, the proposed framework monitors the
user usage in order to increase the leverage of the testing process by increasing the chances
to discover most of the defects that might appear in both the server and clients sides.
The framework consists of three levels of autonomous and adaptive agents. The first level of
agents is on the server side. Basically, it is a single agent that monitors the data of the
distributed application and is called the Database Repository Agent (DRA). The second one
– Middleware Controller Agent (MCA) – is located at the middleware and is the kernel of
the proposed framework. Its main goals are to investigate the middleware behaviour, collect
the return feedback from the clients and make an integrated report about the system.
Finally, a group of social agents is distributed over the available clients. Each one is named
Client Checker Agent (CCA) and is responsible for unit testing.
The framework can be extended to execute more testing procedures at the request of the
tester. In some crucial unexpected behaviour of a distributed system, the tester can ask for
further testing and this can be done by sending a supportive mobile agent that could help in
that mission. This agent’s name is Mobile Urgent Agent (MUA).

3.2 Agent fabric for web services
In (Ma et al., 2007), MAS concepts are applied for service autonomy architecture. Service
agents have three basic responsibilities. They maintain runtime operations, manage service
lifecycle and control trusty communication. The first one is supported by a set of basic
functions, such as service discovery, monitoring and composition. The second one is an
advanced feature requiring comprehensive service modelling and governance. Agent
system trustworthy is also an important issue for agent collaboration.
On the other hand, an effective communication mechanism is very important for an agent
system, because autonomous systems do not stand alone without interaction with other
parties. This is where fabric comes into place. Fabric in SOA context usually means a
messaging environment or communication infrastructure, which makes services or
applications integrated. In (Ma et al., 2007), they propose a lightweight agent fabric to serve
the communications between autonomous service agents and, furthermore, cross-enterprise
applications. According to the aforementioned autonomous system design requirements,
XMPP (Saint-Andre, 2005) is employed as the underlying communication and message
routing technology to build this kind of lightweight fabric for agents. The existing XMPP
technologies are also leveraged for the trusty communication between agents.

3.3 Agent framework for web services
In (Bai et al., 2006), to address the challenges of collaborative and dynamic service-oriented
testing, they present a multi-agent framework (called MAST) for testing services with agent-
based technology. It is based on (Tsai et al., 2003) to facilitate web service (WS) testing in a
coordinated and distributed environment. Test agents are classified into different roles
which communicate through XML-based agent test protocols.
The key features of MAST are:

 Tools in Artificial Intelligence

146

• Testing is decomposed into different tasks including WS specification-based test
generation, centralized test planning, distributed test execution, test monitoring, and
test result synthesis and analysis. Different agent types are defined to accomplish
various tasks.

• Test agents are organized into groups. Each group is responsible for the execution of a
test plan and is composed of a group of test runners and monitors, which are
coordinated by a test coordinator.

• The mechanism is defined to dynamically generate, organize, coordinate, and monitor
test agents so that testing can be adaptive to reconfiguration and re-composition of
services.

• A rule-based strategy is introduced to facilitate interactively define, update, and query
rules for test planning and agent coordination.

Through the monitoring and coordinating mechanism, the agents can re-adjust the test plan
and their behaviour at run-time to be adaptive to the changing environment. The major
testing process is decomposed into three parallel and iterative phases:
1. Test script generation to define the test cases and test scenarios;
2. Test scheduling to create and allocate the test plan to agent groups;
3. Test run to exercise the test scripts, monitor execution status, and collect results.
Service specification provides basic information of the services under test such as service
interface and service flow. Rule management provides the knowledge for test scheduling.
Test analysis analyzes the test data such as failure rate to evaluate the quality of services and
test effectiveness. MAST supports the generic testing process and classifies the agents into
seven types explained as follows:
Test Master accepts test cases from Test Generator, generates test plans and distributes them
to various test groups. A set of test agents that implement a test plan are organized into a
test group, which is coordinated by a Test Coordinator. Test Runners execute the test scripts,
collect test results and forwards the results to Test Analyzer for quality and reliability
analysis. The status of the test agents are monitored by the Test Monitor.

3.4 Agent coordination model for web services
In (Xu et al., 2006), the MAST framework (see 3.2) is utilised to propose a coordination
architecture based on the reactive tuple space technique to facilitate dynamic task
assignment, agent creation and destruction, agent communication, agent distribution and
mobility, and the synchronization and distribution of collaborative test actions. Tuple space
defines a shared memory mechanism among agents by which data are structured organized,
described by tuples and retrieved by pattern matching. Adding reactivity to the tuple space
means the space can have its own state and react to specific agent actions. It is a hybrid
approach which combines control-driven and data-driven coordination models.
In this research, two tuple spaces are defined in MAST to manage the coordination channels
and to facilitate data sharing and asynchronous coordination among test agents. Through
the task tuple space, test tasks are dynamically allocated to different types of test agents
according to the process defined in the scheduling. Through the result tuple space, the
execution results are communicated from agents to agents. A subscription mechanism is
introduced to associate programmable reactions to the events occurred and state changes on
the tuple space.

Agent Systems in Software Engineering

147

3.5 An agent-based framework for testing web applications
In (Kung, 2004), an agent based framework for Web applications testing is presented. The
framework is based on the BDI formalism (Rao & Georgeff, 1995) and the Unified Modelling
Language (UML). The BDI architecture associates beliefs, desires and intentions with agents.
Beliefs are the agents’ observation about the environment and other agents. Desires are
goals to be accomplished. Intentions are action plans to achieve goals. Using this
framework, Web testing models and other testing objects like knowledge of the component
under test (CUT) and test results are modelled as beliefs, test criteria as goals, and test
activities as action plans.
The framework defines a number of abstract classes for modelling agent-oriented systems.
Application specific agent types are derived from these classes to inherit model-defined
features and relationships, and implement inherited abstract features. In this way, the
framework enforces the BDI model but also accommodate for application specific
behaviours. The abstract classes include: Belief, Goal, Plan, Agent, Agent Communication Act,
and Blackboard (Kavi et al., 2003; Kung et al., 2003).
The framework also introduces a number of new diagrams: Agent Goal Diagram (AGD)
depicts the relationships between the goals and the environment and defines the roles of
agents. Use Case Goal Diagram (UCGD) combines the UML Use Case Diagram (UCD) and
the AGD to show which use cases affect which goals and vice versa. This provides a high
level guidance to Agent Sequence Diagram (ASD) construction. Agent Domain Model
(ADM) represents the domain knowledge that is internal to an agent, including the
definitions of the agent’s Beliefs, Goals and Plans and their intrinsic relationships. Agent
Sequence Diagram (ASD) depicts interactions among the beliefs, goals, plans and other
objects of an agent and is a refinement of an agent. These diagrams model the behaviour of a
test agent. Other diagrams introduced are the Agent Design Diagram (ADD), to document
the design of an agent, and the Agent Activity Diagram (AAD) and Agent State-chart
Diagram (ASCD), to model the internal activity and information flows and the internal state
behaviours of agents.

3.5.1 Web application test agents
There are various types of test agents for testing the various types of Web documents. A
Web application test agent is composed of the various types of a test agent. Since each type
of Web document has several categories of testing methods or techniques, there are
specialized agents corresponding to different categories of testing methods.
All relevant test objects are modelled as the agent’s beliefs including the Web component
under test (CUT), the test models representing the test objects for the CUT, the requirements
or functional specification of the CUT, the test cases, and test coverage result. Goals include
the test requirements or test criteria, for example, percentage of requirements coverage for
black-box testing, statement coverage for white-box testing. Goals have utilities which can
change due to changes of beliefs. The agent always tries to fulfil the goal with the highest
utility.
The action plans of an agent are generated dynamically according to the test goal selected
and the current belief of the agent. An action plan is a sequence of actions to be performed
by the agent to accomplish the goal. For example, if the current statement coverage is 70%,
then what are the sequences of actions that can be executed to accomplish 90% statement
coverage? Since each action is associated with a cost, a rational agent should select the
sequence of actions that requires the minimal cost.

 Tools in Artificial Intelligence

148

Finally, the actions of a test agent are implemented by command objects, each of which
implements an action and has at least the following: 1) the activity to be performed 2) the costs
to perform the activity 3) a precondition to be satisfied and 4) a post-condition or effect resulting
from the performance of the action.

3.6 A formal agent-based framework for testing web applications
In (Miao et al., 2007), a formal framework for testing Web applications is presented. The goal
is to show how the framework assists the design of agent-based Web application testing
systems. In this framework, the whole test work of the Web application can be divided into
the some small test tasks or subtasks. In this work, the organization-based methodology
Gaia (Zambonelli et al., 2003) for multi-agent system analysis and design is employed and
extended. Gaia is a methodology for agent-oriented analysis and design. Gaia is founded on
the view of a multi-agent system as a computational organization consisting of various
interacting roles. For the realisation Object-Z (Smith, 2000), which is a formal specification
language for modular design of complex systems, was used.
The executive part of the framework is a multi-agent system (MAS) which implements all
the Web test tasks. During the analysis stage, an organization is viewed as a collection of
roles. Each test task corresponds to one role. At the run time, the agent takes the role to
achieve the test task or interact and cooperate with other agents to finish the test tasks. The
agent can not only join or leave agent society at will, but also take or release roles at run
time dynamically. The framework can be easily extended by adding new roles to provide
much more functionalities for testing Web applications to further enhance the intensity of
automation. At the same time, agents and roles are loosely coupled; role classes and agent
classes can be designed at the same time by different teams. The internal design of the multi-
agent system (MAS) is independent of the Web applications.
If a new test task arrives, and there is no corresponding role in MAS to meet it, a new role
can be constructed to satisfy it. Besides, if a test task couldn’t be tested enough, the
corresponding role can be improved or the corresponding class of role can be re-factored. If
the role does not meet the requirement, it can be deleted or replaced by a new one.
The whole framework contains four layers. At the first layer, the Test Tasks Organization
defines a set of conceptual test tasks of Web applications and the relationships between test
tasks. At the second layer, the Role Organization consists of a set of role classes. At the third
layer, the Role Instance Space consists of role instances. Each role instance is an instance of
an associated role class which was defined in role organization. At the fourth layer, the
Agent Organization one consists of various agents. Agents are free to join or leave the agent
organization, and they can take one or more than one role instances. An agent can not only
take roles at run time, but also release them if they are not needed any more. The
relationships between agents are based on the relationships between roles that are taken.

4. Multi-agent systems approaches in software engineering
In this section, the research work relevant to utilising agent systems as an approach to
confront with SE tasks will be highlighted. This work targets web-based applications and
distributed database applications.

4.1 An agent-based data-flow testing approach for web applications
In (Qi et al., 2006), an application of the framework introduced in (Kung, 2004) (see 3.5) is
presented. In this research, a particular testing approach (Qi et al., 2005) is selected and it is

Agent Systems in Software Engineering

149

shown how the framework assists the design of agent-based web application (WA) testing
systems.
The testing task can be decomposed into many small subtasks and each subtask can be
completed by an autonomous agent. In particular, agent-based data-flow testing is
performed at the method level, object level, and object cluster level. Each level of testing is
managed by a specific type of test agent. In the process of the recommended data-flow
testing, an agent-based WA testing system (WAT) will automatically generate and
coordinate test agents to decompose the task of testing an entire WA into a set of subtasks
that can be accomplished by test agents.
A high level test agent can create low level test agents and ask them to complete the
corresponding low level testing. Based on objects shared by low level test agents, a high
level test agent constructs its test models and performs the comparatively high level testing
that cannot be accomplished by low level test agents. Consequently, a high level testing task
is completed by the cooperation of a set of low level test agents and a high level test agent.
The testing process of the proposed approach is a hybrid of a top-down process, in which a
testing task is decomposed into subtasks, and a bottom-up process, in which test agents
build test models and perform data-flow testing at corresponding abstraction levels to
complete the subtasks.
Similar to the data-flow testing of non-WA, data-flow testing of WA requires adequate test
models and proper test criteria. A Control-flow Graph (CFG) annotated with data-flow
information is a generally accepted approach to model non-WA. However, a CFG has to be
extended to properly handle new features of WA.
In this design, the WAT consists of two types of test agents, a blackboard, and a test case
pool. The blackboard serves as the message exchanging centre in WAT and the test case
pool that stores all the test cases. The test agent (Rao & Georgeff, 1995) based on the BDI
model contains beliefs (observations about the environment and other agents), desires (goals
to be accomplished), and intentions (action plans to achieve goals).

4.2 An agent approach to quality assurance and testing web software
In (Zhu, 2004), the application of Lehman’s theory (Lehman & Ramil, 2001) of software
evolution to web-based applications is studied. It is claimed that web applications are by
nature evolutionary and, hence, satisfy Lehman’s laws of evolution. The essence of web
applications implies that supporting their sustainable long term evolution should play the
central role in developing quality assurance and testing techniques and tools. Therefore, two
basic requirements of such a software environment can be identified. First, the environment
should facilitate flexible integrations of tools for developing, maintaining and testing
various kinds of software in a variety of formats over a long period of evolution. Second, it
should enable effective communications between human beings and the environment so
that the knowledge about the system and its evolution process can be recorded, retrieved
and effectively used for future modification of the system.
The solution proposed in (Zhu, 2004) to meet these requirements is a cooperative multi-
agent software growth environment (Zhu et al., 2000; Huo et al., 2003). In this environment,
various tools are implemented as cooperative agents interacting with each other and with
human users at a high level of abstraction using ontology.
The software environment consists of the two types of agents. Service agents provide
various supports to the development of software systems in an evolutionary strategy. They
fulfil the functional requirements of development and quality assurance and testing,

 Tools in Artificial Intelligence

150

verification and validation functionalities. Management agents manage service agents and
are responsible for the registration of agents’ capabilities, task scheduling, and monitoring
and recording agents’ states and the system’s behaviours. Each service agent is specialized
to perform a specific functional task and deal with one representation format. They
cooperate with each other to fulfil more complicated tasks.
The agent society is dynamically changing; new agents can be added into the system and
old agents can be replaced by a newer version. This makes task scheduling and assignment
more important and more difficult as well. Therefore, management agents are implemented
as brokers to negotiate with testing service agents to assign and schedule testing activities to
testing service agents. Each broker manages a registry of agents and keeps a record of their
capabilities and performances. Each service agent registers its capability to a broker when
joining the system. Tests tasks are also submitted to the brokers.
These agents co-exist with the application software system throughout the application
system’s whole lifecycle to support the modifications of the system. They monitor the
evolution process and record the modifications of the system and the rationales behind the
modifications. They extract, collect, store and process the information about the application
system and its performance, and present such knowledge to human beings or other software
tools when requested. They interact with the users and developers cooperatively.
The environment grows with the application system as new tools are integrated into the
environment to support the development and maintenance of new components and as the
knowledge about the system is accumulated over the time. Such a software environment is
called a growth environment. It significantly differs from software development
environments and run-time support environments such as middleware, where evolution is
not adequately supported.
In order to enable agents to cooperate effectively with each other and with human users,
they communicate with each other through a flexible and collaboration protocol and codify
the contents of messages in an ontology which represents knowledge about the application
domain and software engineering (Zhu & Huo, 2004). The interaction protocol is developed
on the basis of speech-act.

Agent Functionality
GWP: Get Web Page Retrieve web pages from a web site
WPI : Web Page
Information

Analyse the source code of a web page, and extract the metadata,
hyperlinks and structural information from the code

WSS: Web Site
Structure

Analyse the hyperlink structure of a web site, and generate a node-
link-graph describing the structure

TCG: Test Case
Generator

Generate test cases to test a web site according to certain testing
criteria

TCE: Test Case
Executor Execute the test cases, and generate execution results

TO: Test Oracle Verify whether the testing results match a given specification
TA: Testing
Assistant

Perform as user interface and guide human testers in the process of
testing

WSM: Web Site
Monitor

Monitor the changes of web sites, and generate new testing tasks
accordingly

Table 1. Agents for testing web applications.

Agent Systems in Software Engineering

151

4.2.1 Developing a software testing ontology
In (Zhu & Huo, 2004), the design and utilisation of a software testing ontology is proposed.
This attempt has the target to enrich the approach presented in (Zhu, 2004). It represents the
knowledge of software engineering and codifies the knowledge for computer processing as
the contents of an agent communication language. The ontology is represented in UML at a
high level of abstraction so that it can be validated by human experts. It is also codified in
XML for computer processing to achieve the required flexibility and extendibility. The
concepts of the ontology and the relations between them are defined while their properties
are also analysed. Speech-act theory is incorporated in the system and combined with the
ontology to define communication protocols and to facilitate collaborations between agents.
In order to specify this ontology, a testing concept taxonomy is introduced. Taxonomy is a
way to specify and organize domain concepts. Concepts are divided related to software
testing into two groups: the basic concepts and compound concepts. There are six types of
basic concepts related to software testing, which include testers, context, activities, methods,
artefacts, and environment. Compound concepts are those defined on the bases of basic
concepts, for example, testing tasks and agent's capability. Relationships between basic
concepts as well as compound concepts are also introduced. Basic relations between basic
concepts form a very important part of the knowledge of software testing. Therefore, they
are stored in a knowledge-base as basic facts.

Fig. 1. Ontology of software testing

4.3 An agent approach for the maintenance and testing of database applications
In (Gardikiotis et al., 2007a), an approach for the software engineering of distributed
database applications (DA) is presented. The approach is founded on the employment of
software agents and adopts the architecture of an intelligent, flexible and extensible agent
system that complies with the nature of multi-tier DAs. Among these agents, there are
specialized agents that are capable of performing the software maintenance and testing
tasks for the DAs’ source code by supporting techniques and metrics tailored for this
application type. There exist also general-purpose agents that provide significant information
that can be used by other DAs’ software engineering tasks (Gardikiotis et al., 2007b).

Ontology of software testing

Basic
Concepts

Tester Context Method

Environment Artefact Activity

SW testing
Concepts

Compound
Concepts

Capability

Task

Relations

Basic
relations

Compound
relations

Capable_of

More_
powerful

Subsumes

 Tools in Artificial Intelligence

152

The rationale behind utilizing agent technology has to do with the interoperability of the
software resources belonging to potentially disparate application components and disparate
domains. Towards this direction, agents offer a unified platform of interaction through
agent communication, exhibiting the following characteristics:
• Extensibility and scalability. The presented architecture can easily be extended to

support other software engineering tasks. In fact, the presented system is derived from
an extended version of previous work described in (Gardikiotis et al., 2007a), which
focused solely on software maintenance.

• No performance degradation. The communication overhead caused by agent
interaction is minimal in comparison with the process time of each individual software
engineering task itself (such as the graph construction, the test case generation etc.).

• Intelligent and pro-active behaviour. The system functions in an adaptive manner by
improving its mode of operation according to application complexity and coupling.

• Declarative ontology. This approach manages to encompass a customizable but formal
knowledge representation to the overall agent system.

Distributed application nature. The distributed nature of the agent system fits well with the
distributed nature of multi-tier applications.

4.3.1 Architecture
The architecture of the presented system is shown in Figure 2. The agents that are general in
the DAs’ software engineering processes are grey-coloured, whereas the maintenance
agents’ names are written in italics and the testing agents’ names are underlined. Following
a top-down approach, the role of each agent involved in the system is described.

Fig. 2. Architecture

At the data level of the system, the Schema Analyzer (SA) agent stores a representation of
the database schema in order to identify inter-dependencies between the database objects.
The Database Listener (DBL) agent monitors the underlying databases (DB1…DBn) for any

Agent Systems in Software Engineering

153

potential changes, requests from the Schema Analyzer the full set of affected database
objects and can initiate the process of identifying the impact of each change into the
application code by requesting this analysis from the Maintenance Assessor (MA) agent.
The Execution Plan Retriever (EPR) agent retrieves from the database/s the execution plan
for a specific database statement, which is given by a request from the data Tier Coordinator
(TC). The TC is common for all levels, namely the data, the tier and the system level and acts
as a broker, i.e. any communication between agents of different levels is transmitted
through this agent. Moreover, this agent keeps track of the actual execution traces of the
system that will be necessary in case of a dynamic analysis approach.
Apart from the TC, the data and the tier level share also the following agents: the
Application Parser (AP), the Graph Builder (GB), the Test Cases Generator (TCG), the Test
Data Generator (TDG), the Test Adequacy Measurer (TAM) and the Clustering Detector
(CD). The AP parses and analyses the source code for all units included in the specific tier
while the GB creates an abstract graph representation of the tier code. This representation
has the form of different types of graphs that facilitate program comprehension together
with the application of testing, maintenance and clustering techniques. It can also be used
for the impact analysis performed by the Maintenance Assessor (MA) agent.
The graphs derived from the GB are used by the CD and the TCG. The former agent
investigates the partitioning of the graph based on metrics provided by the TCG and the
MA agents. The latter agent generates test cases for the provided graphs according to some
adequacy criteria defined and referred to by the TAM. The produced set of test cases is
given as input to the TDG which generates the corresponding set of test data.
The system level of the infrastructure includes the Maintenance Assessor (MA), the
Refactorer (RF) and the Testing Assistant (TA) agents. The MA assesses the DA’s
maintainability with reference to the schema of the underlying database and estimates the
impact of a potential change in the database schema into the application source code. It has
to retrieve the units/statements that are related to the altered database objects in order to
offer an indication of the workload with respect to the source code changes that might be
needed to retain its operability. The RF provides specific semantic-preserving
transformations that aim to increase the DA’s maintainability.
Lastly, the TA triggers and controls the overall testing process. The trigger event can be
either a human request or a request from the MA, which informs the TA about the effects of
the maintenance process on the DAs’ source code.
In this system, agents of similar functionalities may have different capabilities and they may
deal with heterogeneous information formats. They can also be implemented using different
algorithms and they can be executed on different platforms. Agents can enter the system
and other agents can abandon the system dynamically. Therefore, agents register their
capabilities to a specialized agent that the system offers, namely the matchmaker agent
(MM). This agent offers a directory-like service (Lazarou & Clark, 1998) very common to the
agent literature. It accepts and stores registrations and de-registrations from other agents in
an internal knowledge base (KB). Task requests are also submitted to this agent in order to
find other agents that provide a set of desired capabilities. After accepting such a request,
the MM has the job to look up in the KB, to retrieve the agent(s) that best match the criteria
and to reply to the agent that sent the request with the id(s) of the retrieved agent(s). From
this point onwards, agents can employ direct communication.
With respect to ontological issues, in this work the focus is on classifying and representing
software engineering concepts. A categorization widely acceptable in the software

 Tools in Artificial Intelligence

154

engineering community is used. This illustration (Figure 3) is based on (IEEE, 2004) and
(SWEBOK, 2004). In addition some topics (e.g. testing levels), which are highly relevant to
the tasks of the agents, are further analyzed.

Fig. 3. Software Engineering (SE) Taxonomy

4.3.2 The agents
The agents can be categorized in three groups according to their intending tasks: software
maintenance agents, software testing agents and general software engineering purpose
agents.
Software Maintenance Agents
Maintenance Assessor (MA): provides an assessment of the DAs’ maintainability against
schema changes. It is a system-level agent that triggers and guides the maintenance process

Agent Systems in Software Engineering

155

receiving a request from the data-level TC that was initially sent by the DBL. A graphical
user interface is additionally provided for human user requests. To retrieve the information
required for the assessment the MA communicates with the TCs. Upon the completion of its
assessment task, the MA may request from the RF a set of refactorings in order to achieve a
specified level of maintainability. Furthermore, it can request from the TA to trigger the
testing process in order to ensure the DAs’ source code validity.
Refactorer (RF): provides a set of refactorings to increase the maintainability of the DA.
Refactoring can be defined as a technique for restructuring an existing body of code, altering
its internal structure without changing its external behaviour (Fowler, 1999), i.e. practically
each refactoring can be viewed as a semantics preserving transformation.
Software Testing Agents
Test Case Generator (TCG): generates a set of test cases that usually refers to an abstract
representation of the application source code depending on the supported technique type.
The effectiveness of the generation process can be assessed by measuring the coverage of
specific test adequacy criteria.
Test Data Generator (TDG): given a set of test cases the TDG automatically produces test
data for them using a supported test data generation algorithm.
Test Adequacy Measurer (TAM): based on the specific testing objective the TAM proposes
and measures the coverage of a set of test adequacy criteria.
Execution Plan Retriever (EPR): given a database statement the EPR retrieves from the
DBMS the corresponding execution plan. This plan is necessary for the TCG to produce test
cases for DAs.
Testing Assistant (TA): the TA is a system-level agent that guides the testing process. To
trigger testing it either receives a request from the data-level TC or from the system-level
MA agents. This request contains a description of the changes in the database schema or the
DA’s source code respectively. Furthermore, the agent provides a user interface to accept
requests from a human tester. The TA decides on the level of testing and the test adequacy
criteria based on the available information about coupling and complexity metrics as well as
the sizes and the number of DA’s clusters.
General Software Engineering Agents
Database Listener (DBL): captures the modifications made in the database schema and
triggers the impact assessment.
Application Parser (AP): parses and statically analyses the DA’s unit source code. The
information gained from the analysis constitutes the basis for the performance of software
engineering activities such as testing and maintenance.
Graph Builder (GB): provides a set of graph representations of the DA’s source code, which
is independent from the implementation language.
Tier Coordinator (TC): the TC agent serves as a local matchmaker agent (MM), i.e. it offers a
directory-like service. It is aware of each tier-based agent capabilities (after receiving a
corresponding register message) and uses this knowledge upon a request that is submitted
by tier independent agents or other TCs located on different tiers/levels.
Schema Analyzer (SA): the SA agent resides in the data-tier and keeps a representation of
the database schema in order to effectively detect dependencies between the database
objects.
Clustering Detector (CD): detects the possibility of application clustering that will facilitate
the software testing activities. Clustering refers to collections of source code units that are
more or less relevant to activity’s target.

 Tools in Artificial Intelligence

156

5. Agent-oriented software engineering
It has been already mentioned that the focus of this chapter is not about applying software
engineering models to assist the creation of multi-agent systems. However, in the last years,
together with the increasing acceptance of agent-based computing as a novel software
engineering paradigm, there has been a great deal of research related to the identification
and definition of suitable models and techniques to support the development of complex
software systems in terms of MAS (Gervais et al., 2004). As a result, in order to augment the
completeness of the survey, a brief depiction of this research area follows.
This research, which can be roughly grouped under the term ‘‘agent-oriented software
engineering’’, proposes a variety of new metaphors, formal modelling approaches,
development methodologies and modelling techniques, specifically suited to the agent-
oriented paradigm. The current trends in this area are outlined as follows (Zambonelli &
Omicini, 2004):
• Agent modelling. Novel formal and practical approaches to component modelling are

required, to deal with an agent as an autonomous, pro-active, and situated entity. A
variety of agent architectures are being investigated, each of which is suitable to model
different types of agents or specific aspects of agents: purely reactive agents, logic
agents (Van der Hoek & Wooldridge, 2003), agents based on belief, desire and
intentions (Rao et al., 1995). Overall, this research has so far notably clarified the very
concept of agency and its different facets.

• MAS architectures. As it is necessary to develop new ways of modelling the
components of a MAS, in the same way it is necessary to develop new ways of
modelling a MAS as a whole. Detaching from traditional functional-oriented
perspectives, a variety of approaches are being investigated to model MAS. In
particular, approaches inspired by societal, organisational, and biological metaphors,
are the subject of the majority of researches and are already showing the specific
suitability of the different metaphors in different application areas.

• MAS methodologies. Traditional methodologies of software development, driving
engineers from analysis to design and development, must be tuned to match the
abstractions of agent-oriented computing. To this end, a variety of novel methodologies
to discipline and support the development process of a MAS have been defined in the
past few years (Kolp et al., 2002; Wood et al., 2001), clarifying the various sets of
abstractions that must come into play during MAS development and the duties and
responsibilities of software engineers.

• Notation techniques. The development of specific notation techniques is needed to
express the outcome of the various phases of a MAS development process; traditional
object- and component-oriented notation techniques cannot easily apply. In this context,
the AUML proposal (Bauer et al., 2001), extending standard UML toward agent-
oriented systems, is the subject of a great deal of research and it is rapidly becoming a
de facto standard.

• MAS infrastructures. To support the development and execution of MAS, novel tools
and novel software infrastructures are needed. In this context, various tools are being
proposed to transform standard MAS specifications (i.e., AUML specifications) into
actual agent code (Bergenti & Poggi, 2002), and a variety of middleware infrastructures
have been deployed to provide proper services supporting the execution of MAS.

Agent Systems in Software Engineering

157

With respect to MAS methodologies, research work involves the definition of a common
framework for MAS specification, which includes the identification of a minimum set of
concepts and methods that can be agreed in the different approaches (Bernon et al., 2006).
The tool for defining this framework is meta-modelling. Achieving concrete results in this
area would be very useful for several reasons:
1. This partly solves the lack of standardization in this area.
2. This could encourage the development of more flexible and versatile design tools.
3. This is one of the essential steps for reaching a concrete maturity in the study of the
 whole agent design process.
The definition of MAS meta-models has led to the identification (and formalization) of a
unified meta-model. Nevertheless, the research is still in its early stages, and several
challenges need to be faced before agent-oriented software engineering can deliver its
promises, becoming a widely accepted and a practically usable paradigm for the
development of complex software systems.

6. Conclusion
In this chapter, the application of multi-agent systems to tackle the software engineering
task was outlined. The concentration was on the employment of agent technology in order
to deal with distributed software systems and mainly distributed database applications and
web applications.
The rationale behind utilizing agent technology has to do with the multi-tier architecture
and the associated inherent complication of distributed applications and the required
interoperability of software resources belonging to potentially disparate application
components and disparate domains. To meet these requirements, agents offer a unified
platform of interaction through agent communication.
The current research status can be classified according to two principal tracks. The first one
has as a goal to provide an agent infrastructure to support software testing. This is realised
by suggesting multi-agent frameworks that can be used as a model to build agent systems
for testing service-oriented web applications. The second one has a more applied nature.
This research track aims at presenting an agent system for tackling the issues of software
maintenance and testing of distributed applications.
Analysing the aforementioned research attempts some general comments can be stated. A
first and important comment is that all approaches have a quite narrow scope. On the one
hand, the application domain is related to web services, web applications and database
applications. The only exception is the work of (Yamany et al., 2006) but even in this case
only 3-tier applications are considered. These domains have a surely specific nature even
though they provide a solid basis for introducing the existing attempts.
Moreover, this restriction is made clearer by the fact that the software engineering process is
not covered in its complete form. Almost all attempts target software testing with the
exception of (Gardikiotis et al., 2007a) where software maintenance is also treated in depth.
The above work is also the only one where the existing platform has proven its extensibility
by including generic software engineering agents.
Focusing on infrastructural approaches, the work of both (Ma et al., 2007) and (Xu et al.,
2006) has a very specific objective which is to support agent collaboration. Besides this
commonality, the research of (Xu et al., 2006) is more tailored to software testing
encompassing the notion of test tasks while the one of (Ma et al., 2007) recommends an

 Tools in Artificial Intelligence

158

agent design for web service autonomy. However, in both cases there is no actual system to
verify the expected benefits of the two mechanisms.
With respect to agent frameworks (Yamany et al., 2006; Bai et al., 2006; Kung, 2004; Miao et
al., 2007), the common aspiration is to model software testing. The testing process is
decomposed into phases during test planning while these plans can be executed
asynchronously. Additionally, different testing techniques can be chosen by different
agents, the agent society is dynamic (agents can enter or exit the system during execution
time) while the whole procedure is being coordinated by specialized agents.
The proposals of (Kung, 2004; Miao et al., 2007) offer an additional benefit that they are
based on a sound formal ground employing the BDI metaphor and the Gaia methodology
respectively. The work of (Kung, 2004) extends UML to put forward novel agent-oriented
diagrammatic techniques that are anticipated to assist agent modelling. The research of
(Miao et al., 2007) exhibits advanced flexibility since agents can change testing roles
dynamically. Finally, in all cases besides (Kung, 2004) no particular approach has been
bundled to validate the strength of the model’s functionality while the issues of test
planning optimization and agent society evolution need further exploration.
Proceeding with multi-agent systems approaches (Qi et al., 2006; Zhu, 2004; Gardikiotis et
al., 2007a) they do not share many things in common. In all three approaches, agents can be
designed for different tasks, deal with different representation formats and deployed on
different platforms. In both (Qi et al., 2006; Zhu, 2004) the application domain is the one of
web applications where test tasks are decomposed into subtasks and test agents that
undertake these subtasks work together to complete the testing task. In (Qi et al., 2006) the
objective is to show an implementation of (Kung, 2004) by adjusting a data-flow testing
method to properly handle web applications.
The approaches of (Zhu, 2004; Gardikiotis et al., 2007a) suggest enriched architectures since
they have an evolutionary and adaptive nature where existing techniques can be adapted to
new application environments while new techniques can be also plugged in. Furthermore,
ontological aspects are taken into consideration. Nevertheless, ontological treatment is
substantially different. In (Zhu, 2004) a specialized taxonomical scheme is devised by the
author to support software testing. The key offering is that besides basic concepts,
compound concepts and concept relationships can be expressed. On the other hand, in
(Gardikiotis et al., 2007a) the ontological representation is grounded on IEEE standards
making it undoubtedly acceptable in almost any application environment. And although
currently no compound concepts or concept relationships are defined, the selected
representation leaves room to encompass such features in the future. In addition, a
drawback of the ontological scheme proposed in (Zhu, 2004) is that it is represented in two
different notations, UML and XML. This raises an issue of how to definitely ensure the
consistency between them.
Concluding, the level of agent sophistication is also dissimilar. In (Zhu, 2004) agent
functionalities are relatively straightforward since the focus is in other aspects. On the
contrary, there are several agents that employ advanced intelligent techniques; for example
the ones responsible to endorse the tasks of clustering and refactoring.

6.1 Future work
There are different future directions with respect to applying agent systems technology in
software engineering. Starting with the current research status that introduces agent
infrastructural frameworks, the following can be stated:

Agent Systems in Software Engineering

159

• Investigating the application of agent technology to model software engineering tasks
other than software testing is obviously a desired future path.

• Applying the framework in a variety of distributed systems is absolutely necessary to
optimise the model’s functionality.

• Since this work has a somewhat theoretical nature, it is important that tools are
developed to verify and validate the models through the use of a set of concrete test
agents.

• Integrating third-party technology, methods or tools to the framework is expected to
constantly increase its functionalities.

• Designing of more specific role organizations (that have to be consistent with
corresponding agent organizations) and more formal definition of the mechanism of
test planning is also advisable. This can include rule-based test planning, partially order
plan generation and plan partitioning.

Continuing with current research relevant to agent multi-agent systems approaches, some of
the remarks to be stated share some similarity to the above ones. More specifically:
• Completing the picture of the software engineering process would be a nice step

forward.
• Expanding the work to handle a diversity of distributed software systems is also

needed.
• The current approaches have reached a prototype level. Thoroughly testing, evaluating

and deploying the agent systems, is in demand so that these approaches reach the level
of a full-fledged ready to use system.

• Implementing an even richer variety of test agents. Especially, it would be really
significant to employ deeper intelligent techniques (coming from the Machine Learning
literature for example) in order to enhance the agent capabilities.

• Establishing a common ontological representation. This representation has the goal to
be on the one hand readable and declarative from the human point of view and on the
other hand flexible and able to be captured from the machine part. An agent-oriented
modelling language such as AUML could prove necessary to catch the agents’
autonomous and social behaviours.

A more detailed comment about web systems is that extending the current work to handle
dynamically generated Web pages and to incorporate automatic test case generation
techniques such as navigation testing and object state testing would refine the agent
approach.

7. References
Bai, X.; Dai, G.; Xu, D. & Tsai, W.T. (2006). “A Multi-Agent Based Framework for

Collaborative Testing on Web Services”, Proceedings of the 2nd International
Workshop on Collaborative Computing, Integration, and Assurance, WCCIA 2006,
Page(s): 205-210.

Bauer, B.; Muller, J. P. & Odell, J. (2001). ‘‘Agent UML: A formalism for specifying multi-
agent software systems,’’ Int. J. Soft. Eng. Knowl. Eng. vol. 11, no. 3, pp. 207 – 230.

Bergenti, F. & Poggi, A. (2002). ‘‘Agent-oriented software construction with UML,’’ in The
Handbook of Software Engineering and Knowledge Engineering - volume 2 -
Emerging Technologies, World Scientific: Singapore, pp. 757 – 769.

 Tools in Artificial Intelligence

160

Bernon, C.; Cossentino, M. & Pavon, J. (2005). Agent-oriented software engineering. The
Knowledge Engineering Review, Vol. 20, no. 2, pp. 99-116, June 2005

Buhler, P. & Vidal, J. M. (2003). "Semantic Web Services as Agent Behaviours," in Agent-
cities: Challenges in Open Agent Environments, LNCS/LNAI, B. Burg, J. Dale, et
al., Eds. Berlin: Springer-Verlag.

Di Lucca, G.A. & Fasolino, A.R. (2006). Testing Web-based applications: The state of the art
and future trends. Information and Software Technology. 48, 12 (Dec. 2006), 1172-
1186.

Erl, T. (2005). Service-oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, NY, US.

Fowler, M. (1999). Refactoring: Improving the Design of Existing Code. Addison-Wesley,
0201485672, 1999.

Gardikiotis, S. K.; Lazarou, V. S. & Malevris, N. (2007a). “An Agent-based Approach for the
Maintenance of Database Applications”, Proc. 5th Int. Conference on Software
Engineering Research and Applications, IEEE Computer Society, pp.558-565, Busan,
Korea, August 2007.

Gardikiotis, S. K.; Lazarou, V. S. & Malevris, N. (2007b). “Employing Agents towards
Database Applications Testing”, Proc. 21st International Conference on Tools with
Artificial Intelligence (ICTAI’07), IEEE Computer Society, pp. 157-166, Patras,
Greece, October 2007.

Gervais, M.; Gomez, J. & Weiss, G. (2004). ‘‘A survey on agent-oriented software
engineering researches,’’ in: Methodologies and Software Engineering for Agent
Systems, Kluwer: New York (NY).

Huo, Q.; Zhu, H. & Greenwood, S. (2003). A Multi-Agent Software Environment for Testing
Web-based Applications, Proc. of COMPSAC'03, Dallas, 2003, 210-215.

IEEE (1990). IEEE Standard Glossary of Software Engineering Terminology, 610.12-1990
IEEE (2004). IEEE Standard for Software Maintenance, IEEE, 2004 {IEEE1219-2004}.
IEEE (1996). IEEE/EIA 12207.0-1996//ISO/IEC12207:1995, Industry Implementation of Int.

Std.ISO/IEC 12207:95, Standard for Information Technology - Software Life Cycle
Processes, IEEE, 1996 {IEEE12207.0-96}.

ISO (2006). ISO/IEC Standard for Software Engineering - Software Life Cycle Processes –
Maintenance, ISO/IEC, 2006 {ISO/IEC 14764}.

Jennings, N. R. (2001). ‘‘An agent-based approach for building complex software systems,’’
Commun. ACM, vol. 44, no. 4, pp. 35 – 41.

Kavi, K.; Kung, D.; Bhambhani, H.; Pancholi, G. Kanikarla, M. & Shah, R. (2003). “Extending
UML to Modelling and Design of Multi-Agent Systems,” In Proc. of ICSE 2003
Workshop on Software Engineering for Large Multi-Agent Systems (SELMAS),
Portland, Oregon, May 3–4, 2003.

Kolp, M.; Giorgini, P. & Mylopoulos, J. (2002). ‘‘A goal-based organizational perspective on
multi-agent architectures,’’ in Intelligent Agents VIII: Agent Theories,
Architectures, and Languages, vol. 2333 of LNAI, Springer-Verlag, pp. 128 – 140.

Kung, D.; Bhambhani, H.; Nwokoro, S.; Okasha, W.; Kambalakatta, R. & Sankuratri, P.
(2003). “Lessons learned from software engineering multi-agent systems,” Proc. of
IEEE COMPSAC’03, Dallas, Texas, November 3–6, 2003.

Agent Systems in Software Engineering

161

Kung, D. (2004). “An agent-based framework for testing Web applications”, Proceedings of
the 28th Annual International Computer Software and Applications Conference,
COMPSAC 2004, vol.2, Page(s): 174-177.

Lazarou, V. S. & Clark, K. L. (1998). “Agents for Hypermedia Information Discovery”,
Agents’ World 98, Co-operative Information Agents, Springer-Verlag Lecture Notes in
Artificial Intelligence (1435), 1998.

Lehman, M. M. & Ramil, J. F. (2001). Rules and Tools for Software Evolution Planning and
Management. Annals of Software Engineering, Special Issue on Software
Management, 11(1), 15-44.

Ma, Y.F.; Li, H.X. & Sun, P. (2007). A Lightweight Agent Fabric for Service Autonomy. Proc.
of International Workshop on Service-Oriented Computing: Agents, Semantics, and
Engineering, 2007, LNCS 4504, pp. 63-77, Springer-Verlag

Maamar, Z.; Kouadri-Most´efaoui, S. & Yahyaoui, H. (2005). ”Towards an Agent-based and
Context-oriented Approach for Web Services Composition,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 17, No. 5, pp. 686-697.

Miao, H.; Chen, S. & Qian, Z. (2007). A Formal Open Framework Based on Agent for Testing
Web Applications, International Conference on Computational Intelligence and
Security, 2007, pp. 281-285, 0-7695-3072-9

Nguyen, H.Q. (2000). Testing Applications on the Web: Test Planning for Internet-Based
Systems, John Wiley & Sons, Inc.

Qi, Y.; Kung, D. & Wong, E. (2005). “An Agent-Based Testing Approach for Web
Applications”, Proceedings of Computer Software and Applications Conference,
COMPSAC 2005, Volume 2, Page(s): 45-50.

Qi, Y.; Kung, D. & Wong, E. (2006). “An agent-based data-flow testing approach for Web
applications.” Information and Software Technology. 48, 12 (Dec. 2006), 1159-1171.

Rao, A.S. & Georgeff, M. (1995). BDI agents: from theory to practice, in: Proceedings of the
First International Conference on Multi-Agent System (ICMAS’95), San Francisco,
CA, USA, pp. 312–319.

Richards, D.; van Splunter, S.; Brazier, E. & Sabou, M. (2003). “Composing web services
using an agent factory,” In Prc. of the 1st Workshop Web Services arid Agent Based
Engineering, Sydney, Australia.

Russel, S. & Norvig, P. (2003). Artificial Intelligence: A Modern Approach, Prentice
Hall/Pearson Education International: Englewood Cliffs (NJ), (2nd Edn), 2003.

Saint-Andre, P. (2005). Streaming XML with Jabber/XMPP, IEEE Internet Computing,
Volume 9, Issue 5, Page(s):82 – 89.

Smith, G. (2000). The Object-Z Specification Language. Advances in Formal Methods.
Kluwer Academic Publishers.

Sommerville, I. (2004). Software Engineering, 7th edition, Addison-Wesley, 2004.
SWEBOK (2004). Guide to the Software Engineering Body of Knowledge (February 6, 2004).

Retrieved on 2008-02-21.
Sycara, K.; Paolucci, M.; Soundry, J. & Srinivasan, N. (2001). “Dynamic discovery and

coordination of agent-based semantic web services,” IEEE Computing, 8(3):66-73.
Tsai, W.T.; Paul, R.; Yu, L.; Saimi, A. & Cao, Z. (2003). “Scenario-Based Web Service Testing

with Distributed Agents,” IEICE Transaction on Information and System, Vol. E86-
D, No. 10, pp. 2130-2144.

 Tools in Artificial Intelligence

162

Van der Hoek, W. & Wooldridge, M. (2003). ‘‘Towards a logic of rational agency,’’ Logic J.
IGPL, vol. 11, no. 2, pp. 135 – 160.

Wood, M.; DeLoach, S. A.; & Sparkman, C. (2001). ‘‘Multi-agent system engineering’’, Int. J.
Software Eng. Knowl. Eng., vol. 11, no. 3, pp. 231 – 258.

Xu, D.; Bai, X.; & Dai, G. (2006). "A Tuple-Space-Based Coordination Architecture for Test
Agents in the MAST Framework," Second IEEE International Symposium on
Service- Oriented System Engineering (SOSE'06), pp. 57-66, 2006

El Yamany, H.F., Capretz, M.A.M. & Capretz, L.F. (2006) A Multi-Agent Framework for
Testing Distributed Systems, IEEE COMPSAC 3rd International Workshop on
Quality Assurance and Testing Web-Based Applications (QATWBA’2006), Chicago,
IL, USA, September, pages 151–156.

Zambonelli, F.; Jennings, N.; Omicini, A.; & Wooldridge, M. (2001). ‘‘Agent-oriented
software engineering for internet applications,’’ in Coordination of Internet Agents:
Models, Technologies, and Applications, Springer-Verlag: Berlin (D), pp. 326 – 346.

Zambonelli, F.; Jennings, N.; & Wooldridge, M. (2003). ‘‘Developing multi-agent systems:
The Gaia methodology,’’ ACM Trans. Soft. Eng. Meth., vol. 12, no. 3, pp.417 – 470.

Zambonelli, F. & Omicini, A. (2004). Challenges and Research Directions in Agent-Oriented
Software Engineering, Journal of Autonomous Agents and Multi-agent Systems 9(3),
pp. 253-284.

Zhu, H., Greenwood, S., Huo, Q. & Zhang, Y. (2000). Towards agent-oriented quality
management of information systems, Workshop Notes of 2nd International
Workshop on Agent-Oriented Information Systems at AAAI'2000, Austin, USA,
July 30, 2000, 57-64.

Zhu, H. & Huo, Q. (2004). Developing A Software Testing Ontology in UML for A Software
Growth Environment of Web-Based Applications, Software Evolution with UML
and XML, Hongji Yang (eds.), Idea Group Inc, 2004.

Zhu, H. (2004). “Cooperative agent approach to quality assurance and testing Web
software”, Proceedings of COMPSAC 2004 vol.2, Page(s): 110-113.

10

A Joint Probability Data Association Filter
Algorithm for Multiple Robot Tracking Problems

Aliakbar Gorji Daronkolaei, Vahid Nazari, Mohammad
Bagher Menhaj, and Saeed Shiry

Amirkabir University of Technology, Tehran,
 Iran

1. Introduction
Estimating the position of a mobile robot in a real environment is taken into account as one
of the most challenging topics in the recent literature (Fox et al., 2000). This problem can be
usually explored in two ways. Firstly, a mobile robot should be able to have knowledge
about its current position. The Dead-reckoning of a mobile robot may be used to update the
position of the robot assuming the initial position is known. However, the encoders of a
robot cannot provide precise measurements and, therefore, the position obtained by this
way is not reliable. To achieve more accurate approximation of a robot’s position,
measurements obtained by sensors set on a robot are used to correct the information
provided by the encoders. If the mapping of a physical environment is known, the above-
mentioned procedure can be easily accomplished by using some well-known approaches
such as Kalman filtering (Kalman & Bucy, 1961) to localize the exact position of a mobile
robot (Siegwart & Nourbakhsh, 2004). However, when there is not any knowledge about the
map, mapping and localization should be conducted simultaneously. The aforementioned
topic is known as Simultaneous Localization and Mapping (SLAM) in the literature
(Howard, 2005).
In many applications, one may intend to localize other robots’ position via a reference robot.
Robot soccer problems or people tracking scenarios can be fallen in the pre-mentioned
category. Although this problem appears similar to the common localization algorithms, the
traditional approaches can not be used because the reference robot does not access to the
odometry data of each mobile robot used in localization algorithms to predict the future
position of the robot. This issue may be completely perceivable in the people tracking
scenario because there is not any information about the movement of people. In this case,
some models should be proposed to represent the movement of each object. By defining a
suitable motion model for each target and using measurements provided by a reference
robot about the current position of the moving object, a linear/nonlinear state space model
is constructed representing the movement of each object.
The above-discussed topic can be fallen in the category of target tracking problems where
the final aim is defined as tracking the position of a mobile object by a reference sensor.
Because of inaccurate data obtained by sensors and uncertain motion models which may not
provide reliable prediction of an object’s movement, filtering algorithms are used to extract

 Tools in Artificial Intelligence

164

the position of a mobile target. Kalman filtering has been the first method applied to the
field of target tracking. However, the Kalman method and, even, its generalized form
known as extended Kalman filter (EKF) (Anderson & Moore, 1979) do not provide reliable
results for nonlinear state space models. This problem is very common in tracking
applications where the sensor algebraic equations are usually nonlinear towards the
position of a target. To remedy the above problems, nonlinear filtering using the particle
filter algorithm has been proposed (Gordon et al., 1993), (Doucet et al., 2001). Particle
filtering has been extensively applied to many real themes such as aircraft tracking (Ristic et
al., 2004), target detection/tracking (Ng et al., 2004), navigation (Gustafsson et al., 2002),
training artificial neural networks (Freitas 1999), control (Andrieu et al., 2004), etc. Besides
the ease of use, particle filter algorithms lead to much more accurate results than kalman
based approaches. Recently, the combination of particle and Kalman filtering has been also
applied to many tracking applications, specially, when some parameters of a motion model
may be also estimated beside the position of a target (Sarkka et al., 2005).
Multiple robot tracking is another attractive issue in the field of mobile robotics. This area
can be imagined as a generalized type of the common tracking problem. In other words, a
reference robot should localize other robots/agents position based on information obtained
by sensors. To do so, measurements should be associated to the appropriate target.
Moreover, some measurements may have been received from unwanted targets usually
known as clutters. The combination of the data association concept and common filtering
approaches has been used in the literature as the joint probability data association filter
(JPDAF) algorithm (Vermaak et al., 2005). This algorithm has been greatly used in many
applications such as multiple target tracking (Li et al., 2007), (Fortman et al., 1983), people
tracking (Schulz et al., 2003), and security planning (Oh et al., 2004). However, in the field of
multiple robot tracking, no comprehensive work has been done and many problems are yet
open. For example, unlike the traditional multiple target tracking scenarios in which sensors
may be assumed to be fixed or conduct an independent movement, a reference robot can
make an organized movement to track other robots position much more precisely. In other
words, the motion of a reference robot must be planned so that the robot can track other
robots much better. Although this case has been discussed in the literature as observer
trajectory planning (OTP) (Singh et al., 2007), proposed approaches are usually
implemented in an offline mode. This problem may not be so desirable in multiple robot
tracking scenarios where a reference robot should localize other robots simultaneously.
In this paper, some improvements are made on the traditional JPDAF algorithm for multiple
robot tracking applications. To provide a better representation of a robot’s movement,
different motion models proposed in the literature are used to evaluate the efficiency of
tracking. Moreover, a new fuzzy controller is proposed to find an optimal trajectory for the
movement of the reference robot. It will be shown that this fuzzy controller minimizes the
sum of distances between the reference robot and other mobile objects.
To maintain all of above-mentioned topics, this paper is organized as follows. Section 1
deals with the general theory of the JPDAF algorithm. The particle filter algorithm and the
concept of data association will be covered in this section. Section 3 discusses the JPDAF
algorithm for multiple robot tracking. In this section of the paper, different motion models
describing the movement of a mobile robot are represented. Section 4 is devoted to present
fuzzy logic controller for optimal observer trajectory planning. This section proposes a fuzzy
controller which can join with the JPDAF algorithm to enhance the quality of tracking.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

165

Simulation results confirming the superiority of our proposed algorithm are provided in
section 6. Finally, section 7 concludes the paper.

2. The JPDAF algorithm for multiple target tracking
In this section, the JPDAF algorithm considered as the most widely and successful strategy
for multi-target tracking under data association uncertainty is presented. The Monte Carlo
version of the JPDAF algorithm uses the common particle filter approach to estimate the
posterior density function of states given measurements ()ttp :1| yx . Now, consider the

problem of tracking N objects. k
tx denotes the state of these objects at time t where k=1,2,..,N

is the target number. Furthermore, the movement of each target can be described in a
general nonlinear state space model as follows:

 () ttt vxfx +=+1 (1-1)

 () ttt wxgy += (1-2)

where tv and tw are white noises with the covariance matrixes Q and R, respectively. Also,
in the above equation, f and g are the general nonlinear functions representing the
dynamical behavior of the target and the sensor model. The aim of the JPDAF algorithm is
to update the marginal filtering distribution for each target)|(:1 t

k
tp yx , k=1,2,..,N, instead of

computing the joint filtering distribution)|(:1 ttp yX , N
ttt xxX ,...,1= . To compute the above

distribution function, some remarks should be first noted as
1. That how to assign each target state to a measurement is crucial. Indeed, at each time

step the sensor provides a set of measurements. The source of these measurements can
be the targets or the disturbances also known as clutters. Therefore, a special procedure
is needed to assign each target to its associated measurement. This procedure is
designated as Data Association considered as a key stage of the JPDAF algorithm which
is described in next sections.

2. Because the JPDAF algorithm updates the estimated states sequentially, a recursive
solution should be applied to update the states at each sample time. Traditionally,
Kalman filtering has been a strong tool for recursively estimating the states of the
targets in the multi-target tracking scenario. Recently, particle filters joint with the data
association strategy have provided better estimations, specially, when the sensor model
is nonlinear.

With regard to the above points, the following sections describe how particle filters
paralleled with the data association concept can deal with the multi-target tracking problem.

2.1 The particle filter for online state estimation
Consider the problem of online state estimation as computing the posterior probability
density function)|(:1 t

k
tp yx . To provide a recursive formulation for computing the above

density function, the following stages are presented:
1. Prediction stage: the prediction step is proceeded independently for each target as

 Tools in Artificial Intelligence

166

 ∫
−

−−−−− =
k
t

k
tt

k
t

k
t

k
tt

k
t dppp

1

11:1111:1)|()|()|(
x

xyxxxyx (2)

2. Update stage: this step can be also described as follows:

 1: 1: 1(x | y) (y | x) (x | y)k k k
t t t t t tp p p −∝ (3)

The particle filter algorithm estimates the probability distribution density function
)|(1:1 −t

k
tp yx by sampling from a specific distribution function as follows:

 ∑
=

− −=
N

i

i
tt

i
tt

k
t wp

1
1:1)(~)|(xxyx δ (4)

Here i=1,2,...,N is the sample number, tw~ is the normalized importance weight and ().δ is

the delta dirac function. In the above equation, the state i
tx is sampled from the proposal

density function),|(:11 t
k
t

k
tq yxx − . By substituting the above equation in (2) and the fact that

states are drawn from the proposal function q, the recursive equation for the prediction step
can be written as follows:

),|(

)|(

:1
,
1

,
1

1
t

ik
t

k
t

ik
t

k
ti

t
i
t

q
p

yxx
xx

−

−
−=αα (5)

where ik
t

,
1−x is the thi sample of k

t 1−x . Now, by using (3) the update stage can be expressed as a
recursive adjustment of importance weights as follows:

)|(k
tt

i
t

i
t p xyw α= (6)

By repeating the above procedure at each time step, the sequential importance sampling
(SIS) algorithm for online state estimation is presented as below:

1. For i=1: N initialize the states i
0x , prediction weights i

0α and importance weights iw0 .
2. At each time step t proceed the following stages:

a. Sample states from the proposal density function as follows:
),|(~ :11 t

i
tt

i
t q yxxx − (7)

b. Update prediction weights by (5).
c. Update importance weights by (6).
d. Normalize importance weights as follows:

∑
=

= N

i

i
t

i
ti

t

w

ww

1

~ (8)

3. Set t=t+1 and go to 2.

Table. 1. The SIS Algorithm

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

167

For the sake of simplicity, the index k has been eliminated in Table 1. The main failure of the
SIS algorithm is the degeneracy problem. That is, after a few iterations one of the
normalized importance ratios tends to 1, while the remaining ratios tend to zero. This
problem causes the variance of the importance weights to increase stochastically over time
(Del Moral et al., 2006). To avoid the degeneracy of the SIS algorithm, a selection
(resampling) stage may be used to eliminate samples with low importance weights and
multiply samples with high importance weights. There are many approaches to implement
the resampling stage (Del Moral et al., 2006). Among them, the residual resampling provides
a straightforward strategy to solve the degeneracy problem in the SIS algorithm. By
combining the concept of residual resampling with the SIS algorithm presented before, the
SIR algorithm is described in Table 2.

1. For i=1: N initialize the states i
0x , prediction weights i

0α and importance weights iw0 .
2. At each time step t do the following stages:
 a. Do the SIS algorithm to sample states i

tx and compute normalized importance

 weights i
tw~ .

 b. Check the resampling criterion:
i. If threshNeff > , follow the SIS algorithm Else:

ii. Implement the residual resampling stage to multiply/suppress i
tx with

high/low importance weights.

iii. Set the new normalized importance weights as .1~
N

wi
t =

3. Set t=t+1 and go to 2.

Table. 2. The SIR Algorithm

In the above algorithm, effN is a criterion checking the degeneracy problem which can be
written as:

∑
=

= N

i

i
t

eff

w
N

1

2)~(

1 (9)

In (Freitas 1999), a comprehensive discussion has been made on how one can implement the
residual resampling stage.
Besides the SIR algorithm, some other approaches have been proposed in the literature to
enhance the quality of the SIR algorithm such as Markov Chain Monte Carlo particle filters,
Hybrid SIR and auxiliary particle filters (Freitas 1999). Although these methods are more
accurate than the common SIR algorithm, some other problems such as the computational
cost are the most significant reasons that, in many real time applications such as online
tracking, the traditional SIR algorithm is applied to recursive state estimation.

2.2 Data association
In the last section, the SIR algorithm was presented for online state estimation. However, the
major problem of the proposed algorithm is how to compute the likelihood

 Tools in Artificial Intelligence

168

function)|(k
ttp xy . To do so, an association should be made between measurements and

targets. Generally, two types of association may be defined as follows:
Definition 1: we will denote a target to measurement association (MT →) by

},,~{
~

Tc mmr=λ where }~,...,~{~
1 Krrr = and kr

~ is defined as:

⎪⎩

⎪
⎨
⎧

=
tmeasuremenjthegeneratedhasettkthefj

ectednotisettktheIfr thth

th

k arg
detarg0~ (10)

where j=1,2,...,m and m is the number of measurements at each time step and k=1,2,..,K
which K is the number of targets.
Definition 2: in a similar fashion, the measurement to target association (TM →) is defined
as },,{ Tc mmr=λ where },...,{ 1 mrrr = and jr is defined as follows:

⎪⎩

⎪
⎨
⎧

=
ettkthetoassociatedistmeasuremenjtheifk

associatednotistmeasuremenjtheIfr thth

th

j arg
0~ (11)

In both above equations, Tm is the number of measurements due to the targets and cm is
the number of clutters. It is very easy to show that both definitions are equivalent but the
dimension of the target to measurement association is less than the measurement to target
association dimension. Therefore, in this paper, the target to measurement association is
used. Now, the likelihood function for each target can be written as

 ∑
=

+=
m

i

k
t

i
t

ik
tt pp

1

0)|()|(xyxy ββ (12)

In the above equation, iβ is defined as the probability that the thi measurement is assigned

to the thk target. Therefore, iβ can be written as the following equation:

)|~(:1 tk
i irp y==β (13)

Before describing how to compute the above equation, the following definition is
represented:
Definition 3: we define the set λ~ as all possible assignments which can be made between
measurements and targets. For example, consider a 3-target tracking problem. Assume that
the following associations are recognized between targets and measurements:

}0{},3{},2,1{ 321 === rrr . Now, the set λ~ can be shown in Table 3.

Target 1 Target 2 Target 3
0 0 0
0 3 0
1 0 0
1 3 0
2 0 0
2 3 0

Table. 3. All possible associations between the targets and measurements for example 1

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

169

In Table 3, 0 means that the target has not been detected. By using the above definition, (11)
can be rewritten as

 ∑
=Λ∈

==
jr

tttk
ktt

pirp
~,~~

:1:1)|
~

()|~(
λ

λ yy (14)

The right side of the above equation is written as follows:

)
~

()
~

,|(
)(

)
~

,()
~

,|()|
~

(1:1
:1

1:11:1
:1 tttt

t

ttttt
tt pp

p
ppp λλλλλ −

−− == yy
y

yyyy (15)

In the above equation, we have used the fact that the association vector tλ
~ is not dependent

on the history of measurements. Each of density functions in the right hand side of the
above equation can be computed as follows:

1.)
~

(tp λ

The above density function can be written as

)()(),|~(),,~()
~

(TcTctTctt mpmpmmrpmmrpp ==λ (16)

The computation of each density function in the right hand side of the above equation is
straightforward and can be found in (Freitas 1999).

2.)
~

,|(1:1 tttp λ−yy

Because targets are assumed to be independent, the above density function can be written as
follows:

)|()()
~

,|(1:1max1:1 −Γ∈
−

− Π= t
j
t

r
j

m
ttt

j
tc pVp yyyy λ (16)

where maxV is the maximum volume in the line of sight of sensors, Γ is the set of all valid

measurement to target associations and)|(1:1 −t
j
t

r j
tp yy is the predictive likelihood for the

thj
tr)(target. Now, consider kr j

t = . The predictive likelihood function for the thk target can
be written as follows:

 ∫ −− = k
tt

k
t

k
t

j
tt

j
t

k dppp xyxxyyy)|()|()|(1:11:1 (17)

Both density functions in the right hand side of the above equation are estimated using the
samples drawn from the proposal density function. However, the main problem is how to
determine the association between measurements ty and targets. To do so, the soft gating
method is proposed in Table 4.

 Tools in Artificial Intelligence

170

1. Consider ki
t
,x , i=1,2,..,N, as the samples drawn from the proposal density function.

2. For j=1:m do the following steps for the thj measurement:
 a. For k=1:K do the following steps:
 i. Compute k

jμ as follows:

 ∑
=

=
N

i

ki
t

ki
t

k
j g

1

,,)(~ xαμ (18)

 Where g is the sensor model and k
tα

~ is the normalized weight as presented
 in the SIR algorithm.
 ii. Compute k

jσ by the following equation:

 ()()∑
=

−−+=
N

i

Tk
j

ki
t

k
j

ki
t

ki
t

k
j ggR

1

,,,)()(~ μμασ xx (19)

 iii. Compute the distance to the thj target as follows:

)()()(
2
1 12 k

j
j
t

k
j

Tk
j

j
tjd μσμ −−= − yy (20)

 iv. If ε<2
jd , assign the thj measurement to the thk target.

 b. End of the loop for k.
3. End of the loop for j.

Table. 4. Soft gating for data association

It is easy to show that the predictive likelihood function presented in (16) can be
approximated as follows:

),()|(1:1
kk

t
j
t

k Np σμ≈−yy (21)

where),(kkN σμ is a normal distribution with mean kμ and the covariance matrix kσ . By
computing the predictive likelihood function, the likelihood density function can be easily
estimated. In the next subsection, the JPDAF algorithm is presented for multi-target
tracking.

2.3 The JPDAF algorithm
The mathematical foundations of the JPDAF algorithm were discussed in the last sections.
Now, we are ready to propose the full JPDAF algorithm for the problem of multiple target
tracking. To do so, each target is characterized by a dynamical model introduced by (1). The
JPDAF algorithm is, therefore, presented in Table 5.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

171

1. Initialization: initialize states for each target as ki,
0x where i=1,2,..,N and k=1,2,...,K,

the predictive importance weights ki,
0α importance weights kiw ,

0 .
2. At each time step t proceed through the following stages:
 a. For k=1:K conduct the following procedures for each target:
 i. For i=1:N do the following steps:
 ii. Sample the new states from the proposal density function as follows:

),|(~ :1
,

1
,

t
ki

tt
ki

t q yxxx − (22)
 iii. Update the predictive importance weights as

),|(

)|(

:1
,

1
,

,
1

,
,
1

,

t
ki

t
ki

t

ki
t

ki
tki

t
ki

t
q

p
yxx

xx

−

−
−=αα (23)

 Then, normalize the predictive importance weights.
 iv. Use the sampled states and new observations ty to constitute the association

 vector for each target as },0|{ kmjjR j
k →≤≤= y where (k→) refers to the

 association between the thk target and the thj measurement. Use the soft
 gating procedure described in the last subsection to compute each
 association.
 v. Constitute all possible associations for the targets and make the set Γ~ as
 described in Definition 3.
 vi. Use (13) and compute lβ for each measurement where l=1,2,..,m and m is the
 number of measurements.
 vii. By using (10) compute the likelihood ratio for each target as)|(,ki

ttp xy .
 viii. Compute importance weights and normalize them as follows:

∑
=

== N

i

ki
t

ki
tki

t
ki

tt
ki

t
ki

t

w

wwpw

1

,

,
,,,, ~),|(xyα (24)

 ix. Implement the resampling stage. To do so, do the similar procedure
 described in the SIR algorithm. Afterwards, for each target the resampled
 states can be presented as follows:

 },1{},~{),(,, kim
t

ki
t

ki
t N

w xx → (25)

 b. End of the loop for k.
3. Set t=t+1 and go to step 2.

Table. 5. The JPDAF algorithm for multiple target tracking

The above algorithm can be used to deal with the multi-target tracking scenario. In the next
section, we show how the JPDAF algorithm can be used for multiple robot tracking. In
addition, some well-known motion models are presented to track the motion of a mobile
robot.

 Tools in Artificial Intelligence

172

3. The JPDAF algorithm for multiple robot tracking
In the last section, the JPDAF algorithm was completely discussed. Now, we want to use the
JPDAF algorithm for the problem of multiple robot tracking. To do so, consider a simple 2-
wheel differential mobile robot, Fig. 1, whose dynamical model is represented as follows:

Fig. 1. A 2-wheel differential mobile robot

)
2

cos(
21 b

ssssxx lr
t

lr
tt

Δ−Δ
+

Δ+Δ
+=+ θ

)
2

sin(
21 b

ssssyy lr
t

lr
tt

Δ−Δ
+

Δ+Δ
+=+ θ

b

ss lr
tt

Δ−Δ
+=+ θθ 1 (26)

where],[tt yx is the position of the robot, tθ is the angle of the robot's head, rsΔ and lsΔ are
the distances travelled by each wheel, and b refers to the distance between two wheels of the
robot. The above equation describes a simple model presenting the motion of a differential
mobile robot. For a single mobile robot localization problem, the most straightforward way
is to use this model and the data collected from the sensors set on the left and right wheels
measuring rsΔ and lsΔ at each time step. But, the above method does not lead to the
suitable results because the data gathered from the sensors are dotted with the additive
noise and, therefore, the estimated trajectory does not match the actual trajectory. To
remedy this problem, measurements obtained from the sensors are used to modify the
estimated states. Therefore, Kalman and particle filters have been greatly applied to the
problem of mobile robot localization (Siegwart & Nourbakhsh, 2004). Now, consider the
case in which the position of other robots should be identified by a reference robot. In this
situation, the dynamical model discussed previously is not applicable because the reference
robot does not have any access to the internal sensors of other robots such as the sensors

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

173

measuring the movement of each wheel. Therefore, a motion model should be first defined
for the movement of each mobile robot. The simplest model is a near constant velocity
model presented as follows:

],,,[

1

ttttt

ttt
yyxx

BA
=

+=+

X
uXX

 (27)

where the system matrixes are defined as

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

s

s

s

s

s

s

T

T
T

T

B
T

T

A

0
2

0

0

0
2

,

1000
100

0010
001

2

2

 (28)

where sT refers to the sample time. In the above equations, tu is a white noise with zero
mean and an arbitrary covariance matrix. Because the model is supposed to be a near
constant velocity model, the covariance of the additive noise should not be so large. Indeed,
this model is suitable for the movement of targets with a constant velocity which is common
in many applications such as aircraft path tracking and people tracking.
The movement of a mobile robot can be described by the above model in many conditions.
However, in some special cases the robots' movement can not be characterized by a simple
near constant velocity model. For example, in a robot soccer problem, the robots may
conduct a manoeuvring movement to reach a special target such as a ball. In these cases, the
robot changes its orientation by varying input forces imposed to the right and left wheels.
Therefore, the motion trajectory of the robot is so complex that an elementary constant
velocity model may not result in satisfactory responses. To overcome the mentioned
problem, the variable velocity model is proposed. The key idea behind this model is using
the robot's acceleration as another state variable which should be estimated as well as the
velocity and position of the robot. Therefore, the new state vector is defined as

],,,,,[y
ttt

x
tttt ayyaxx=X where y

t
x
t aa , are the robot's acceleration along with the x and y axis,

respectively. Now, the near constant acceleration model can be written similar to what
mentioned in (27), except for the system matrixes which are defined as follows (Ikoma et
all., 2001):

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

=

3

3

2

2

1

1

2

2

1

1

0
0

0
0

0
0

,

)exp(00000
0)exp(0000

01000
00100

0010
0001

b
b

b
b

b
b

B

T
T

a
a

aT
aT

A

s

s

s

s

 (30)

where the constants of the above equation are defined as

 Tools in Artificial Intelligence

174

() ()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−==

−==−−=

1

2

121

22323

2
1,

1,,)exp(11

aT
c

bba

aT
c

bbacT
c

b

s

ss

 (31)

In the above equation, c is a constant value. The above model can be used to track the
motion trajectory of a manoeuvring object, such as the movement of a mobile robot.
Moreover, using the results of the proposed models can enhance the performance of
tracking. This idea can be presented as follows:

 v
t

a
tt XXX ~)1(~~

αα −+= (32)

where a
tX~ and v

tX~ are the estimation of the near constant acceleration and near constant
velocity model, respectively, and α is a number between 0 and 1. To adjustα , an adaptive
method is used considering the number of measurements assigned to targets when each
model is used separately. That is, more the number of measurements is assigned to targets
by each model, the larger value is chosen forα .
Besides the above approaches, some other methods have been proposed to deal with
tracking of manoeuvring objects such as Interactive Multiple Mode (IMM) filters (Pitre et al.,
2005). However, these methods are applied to track the movement of objects with sudden
manoeuvring movement which is common in aircrafts. In the mobile robots scenario, the
robot's motion is not so erratic that the above method is necessary. Therefore, the near
constant velocity model, near constant acceleration model or a combination of the proposed
models can be considered as the most suitable structures which can be used to represent the
dynamical model of a mobile robot. Afterwards, the JPDAF algorithm can be easily applied
to the multi-robot tracking problem.

4. A fuzzy controller for optimal observer trajectory planning
In this section, a novel fuzzy logic controller (FLC) is proposed to maintain a better tracking
quality for the multi-robot tracking problem. Indeed, the major motivation of using a
moving platform for the reference robot is some weaknesses in the traditional multiple
target tracking scenarios in which sensors were assumed to be fixed or conduct an
independent movement from mobile targets. The most important weaknesses found in
recent approaches are:
• Generally, the variance of the additive noise of sensors increases when the distance

between each sensor and mobile targets increases. Consequently, the quality of tracking
will decrease if the position of the sensor or reference robot is fixed.

• If the position of the reference robot is assumed to be fixed, targets may exit the
reference robot’s field of view and, therefore, the reference robot will lose other robots’
position.

• In some applications, the reference robot may be required to track a special target. This
problem is common in some topics such as the robot rescue or security planning, when
the reference robot should follow the movement of an individual. The traditional
approaches are not flexible enough to be applied for the path/trajectory following
problem.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

175

• Switching between trajectory tracking and path following is either impossible or very
hard and time consuming when traditional approaches are used, when the reference
robot is fixed or its movement is independent from other robots’ movement.

To remedy aforementioned flaws, a novel strategy is proposed to provide a trajectory for the
reference robot dependent on other targets’ movement. To obtain an optimal solution, the
following cost function is defined for the trajectory planning problem:

()

n

r
R

n

i
i∑

== 1

2

()

n

n

i
i∑

==Φ 1

2ϕ

(33)

where ir is the distance between the thi target and reference robot and iϕ is the angle between

the thi target and reference robot in the local coordination of the reference robot (Fig. 2).

Fig. 2. Position of targets in the reference robot’s coordination

The major reason for defining the above cost function is that, by this way, the reference
robot maintains its minimal distance to all targets and, thus, the performance of the target
tracking is improved. In other words, when the reference robot is placed in a position whose
sum of distances to other robots is minimal, the effect of the additive noise dependent on the
distance between targets and the reference robot is also minimized. Therefore, the trajectory
planning problem is defined as a method causing the reference robot to move along a
suitable path minimizing the pre-mentioned cost function.
In order to execute the aforementioned trajectory planning problem, a robust fuzzy
controller is used. Fig. 3 shows the block diagram of the proposed fuzzy controller. In
design of fuzzy logic controllers, we use the Mamdani type of the fuzzy control containing
fuzzification and defuzzification stages and, also, a rule base. The task of the fuzzy
controller is to have the reference robot follow the above-discussed optimal trajectory
smoothly and, of course, precisely. In this paper, we use an FLC based on kinematical model
of the robot.

 Tools in Artificial Intelligence

176

Fig. 3. A block diagram of represented fuzzy controller
After testing various number of membership functions for input variables Φ,R , the best
fuzzy system for the angular velocity control is designed with seven triangular membership
functions. Although there is no restriction on the general form of membership functions, we
choose the piecewise linear description (Fig. 4 & Fig. 5).

Fig. 4. Membership functions of input fuzzy sets of fuzzy controllers

Fig. 5. Membership functions of output fuzzy sets of fuzzy controllers

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

177

The second step in designing an FLC is the fuzzy inference mechanism. The knowledge base
of the angular and linear velocity of fuzzy controllers consists of the rules described in Table
6 & Table 7.

Bi
g

M
ed

iu
m

Sm
al

l

Ze
ro

nS
m

al
l

nM
ed

iu
m

nB
ig

 Φ

 R

Ω7 ω6 Ω5 Z nω5 nω6 nω7 Zero

Ω6 ω5 Ω4 Z nω4 nω5 nω6 Close

Ω5 ω4 Ω3 Z nω3 nω4 nω5 Near

Ω4 ω3 Ω2 Z nω2 nω3 nω4 Far

Ω3 ω2 Ω1 Z nω1 nω2 nω3 very_Far

Table. 6. The fuzzy rule base for the angular velocity fuzzy controller

Bi
g

M
ed

iu
m

Sm
al

l

Ze
ro

nS
m

al
l

nM
ed

iu
m

nB
ig

 Φ

 R

V1 V2 V3 V4 V3 V2 V1 Zero

V2 V3 V4 V5 V4 V3 V2 Close

V3 V4 V5 V6 V5 V4 V3 Near

V4 V5 V6 V7 V6 V5 V4 Far

V5 V6 V7 V8 V7 V6 V5 very_Far

Table. 7. The fuzzy rule base for the linear velocity fuzzy controller

In this application, an algebraic product is used for all of the t-norm operators, max is used
for all of the s-norm, as well as individual-rule based inference with union combination and
mamdani’s product implication . Product inference engine is defined as

1 1

() max sup () () ()l l
i

M n

B A iA Bl ix U
y x x yμ μ μ μ′ ′= =∈

⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟= ∏⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 (34)

There are many alternatives to perform the defuzzification stage. The strategy adopted here
is the Center Average defuzzification method. This method is simple and very quick and
can be implemented by (Wang 1997)

 1

1

M
l

l
l

M

l
l

y w
y

w
∗ =

=

=
∑

∑
 (35)

where ly is the center of th thl fuzzy set and lw is its heigh.

 Tools in Artificial Intelligence

178

The above procedures provide a strong tool for designing a suitable controller for the
reference robot leading to a better tracking performance. The next section shows how this
approach enhances the accuaracy of tracking.

5. Simulation results
To evaluate the efficiency of the JPDAF algorithm, a 3- robot tracking scenario is designed.
Fig. 6 shows the initial position of the reference and target robots. To prepare the scenario
and implement the simulations, parameters are first determined for the mobile robots’
structure and simulation environment by Table 8. Now, the following experiments are
conducted to evaluate the performance of the JPDAF algorithm in various situations.

Parameters Description
lv The robot’s left wheel speed
rv The robot’s right wheel speed

b The distance between the robot’s wheels
sn Number of sensors placed on each robot

maxR Maximum range of simulation environment

sQ The covariance matrix of the sensors’ noise

st Sample time for simulation

maxt Maximum running time for the simulation

Table. 8. Simulation parameters

Fig. 6. The generated trajectory for mobile robots in a simulated environment

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

179

5.1 Local tracking for manoeuvring movement and the fixed reference robot
To design a suitable scenario, the speed of each robot’s wheel is determined by Table 3. The
initial position of the reference robot is set in [0, 0, 0]. Moreover, other robots’ position is

assumed to be [2, 2,π], [1, 3,
3
π], [1, 9,

4
π], respectively. To run the simulation, sample time

st and maximum running time are also set in 1s and 200s, respectively. To consider the
uncertainty in measurements provided by sensors, a Gaussian noise with zero mean and the

covariance matrix ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
× −41050

02.
 is added to measurements obtained by sensors. After

simulating the above-mentioned 3-robot scenario with aforementioned parameters, the
generated trajectories can be observed in Fig. 7.

Fig. 7. Generated trajectories for multi-robot tracking scenario

Now, we are ready to implement the JPDAF algorithm discussed before. First, a JPDAF
algorithm with 500 particles is used to track the each target’s movement. To compare the
efficiency of each motion model described in section 3, simulations are done for different
motion models. Fig. 8 shows the tracking results for various models and targets. To provide
a better view to the accuracy of each approach, Table 9 and Table 10 present the tracking
error for each model where the following criterion is used to compute the error:

()

{ }ttt

t

t
tt

z yxz
t

zz
e ,,

~

max

1

2
max

=

−

=
∑
= (35)

From Tables, it is obvious that the combined model has resulted in a better performance
than other motion models. Indeed, near constant velocity and acceleration models do not
provide similar results during the simulation and, therefore, the combined model mixing
results obtained from each model has led to much better performance.

 Tools in Artificial Intelligence

180

(a)

(b)

(c)

Fig. 8. Tracking results using the JPDAF algorithm with 500 particles for all robots

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

181

Robot Number Const. Velocity Const. Acceleration Combined Model
1 0.002329 0.006355 0.002549
2 0.003494 0.003602 0.001691
3 0.005642 0.005585 0.002716

Table. 9. Tracking errors of estimating tx for various motion models

Robot Number Const. Velocity Const. Acceleration Combined Model
1 0.005834 0.006066 0.003755
2 0.016383 0.009528 0.007546
3 0.011708 0.012067 0.006446

Table. 10. Tracking errors of estimating ty for various motion models

5.2 Local tracking using a mobile reference robot
Now, we apply the control strategy presented in section 4 for finding an optimal trajectory
for the reference robot. To implement the simulation, the reference robot is placed at [0, 0]. A
fuzzy controller with two outputs is designed to find the linear and angular velocity of the
reference robot. Simulations are conducted with parameters similar to ones defined in the
last section. Moreover, to consider the effect of the distance between sensors and targets, the
covariance of the additive noise is varied by changing the distance. Fig. 9 explains how we
have modelled the uncertainty in measurements received by sensors.
After running the simulation for 400s, the fuzzy controller finds a trajectory for the mobile
robot. Fig. 10 shows the obtained trajectory after applying the JPDAF algorithm with 500
particles for finding the position of each mobile target.

Fig. 9. A model used to describe the behaviour of additive noises by changing the distance

 Tools in Artificial Intelligence

182

Fig. 10. The obtained trajectory for the reference robot using the fuzzy controller

The above figure justifies this fact that the reference robot has been directed to the
geometrical placement of the targets’ mass centre. Additionally, the simulation is run for
situations in which the reference robot is fixed and, also, mobile with an arbitrary trajectory,
without applying the control scheme. Fig. 11 shows tracking results using each of the above-
mentioned strategies. Also, tables 11 & 12 present the estimated tracking error for all cases.
Simulation results show the better tracking performance after applying the control strategy.
In other words, because the controller directs the reference robot to a path in which the sum
of the distance to other robots is minimal, the tracking algorithm is able to find other robots’
position much better than the case in which the reference robot is fixed. In addition, when
the reference robot is moving without any special plan, or, at least, its movement is
completely independent from other robots’ movement, the tracking performance appears
much worse. The above-mentioned evidence shows that the effect of the additive noise’s
variance is so much that the reference robot has completely lost the trajectory of the target
shown in Fig. 11 (c). In this case, using the control strategy has caused the reference robot to
be placed in a position equally far from other robots and, therefore, the effect of the additive
noise weakens. The most important advantage of our proposed approach compared with
other methods suggested in the literature for observer trajectory planning (Singh et al., 2007)
is that the fuzzy controller can be used in an online mode while recent approaches are more
applicable in offline themes. The aforementioned benefit causes our approach to be easily
applied to many real topics such as robot rescue, simultaneous localization and mapping
(SLAM), etc.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

183

(a)

(b)

(c)

Fig. 11. Tracking results for various situations of the reference robot (fixed, mobile with and
without a controller)

 Tools in Artificial Intelligence

184

Robot Number Fixed Ref. Robot Mobile Ref. Robot Ref. Robot With
Controller

1 0.024857 0.077568 0.005146
2 0.883803 0.821963 0.005236
3 0.009525 0.025623 0.009882

Table. 11. Tracking errors of estimating tx for various situations of the reference robot

Robot Number Fixed Ref. Robot Mobile Ref. Robot Ref. Robot With
Controller

1 0.010591 0.02129 0.004189
2 62.54229 57.06329 0.013196
3 0.023677 0.034152 0.018124

Table. 12. Tracking errors of estimating ty for various situations of the reference robot

6. Conclusion
This paper dealt with the problem of multi-robot tracking taken into account as one of the
most important topics in robotics. The JPDAF algorithm was presented for tracking multiple
moving objects in a real environment. Then, extending the aforementioned algorithm to
robotics application was discussed. To enhance the quality of tracking, different motion
models were introduced along with a simple near constant velocity model. Proposing a new
approach for observer trajectory planning was the key part of this paper where it was
shown that because of some problems such as increasing the variance of the additive noise
by increasing the distance between targets and the reference robot, the tracking performance
may be corrupted. Therefore, a fuzzy controller was proposed to find an optimal trajectory
for the reference robot so that the effect of the additive noise is minimized. Simulation
results presented in the paper confirmed the efficiency of the proposed fuzzy control
approach in enhancing the quality of tracking.

7. References
Fox, D; Thrun. S; Dellaert. F & Bugard, W (2000). Particle Filters For Mobile Robot Localization,

Sequential Monte Carlo in Practice, Springer, Verlag.
Kalman, R. E. & Bucy R. S. (1961). New Results in Linear Filtering and Prediction, Trans.

American Society of Mechanical Engineers, Series D, Journal of Basic Engineering,
Vol. 83D, pp. 95-108.

Siegwart. R. & Nourbakhsh. I. R. (2004). Introduction to Autonomous Mobile Robots, MIT Press.
Howard. A. (2005). Multi-robot Simultaneous Localization and Mapping Using Particle Filters,

Robotics: Science and Systems I, pp. 201-208.
Anderson. B. D. O. & Moore. B. J. (1979). Optimal Filtering, Englewood Cliffs: Prentice-Hall.

A Joint Probability Data Association Filter Algorithm for Multiple Robot Tracking Problems

185

Gordon. N. J. ; Salmon. D. J. & Smith. A. F. M. (1993). A Novel Approach For Nonlinear/non-
Gaussian Bayesian State Estimation, IEE Proceedings on Radar and Signal Processing,
140, 107-113.

Doucet. A; Freitas. N. de. & Gordon. N. J. (2001). Sequential Monte Carlo Methods in Practice,
Springer- Verlag.

Ristic. B; Arulampalam. S. & Gordon. N. J. (2004). Beyond the Kalman Filter, Artech House.
Ng. W; Li. J; Godsill. S. & Vermaak. J. (2004). A Hybrid Approach For Online Joint Detection

And Tracking For Multiple Targets, In the Proceedings of IEEE Aerospace
Conference.

Gustafsson. F; Gunnarsson. F; Bergman. N; Forssell. U; Jansson. J; Karlsson. R. & Nordlund.
P. J. (2002). Particle Filters For Positioning, Navigation, and Tracking, IEEE
Transactions on Signal Processing, Vol. 50, No. 2.

Freitas. N. de. (1999). Bayesian Methods For Training Neural Networks, PhD Thesis, Trinity
College, The University of Cambridge.

Andrieu. C; Doucet. A; Singh. S. S. & Tadic. V. (2004). Particle Methods For Change Detection,
System Identification and Control, Proceedings of IEEE, Vol. 92. No. 3.

Sarkka. S; Vehtari. A. & Lampininen. J. (2005). Rao-Blackwellized Particle Filter for Multiple
Target Tracking, Information Fusion Journal, Vol. 8, Issue. 1, Pages 2-15.

Vermaak. J; Godsill. S. J. & Perez. P. (2005). Monte Carlo Filtering for Multi- Target Tracking
and Data Association, IEEE Transactions on Aerospace and Electronic Systems, Vol.
41, No. 1, pp. 309–332.

Li. J; Ng. W. & Godsill. S. (2007). Online Multiple Target Tracking and Sensor Registration Using
Sequential Monte Carlo Methods, In the Proceedings of IEEE Aerospace Conference.

Fortmann. T. E; Bar-Shalom. Y. & Scheffe. M. (1983). Sonar Tracking of Multiple Targets Using
Joint Probabilistic Data Association, IEEE Journal of Oceanic Engineering, Vol. 8, pp.
173-184.

Schulz. D; Burgard. W; Fox. D. & Cremers. A. B. (2003). People Tracking with a Mobile Robot
Using Sample-based Joint Probabilistic Data Association Filters, International Journal of
Robotics Research (IJRR), 22(2).

Oh. S; Russell. S. & Sastry. S. (2004). Markov Chain Monte Carlo Data Association for Multiple-
Target Tracking, In Proc. of the IEEE International Conference on Decision and
Control (CDC), Paradise Island, Bahamas.

Singh. S. S; Kantas. N; Vo. B. N; Doucetc. A. & Evans. R. J. (2007). Simulation-based Optimal
Sensor Scheduling with Application to Observer Trajectory Planning, Automatica, 43,
817 – 830.

Del Moral. P; Doucet. A & Jasra. A (2006). Sequential Monte Carlo Samplers, J. R. Statistics, Soc.
B, Vol. 68, part 3, pp. 411-436.

Ikoma. N; Ichimura. N; Higuchi. T. & Maeda. H. (2001). Particle Filter Based Method for
Maneuvering Target Tracking, IEEE International Workshop on Intelligent Signal
Processing, Budapest, Hungary, pp.3-8,.

Pitre. R. R; Jilkov. V. P. & Li. X. R. (2005). A comparative study of multiple-model algorithms for
maneuvering target tracking, Proc. 2005 SPIE Conf. Signal Processing, Sensor Fusion,
and Target Recognition XIV, Orlando, FL.

 Tools in Artificial Intelligence

186

Wang. X. L. (1997). A Course in Fuzzy systems And Control, Prentice-Hall, Inc, International
Edition.

11

Symbiotic Evolution of Rule Based Classifiers
Ramin Halavati1 and Saeed Bagheri Shouraki2

1Iranian Academic Centre for Education, Culture, & Research
2Sharif University of Technology

Iran

1. Introduction
Genetic Algorithm is a widely used approach in predictive data mining where data mining
output can be represented by If-Then rules and discovering the best rules is done by a
genetic algorithm. The main motivation for using genetic algorithms in discovery of high-
level prediction rules is that they perform a global search in the problem space and cope
better with attribute interaction in compare with greedy rule induction algorithms often
used in data mining (Freitas, 2001) and therefore, one can see the following papers for a
wide variety of representation techniques and evolution approaches in this field: (Teng et al,
2004), (Hasanzadeh et al, 2004), (Chen & Linkens, 2004), & (Cordon et al, 1998) for evolution
of weighted fuzzy rule base with simple linear genetic representation; (Golez & Dasgupta,
2002) for rule base evolution with binary tree representation; (Mendes et al, 2001) for a co-
evolutionary approach which evolves fuzzy rules in one process and fuzzy membership
functions in another process; (Ishibuchi & Yamamoto, 2004), (de la Iglesia et al, 2003), &
(Lopes et al, 1999) use multi objective optimization approaches for rule base evolution;
(Ishibuchi & Yamamoto, 2002) & (Tsang et al, 2005) for two stage evolution in which one
stage generates candidate rules and the other stage selects a combination of them as a final
rule base; (Riquelme et al, 2003) for hierarchical representation; and some other variations in
(Zhu & Guan, 2004), (Goplan et al, 2006), (Gundo et al, 2004), & (Eggermont et al, 2003).
There are two basic strategies for rule base evolution task and many hybrid methods that
combine the good features of these two methods. These basic approaches are Michigan
approach exemplified by Holland's classifier system (Holland, 1986), and the Pittsburgh
approach exemplified by Smith's LS-1 system (Smith, 1983). In this chapter, we will first
study these two schools with more details in section 2 and show why there is a need for a
third school, then introduce natural process of symbiogenesis in section 3 and symbiotic
evolution as a novel solution for this approach in section 4. Then section 5 will present the
experimental and comparison results, followed by the summary and concluding remarks in
section 6.

2. Michigan and Pittsburgh schools for rule-based classifier evolution
There are two basic strategies for rule base evolution task and many hybrid methods that
combine the good features of these two methods. These basic approaches are Michigan
approach, introduced by John Holland (Holland, 1986), and the Pittsburgh approach,
popularized by Ken De Jong and Steve Smith (Smith, 1983).

 Tools in Artificial Intelligence

188

In Pittsburgh approach, a number of if-then rules are coded as a string and handled as an
individual. The performance of each rule-set (i.e., each individual) is used as its fitness
value. Thus the genetic search for finding rule-sets with high fitness values is equivalent to
the search for rule-based systems with high performance. Hence, the optimization of rule-
based systems is directly handled by genetic algorithms that try to maximize the fitness
function. Some good rule-sets in a current population are inherited to the next population
with no modification as elite individuals. The performance of each rule is not explicitly
evaluated in Pittsburgh approach. Thus even if good rules exist in the current population,
they are not always used for generating new rule-sets. Especially when good rules are
included in poor rule-sets, they easily disappear during the generation update. Since a
population consists of a number of rule-sets, long computation time and large memory
storage are required in Pittsburgh approach (Ishibuchi et al, 1999). Interested reader can see
(De Jong et al, 1993), (Janikow, 1993), (Sen et al, 1997), & (Smith 1983) as good examples of
this approach.
On the other hand, in Michigan approach where a single if-then rule is coded as a string and
handled as an individual, the performance of each rule is used as its fitness value. That is,
the performance of rule-sets (the entire population of current rules) is not utilized in the
genetic search for finding rule-based systems with high performance. Thus the optimization
of rule-based systems is indirectly performed by searching for good if-then rules.
Performance of the current rule-set is not explicitly evaluated in the genetic search of the
Michigan approach. Thus a good rule-set can be destroyed by the generation update (i.e. the
performance of the current population can be decreased). Since a population includes only a
single rule-set, computation time and memory storage in Michigan approach are much
smaller than those in Pittsburgh approach where a population consists of a number of rule-
sets. In Michigan approach, good if-then rules in the current population (i.e., in the current
rule-set) are inherited with no modification to the next population. The generation update in
Michigan approach can be viewed as a partial change of the current population where bad
rules are replaced with newly generated rules. Thus once good if-then rules are found, they
are not likely to disappear. (Ishibuchi et al, 1999). To see some good examples, one can check
(Holland, 1986) and (Wilson, 1987).
There are three main viewpoints from which Pittsburgh and Michigan approaches can be
compared: First, Pittsburgh approach seems to be better suited at batch-mode learning
(when all training instances are available before learning is initiate) and for static domains,
and Michigan approach is more flexible to handle incremental-mode learning (training
instances arrive over time) and dynamically changing domains (Corcoran & Sen, 1994).
Second, considering that many classifier systems need to cover a complex state space in a
small group of cooperative rules, one will see that this is in contrast to the nature of
Michigan approach in which the rules are intrinsically competitive and the Pittsburgh
approach is more suited to the provision of cooperation. This is because the lack of
competition between individual classifiers in the Pittsburgh method allows the algorithm to
find novel cooperative solutions that the population-level GA can maintain and proliferate.
Therefore, Pittsburgh approach is usually the method of choice to apply to problems that
require the development of cooperative populations (Barry et al, 2004).
The third item is very similar to the second: As evolving rules of a Michigan process are
rivals and the general fitness value of the population has no effect in evolution, two
problems occur: First, we usually need strategies for detection and prevention of redundant

Symbiotic Evolution of Rule Based Classifiers

189

concept descriptions among population members (Liu & Kwok, 2000); Second, as a side
effect of the first problem, a portion of training examples may be left unclassified and
although the evolution would be at a stable position, there would be no rule for
classification of this portion.
The fact that Pittsburgh is more powerful or easier to use for evolution of rule-sets in
environments with complex concepts, where there is an urge for evolution of cooperative
rules, makes it more attractive for most practical problems. However, the Pittsburgh
approach presents its own limitation as well: In particular, because the evolution operates at
a rule-set level, GA receives only high-level feedback from the fitness function and therefore
cannot evaluate the role of individual rules in the success of a rule-set; hence, it requires a
large additional effort to generate optimal populations. This increased effort in addition to
the increased computational resource required to operate at the population level can present
new challenges when devising efficient implementations for a Pittsburgh classifier evolution
(Barry et al, 2004). This problem is a very important and known general problem of
traditional genetic algorithms, called the linkage problem (Watson & Pollack, 2000).
Linkage problem has two parts: The first problem is called the problem of garbage or hitch-
hiker genes (Forrest & Mitchel, 1993). In traditional GA, each chromosome may have a
combination of good and bad genes which affect the total fitness value of the chromosome
together. The effect of this problem in rule base evolution task is that a rule-set may have
some rules with very good classification accuracy and some rules that have no positive
effect or even have negative effects on the classification task. As evaluation is only done at
rule-set level, selection or removal of all rules inside a rule-set is done together and there is
no distinction between rules that have positive or negative effect on the classification. These
bad rules (genes) inside a chromosome are called garbage genes or hitch-hiker genes
because they gain their chance of survival by sticking to good genes as parastis.
The second part of Linkage problem is related to the recombination operator of genetic
algorithms. During the process of this operator, some parts of the two parent chromosomes
are extracted and merged with each other to create an offspring. Selection of appropriate
parts from either of the parents has a great effect on the performance of the entire process,
but there are many problem in which there is no way to identify the good sub-
chromosomes. Here in rule-set evolution, one of the interesting features of the Pittsburgh
approach is the evolution of cooperative rules inside a rule-set, but using a crossover
operator separates the rules of one rule-set from each other and then blindly combines them
with some from another rule-set, with no guarantee that these parts match each other or be
able to help each other in a common classification task.
Many different recombination operators or alternative evolution strategies are introduced to
cope with linkage problem in GA, such as designing more sophisticated recombination
operators for simple genetic algorithms such as the ones with more number of cut points,
random cut point positioning, uniform crossover, linear combination of genes, etc., see
(Mitchell, 1999) for an extensive list; use of chromosome reordering operators and
repositioning of genes inside the chromosome on the fly such as Inversion operator (Bagley,
1967) and Linkage Learning Genetic Algorithm (Harrik, 1997); and algorithms based on
partially specified chromosomes such as Messy Genetic Algorithms (mGA) (Deb, 1991),
(Goldberg et al, 1989), Cooperative Co-Evolutionary Algorithms (CCEA) (Potter & De Jong,
1994), Symbiotic Evolutionary Adaptation Model (SEAM) (Watson & Pollack, 2000), and
Incremental Commitment Genetic Algorithm (ICGA) (Watson & Pollack, 1999).

 Tools in Artificial Intelligence

190

As far as the authors know, except CCEA approach which is partially used in some tasks
and some special purpose recombination operators, none of the other above approaches
have been used in rule base evolution and the major efforts in rule-based classifier evolution
to cope with linkage problem have been in hybridizations of Michigan and Pittsburgh
approaches to add the positive features of both methods together, such as (Ishibuchi et al,
1999) & (Tan et al, 2003). Not commenting on the applicability or generality of these hybrid
approaches, we present a novel pure approach based on Symbiotic evolution instead of
Genetic evolution to solve this problem in the rest of this chapter. It must be emphasized
that we introduce this algorithm as a basic approach comparable to pure Pittsburgh and
therefore, it is not compared with hybrid approaches or extensions of other algorithms as all
such hybridizations or extensions can be studied for this algorithm as well. Section 3 will
represent the natural bases of this approach and section 4 will have all the details.

3. The natural process of symbiogenesis
The natural process of symbiogenesis (Merezhkovsky, 1909) is the creation of new species
from the genetic integration of organisms, called symbionts. Symbiogenesis has enabled
some of the major transitions in evolution (Maynard Smith & Szathmary, 1995), including
the origin of eukaryotes which include all plants and animals. This kind of genetic
integration is quite different from the transfer of genetic information in sexual reproduction.
Sexual recombination occurs between similar organisms (i.e. of the same species) and
involves the exchange of parts of the genome in a mutually exclusive manner; that is, every
gene acquired from one parent is a gene that cannot be acquired from the other parent. In
contrast, symbiotic combination may also occur between genetically unrelated organisms
(i.e. different species) and involve the integration of whole genomes. The resultant
composite may have all the genes from one symbiont and at the same time acquire any
number of genes from the other symbiont (Watson & Pollack, 2000).
Based on this idea, symbiotic combination operator is introduced (Watson & Pollack, 1999)
& (Watson & Pollack, 2000) as an alternative for sexual recombination operator. Symbiotic
combination operator is applied to partially specified chromosomes, i.e., chromosomes
which have some positions with unspecified values. This operator takes two partially
specified chromosomes and makes an offspring with the aggregation of their characteristics
of both of them; see Fig. 1 as an example. Therefore, in contrast to the standard crossover
operator that receives two fully specified chromosomes and creates one/two individuals
that have received each of their genes from either parents, this operator runs over two/more
partially specified representations and creates an offspring with can have even all genes of
both/all parents.

Fig 1. An example of symbiotic combination. Chromosomes A and B, each, have some
unspecified locations, shown with ‘-‘ mark. Their combination has specified values for all
locations that are specified in at least one of the donors. If there would be a conflict between
the specified values, like the last gene of the above chromosomes, all conflicts are resolved
in favor of one donor, here A.

 Chromosome A: 1--1---0
 Chromosome B: --00-111
 A + B: 1-01-110

Symbiotic Evolution of Rule Based Classifiers

191

This can be very beneficent for evolution of rule based classifiers in Pittsburg approach
because each individual (chromosome) is a complete classifier. Therefore, its rules are a
collection and they have proved to work good together. Separating them for a
recombination and combining some parts of them with parts of another classifier may
disrupt the functionality of both classifiers. On the other hand, adding them, assuming that
each of them is a relatively good classifier, just adds up their classification powers.

4. Symbiotic evolutionary algorithm
The basic idea of Symbiotic Evolutionary Algorithm (SEA) is to replace the crossover
operator of Pittsburgh genetic algorithm (PGA) with symbiotic combination operator. To do
so, the evolution starts with rule-sets (individuals) which have just one rule (gene). During
the process, similar to traditional PGA, evaluation and selection is done at rule-set level.
Mutation operator is also quite similar to conventional PGA, but instead of crossover
operator, sometimes two rule-sets combine using symbiotic combination and create an
individual with more rules. If this combination shows a higher accuracy in compare to its
parents, the parents are removed from the population and the offspring remains, otherwise,
the offspring is neglected.
In this section, we first present our rule-set model which is used both in SEA and the PGA
that is used in next section for comparisons. Then will move on the details of the Symbiotic
Evolutionary Algorithm.

4.1 Rule-set model and fitness values
To emphasize on the algorithm, we have a chosen a very simplistic representation for our
fuzzy rules, taken from (Hasanzadeh et al, 2004), but we still insist that SEA is not
dependent to this model or the fuzzy nature of the rules. In this model, each rule is a horn
clause, with If-part consisting of fuzzy membership functions for different features of the
problem data base, and Then-part stating the class to which this rule belongs. A rule-set is
composed of one or more rules, with each rule having a weight value stating its role in final
decision. To classify an input by a rule-set, each of the rules computes the degree of
similarity between the input and its own If-part and based on that, it states a degree of belief
to its Then-part. Then, a weighted sum of the degree of beliefs for each class is computed
and the class which gets the highest value is chosen. Fig. 2 specifies the structure of the rule-
set.

Fig .2. Formal structure of the rule set (chromosome)

The fitness of each rule-set is defined as the accuracy of the rule-set in classification of all
training data. Accuracy is a measure combining the classification soundness with 99.9

 <RULE-SET> a set of <RULE>s
<RULE> <WEIGHT> + a set of <CONDITION>s + <RESULT>
<WEIGHT> a real value
<RESULT> a Class Name
<CONDITION> a <FEATURE> [IS / ISNOT] a <MEMBERSHIP FUCNTION>
<FEATURE> one of the features of dataset.
<MEMBERSHIP FUCNTION> one of the possible fuzzy values for the

respective feature.

 Tools in Artificial Intelligence

192

percent effect and the simplicity of the rules with 0.1 percent effect. The simplicity measure
is used to break the tie between two rule-sets with different complexities and similar
classification rate, in favor of the simpler rule-set. Simplicity of a rule-set is computed as
stated in equation 1.

rulesallinconditionsofnumberTotal
conditiononejustwithrulesofNumber1Simplicity +

=

(1)

4.2 The algorithm
The Symbiotic Evolutionary Algorithm starts by generating a population of random rule-
sets, each having just one rule. In each iteration of the algorithm, a set of rule-sets with high
fitness values are selected using a tournament selection algorithm; they will be called the
Selected Set hence forth. After selection, each of these individuals undergoes a mutation and
all mutants are added to the population. The mutation operator is presented in Figure 3.

Fig. 3. Pseudo Code of the Mutation Operator
After mutation, instead of the conventional cross over operator, symbiotic combination
operator is applied over the selected set. The operator takes two members of the selected
rule-sets and merges them, so that the combination includes all rules of both sets. If the child
strictly outperforms both of its parents, the combination will be added to the population;
otherwise, it will be discarded. To control the growth speed of the number of rules in each
rule-set, there is another control mechanism that limits the size of the largest rule-set that
can be added to the population at a time. This parameter, which will be called SizeLimit, is 1
at the beginning and limits the size of rule-sets to just one rule. During the process, SizeLimit
is increased with a selected strategy, and allows emergence of rule-sets with more number
of rules. In all of our implementations, we have set the control strategy to a simple linear
function of iterations count, but one may use a more complicated function, if it looks fit.

 Function Name: MUTATATION

 Summary: Takes a rule set and mutates it.

 Input: Rule Set R.
 Assume R ={R1,R2,...,Rn} and each Ri as

[Weight+ (F1,C1,MF1) ∧(F2,C2,MF3)∧...∧(Fm,Cm,MFm), Class] where each
Fj is feature, Oj is a condition(Is/Is Not), and MFj is a
membership function from the domain of Fj.

 Function Detail:

1. Randomly choose Ri from R1 to Rn. Set m to the number of rules in
Ri.

2. Randomly select one of the next steps and apply it on Ri:
a. Increase or decrease Weight.
b. Choose j from 1..m, remove (Fj,Cj,MFj) from Ri.
c. Randomly generate a new (F,C,MF) and concatanate it to Ri.
d. Choose j from 1..m, reverse Cj so that Is becomes IsNot,

and IsNot becomes Is.
e. Choose j from 1..m, change MFj to a random new membership

function from the domain of Fj.
3. Return.

Symbiotic Evolution of Rule Based Classifiers

193

Fig. 4 presents the pseudo code of Symbiotic Evolutionary Algorithm.

Fig. 4. Pseudo Code of Symbiotic Evolutionary Algorithm

5. Experimental results
5.1 Test conditions
There are too many classification approaches and also many extensions to basic genetic
based classifiers. But as we are introducing SEA as a basic new approach, we have just

 Algorith Name: Symbiotic Evolutionary Algorithm

 Summery: Takes a database of training examples and generates a

rule-set to classify them, using symbiotic combination
operator and Mutation function.

 Parameters: SR: Selection Rate

TS: Tournament Size
RC: Random Rule Creation Rate
MP: Maximum Population

 Algorithm Detail:

1. INITIALIZATION:
a. Generate a population of random rule-sets, each having

just one rule.

2. PROCESS CONTROL:
a. Update SizeLimit (Initialized to 1).
b. If Best generated rule set is satisfactory, return it

and exit.

3. SELECTION PHASE:
a. Create an empty set called SelectedSet.
b. For SR x PopulationSize times,

i. Randomly pick TS rule-sets from the pool, add the
best one to SelectedSet.

4. MUTATION PHASE:
a. For each memer of SelectedSet such as rs,

i. Create a mutated copy of rs using Mutation
function, call it rs'.

ii. Add rs' to the pool.
5. SYMBIOTIC COMBINATION PHASE:

a. For each two members of the SelectedSet such as rs1 and
rs2,

i. Create the symbiotic combination of rs1 and rs2
and call it rs3.

ii. If SizeOf(rs3) < SizeLimit and fitness value of
rs3 exceeds that of rs1 and rs2,

Add rs3 to the pool.
6. DIVERSITY MAINTANANCE:

a. Create RC random new rule-sets and add them to the pool.
7. POPULATION CONTROL:

a. While PopulationSize is above MP limit, randomly select
and remove some random rule-sets from the poool.

8. Goto Step 2.

 Tools in Artificial Intelligence

194

compared it with pure Pittsburgh GA in detail. More comparisons can be done in future
works.
To compare the performance of SEA algorithm with Pittsburgh GA, we used six frequently
used benchmarks: The first one is a 10% selection of KDDCUP99 dataset (MIT Lincoln Labs,
2007) and others are selected from University of California Irvine, Machine Learning
Repository (Blake & Merz, 1998); these datasets are gathered from real experiments, so they
can show efficiency of the algorithm in some real circumstances. Credit Approval (CRX),
Glass Identification (Glass), Iris Plant (Iris), 1984 United States Congressional Voting
Records Database (Vote), and Wine Recognition (Wine) datasets are selected as the most
frequently used datasets so as to compare the results to some other related works. The
extensive information about these datasets is mentioned in Table 1. Although KDDCUP99
data set has many classes of intrusion types, we consider their classes as Normal and Attack
cases, similar to (Esposito et al, 2005), (Toosi & Kahani 2007), and (Mill & Inoue, 2004).
General specifications of benchmarks are expressed in Table 1. The GA algorithm is
implemented as described in (Hasanzadeh et al, 2004) with exactly the same parameters
(expressed in Table 2).
Likewise (Hasanzadeh et al, 2004) & (Hasanzadeh & Bagheri, 2003), Fuzzy C-Mean
clustering (Zimmermann, 1996) was used to define the fuzzy membership function for
continuous attributes, and fuzzy singletons were defined for none-parametric attributes. The
number of fuzzy sets for KDD99 features is 5 and for other problems, 3 fuzzy sets are
created. The exact parameters of SEA algorithm are presented in Table 3.
The tests are done four-fold (Blake & Merz, 1998), i.e. the data was randomly divided into 4
sets and in each trial, one set was taken as test set, and the other 3 were used as training set.
Each test is repeated for 20 times, and the average, minimum and maximum classification
rates for training and tests results are depicted in subsection 5.2 tables. The stopping
criterion of each run is an unchanging best fitness value during 5000 fitness function calls.
Also, the average number of fitness function calls to reach the highest classification accuracy
and the average ratio between time and fitness function calls for each benchmark/algorithm
is reported in subsection 5.3 as a measure of algorithms speed.

Dataset Features
count

Numeric
Features

Nominal
Features Classes Instances

KDD99 41 34 7 2 494021
CRX 15 6 9 2 690
Glass 10 9 1 6 214
Iris 4 4 0 3 150

Vote 16 0 16 2 435
Wine 13 13 0 3 178

Table 1. Datasets Specification

Parameter Value
Maximum Population 200

Mutation Rate 0.7
Elitism Rate 0.2

Tournament Size 4

Table 2. Pittsburgh GA Parameters, as in (Hasanzdeh, 2003)

Symbiotic Evolution of Rule Based Classifiers

195

Parameter Value
Population Size 1000
Selection Rate 6

Tournament Size 8
Random Creation Rate 4

Table 3. SEA Parameters

5.2 Accuracy comparison results
Tables 4 and 5 represent the classification rates of Pittsburgh Genetic Algorithm (PGA) and
SEA training and test data, respectively. As presented there, SEA has found better rule-sets
in compare with PGA in all cases on training sets and 4 of 5 on test sets.

PGA SEA Data
Sets Min Max Average Min Max Average

Average
SEA to PGA

Improvement1
CRX 87.433 88.937 88.07 85.199 90.042 88.85 6.54 %
Glass 63.921 72.023 69.42 66.923 74.812 71.43 6.57 %
Iris 98.139 99.082 98.63 97.237 99.91 99.35 52.55 %

Vote 96.528 98.003 97.32 96.474 97.976 97.56 8.96 %
Wine 96.189 99.156 97.68 99.153 99.910 99.44 75.86 %

KDD99 87.433 88.937 88.07 85.199 90.042 88.85 6.54 %

Table 4. Average Classification Rate of PGA and SEA, Different Data Sets, on Training Data

PGA SEA Data
Sets Min Max Average Min Max Average

Average
SEA to PGA

Improvement
CRX 83.746 87.654 85.27 84.888 86.476 85.58 2.1 %
Glass 63.377 71.370 68.62 67.878 74.008 70.68 6.56 %
Iris 91.85 99.923 94.95 91.805 99.909 95.57 12.28 %

Vote 91.789 98.661 95.31 92.611 97.972 95.04 -5.76 %
Wine 86.293 99.902 92.9 90.821 97.683 94.59 23.8 %

KDD99 84.263 87.654 94.36 85.156 85.16 99.31 87.77 %

Table 5. Average Classification Rate of PGA and SEA, Different Data Sets, on Test Data
Table 6 presents the best classification results of some other approaches ((Gomez et al, 2002),
(Mendes et al, 2001), (Liu & Kwok, 2000), & (Rouwhorst & Engelbrecht, 2000)) which are
reimplemented and tested by (Hasanzadeh, 2003) with similar settings as ours. As stated
there, in cases that we had sufficient comparison data, SEA is better than other algorithms in
all data sets.
Also Table 7 presents some other results from other papers that have used almost similar
test specifications with that of ours. It must be emphasized that the test condition of these
results does not fully comply that of ours, in some cases not exactly specified and in other
slightly easier or harder. As depicted there, SEA is among the top 2 best results for all
benchmarks.

1 (SEA – PGA) / (100 – PGA)

 Tools in Artificial Intelligence

196

Algorithm CRX Glass Iris Vote Wine KDD'99
Fuzzy Classifier with Expression Tree
Representation (Gomez et al, 2002) 94.84 85.42 92.22

Fuzzy Classifier with Co-Evolution
(Mendes et al, 2001) 84.7 95.3

Extended Genetic Rule Induction
(Liu & Kwok, 2000) 77.39 72.43 95.3

Evolution of Decision Trees
(Rouwhorst & Engelbrecht, 2000) 94.1

SEA 85.58 70.68 95.57 95.04 94.59 99.31

Table 6. Classification rate of some other algorithms with exactly similar settings in compare
to SEA, from (Hasanzadeh, 2003).

Algorithm CRX Glass Iris Vote Wine KDD99

Fuzzy Kohonen Network (Lorenz et al, 1997) 91.33
Fuzzy Classifier System (Lorenz et al, 1997) 96.00
ID3 (Dong & Kothari, 2003) 81.16
Naive Bayes (Dong & Kothari, 2003) 77.68
Bayesian Network (Ezawa &
Schuermann,1995) 86.5

C 4.5 (Ezawa & Schuermann,1995) 85.5
Discrimination Analysis
(Ezawa & Schuermann,1995) 83.4

Fuzzy Classifier System
(Ishibuchi & Yamamoto, 2005) 68.22

k-means (Guo et al, 2006) 63.08 92.67 68.54
MLP Neural Network (Ueda, 2000) 70.3
Hyper Sphere SVM (Liu et al, 2007) 62.15 95.68
MLP Neural Network (Deodhare et al, 2007) 95.8
Rule Extraction based on Grey Lattice
Classification
(Yamaguchi et al, 2005)

 86.7

Tree Support Vector Machine (Mill & Iune,
2004) 70.75

Array Support Vector Machine (Milll & Iune,
2004) 91.30

Fuzzy Rule Base with Linear Tree Genetic
Representation (Dasgupta & Gonzalez, 2001) 94.5 94.7 93.9

Average of above approaches 82.84 65.93 94.03 94.7 86.23 81.02
Best of above approaches 86.5 70.3 96.00 94.7 95.8 91.30
SEA 85.58 70.68 95.57 95.04 94.59 99.31

Table 7. Average Classification Rate of some other algorithms with almost similar test
settings in compare to SEA.

Symbiotic Evolution of Rule Based Classifiers

197

5.2 Speed comparison results
Figures 5-10 depict the best fitness values over time for SEA and GA on the six stated
datasets, averaged in all runs. As it is presented in the diagrams, SEA has found a better
solution much faster than GA in all cases. Table 8 summarizes these results, and presents the
average time taken to find the best result by each algorithm on each benchmark. As stated
there, SEA has reached its best result notably faster than GA in all cases.
Also Figure 11 depicts the relation between number of fitness function calls and time for the
two algorithms. Four curves show GA and SEA algorithms for CRX and Iris datasets which
are, respectively, the largest and the smallest UCI ML Repository datasets used in this
paper. The curves are almost linear with a slight trend toward taking more time for each
fitness function call while the algorithms are proceeding. Thus, the progress of elite fitness
can be considered through either time or fitness function calls in diagrams 5 to 10. Number
of fitness function calls can be considered as a rough measure of the speed complexity of the
algorithm as it removes the effects of programming details on algorithm speed.

Dataset SEA PGA SEA to PGA
Improvement

CRX 357 4650 92.32 %

Glass 164 280 41.42 %

Iris 40 633 93.68 %

Vote 89 1490 94.02 %

Wine 98 1710 94.26 %

KDD99 7012 54306 87.08 %

Table 8. Average time taken by SEA and Pittsburgh GA to find the best classifier on
different benchmarks, in seconds.

Fig. 5. CRX benchmark, average fitness of best rule set found by Pittsburgh GA and SEA
over time.

 Tools in Artificial Intelligence

198

Fig. 6. Glass benchmark, average fitness of best rule set found by GA and SEA over time.

Fig. 7. Iris benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Fig. 8. Vote benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Symbiotic Evolution of Rule Based Classifiers

199

Fig. 9. Wine benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Fig. 10. KDD benchmark, fitness of best rule set found by Pittsburgh GA and SEA over time.

Fig 11. Time versus Fitness Function Calls, GA and SEA algorithms, CRX and Iris datasets.

 Tools in Artificial Intelligence

200

6. Summary and concluding remarks
While the suitability of evolutionary approaches for generation of rule based classifier
systems is shown in many different contributions, the structure and elements of this process
are an important issue in design of a system that works efficiently. As stated in section 2,
Michigan algorithm is faster and requires less memory in compare to Pittsburgh algorithm,
but it has two very important problems that makes Pittsburgh the favorite one in many
cases: First, the cooperation of single rules that are all evolved for better classification,
regardless of other rule's behavior, will not necessarily result in a general good classifier;
Second, some parts of the problem space might be neglected.
Pittsburgh evolutionary algorithm also has three problems that must be dealt with during
an efficient implementation: First, how to recombine two rule-sets? While traditional sexual
recombination operators splits the two parents and merges their parts, how should one
know which rules of either rule-set (parents) must be extracted to be recombined to make a
good combination. Second, what to do with the parasite rules? And the third question is
how many rules must a rule-set have to get a small, but accurate classifier?
SEA algorithm uses symbiotic combination operator instead of common sexual
recombination operator of GA, and provides a solution for the three above questions; it
creates an offspring from two parents by combining all of their rules (genes), and adds the
offspring to the gene pool only if it outperforms both its parents. Using this strategy, SEA
avoids grouping separate rules before it makes sure that the group works better than the
isolated ones, so it avoids garbage rules. It doesn't break any generated rule-set; therefore, it
doesn't require a method to identify good working sub sets of two rule-sets. Also, as it
grows the rule-sets only if growing results in better performance, the designer does not need
to make a decision about chromosome sizes in advance.
Experimental results clearly comply with this hypothesis where SEA had 6 to 75 percent
classification error reduction on training data in compare with Pittsburg GA and 2 to 87
percent on test data, except in one case which resulted in 6 percent more classification error.
Moreover, this significant better accuracy was reached by 41 to 92 percent less computation
time, in similar operating conditions.
As SEA is introduced as a basic algorithm to resolve the problems of Pittsburgh algorithm,
we have just compared it in details with Pittsburgh GA, but some accuracy comparisons
with algorithms from other families were also presented in section 6 and 7. Although some
of these comparisons are not very fair as they were taken from different sources with
slightly different test conditions, SEA presented very good comparison results to all of them
as well.
Table 9 presents a features summary of SEA, Michigan, & Pittsburgh algorithms. As it is
noted there, SEA stands between Michigan and Pittsburgh approaches from many
viewpoints, collecting the positive points of both of them. SEA starts with light weight
single rule individuals, as in Michigan, and gradually evolves them towards complete rule-
set individuals, as in Pittsburgh. Due its growing size of individuals, it stands between
Michigan and Pittsburgh in speed and memory complexity measures. Similar to Pittsburgh,
it allows cooperation inside rule-sets but unlike Pittsburgh and similar to Michigan, this
does not result in parasite rules, keeping rule-sets neat and accurate. Inheritance is done
both on rule level and rule-set level as there is no distinction between rule and rule-sets. As
the fitness of a rule-set is defined over all of its rules, a single rule that correctly covers a
small uncovered portion of training samples can increase the credit of a rule-set and
therefore is accepted and added to the rule-set, so, unlike Michigan approach there is no
need to set specific credit to less frequently used training samples. And at last, in contrast to

Symbiotic Evolution of Rule Based Classifiers

201

Pittsburgh that blindly recombines two rule-sets, SEA combines two rule-sets only if this
increases the overall recognition performance.
As next stages of this task, we can recommend an extra function that recognises rules that
have redundant effects after symbiotic combinations. Also more specific representations and
local optimization of rule-sets may result in better classification rates.

 Michigan Pittsburgh SEA

Individual A single rule A rule-set Starts with single rules
and reaches rule-sets

Selection and
Evaluation On each rule On each rule-set On each rule-sets

Rules Cooperation None, Rules are
rivals

Cooperative inside rule-
sets, rival among rule-sets

Cooperative inside rule-
sets, rival among rule-sets

Garbage Rules Not Existing Severely Existing Not Existing
Computation Time Least Most Between others

Memory Size Least Most Between Others
Rule Optimization Direct Indirect Both direct and indirect

Inheritance Good Rules Good Rule-Sets Both good rules and rule-
sets

Requires class
credit assignments Yes No No

Requires rule-set
size specification Yes Yes / Controlled by a

score function
No, controlled by

accuracy.
Rule-Set

recombination None Yes, but may result in
lower accuracy

Yes, always results in
higher accuracy.

Table 9. Feature Comparison of Michigan, Pittsburgh and SEA.

7. Acknowledgements
Authors wish to thank Mr. Pooya Esfandiar and Ms. Sima Lotfi for their help during
implementation and testing of this task and Ms. Maryam Hasanzadeh for sharing the details
of her implementation, test, and data sets.

8. References
Bagley, J.D. (1967). The Behaviour of Adaptive Systems Which Employ Genetic and Correlation

Algorithms, PhD Dissertation, University of Michigan.
Barry, A., Holmes, J., & Llor, X. (2004). Data Mining using Learning Classifier Systems, In:

Applications of Learning Classifier Systems, Bull, L. (Ed.), 15-67, Springer,
ISBN:3540211098.

Blake C.L., Merz C.J. (1998). UCI Repository of machine learning databases, Irvine, CA:
University of California, Department of Information and Computer Science.
http://www.ics.uci.edu/~mlearn.

Chen, M.Y., Linkens, D.A., (2004). Rule-base self-generation and simplification for data-driven fuzzy
models, Fuzzy Sets and Systems, Volume 142, Issue 2, 1 March 2004, Pages 243-265.

Chi-Ho Tsang; Sam Kwong; Hanli Wang, (2005). Anomaly intrusion detection using multi-
objective genetic fuzzy system and agent-based evolutionary computation
framework, in Proceedings of Fifth IEEE International Conference on Data Mining.

 Tools in Artificial Intelligence

202

Corcoran, A.L., & Sen, S. (1994). Using real-valued genetic algorithms to evolve rule sets for
classification. In Proceedings of the IEEE Conference on Evolutionary Computation,
pages 120--124, 1994.

Cordon O., del Jesus M.J., Herrera F., (1998). Genetic learning of fuzzy rule-based classification
systems cooperating with fuzzy reasoning methods, International Journal of Intelligent
Systems 13 (10–11) 1025–1053.

Dasgupta, D. & Gonzalez, F., (2001). Evolving Complex Fuzzy Classifier Rules Using a Linear
Tree Genetic Representation, In L. Spector, D. Whitley, D. Goldberg, E. Cantu-Paz, I.
Parmee, and H. Beyer, editors, Proc. of the Int. Conf. on Genetic and Evolutionary
Computation (GECCO-2001), pages 299-305. Morgan- Kaufmann, San Francisco, CA.

De Jong, K.A. , Spears, W., & Gordon, D.F. (1993). Using genetic algorithms for concept
learning. Machine Learning, 13(2-3):155–188.

de la Iglesia B., Philpott M.S., Bagnall A.J., Rayward-Smith V.J., (2003), Data Mining Rules
Using Multi-Objective Evolutionary Algorithms, in Proceedings of IEEE Congress on
Evolutionary Computations, Vol. 3, pp 1552-1559.

Deb, K. (1991). Binary and floating point function optimization using messy genetic algorithms
(IlliGAL Report No. 91004). Urbana: University of Illinois at Urbana-Champaign,
Illinois Genetic Algorithms Laboratory.

Deodhare, D., Murty, M. N., and Vidyasagar, M., (2007). A Unified Approach to Encoding and
Classification using Bimodal Projection-based Features, in Proceedings of the International
Conference on Computing: Theory and Applications (ICCTA'07) pp. 348-354.

Dong, M. & Kothari, R., (2003). Feature subset selection using a new definition of classifiability,
Pattern Recognition Letters 24 (2003) 1215–1225.

Eggermont J., Kok J.N., Koster W.A., (2003) Genetic Programming for Data Classification:
Refining the Search Space, in Proceedings of the Fifteenth Belgium/Netherlands
Conference on Artificial Intelligence, pp 123-130.

Esposito M., Mazzariello C., Oliviero F., Romano S. P., Sansone C., (2005). Evaluating Pattern
Recognition Techniques in Intrusion Detection Systems, in Proceedings of the 7th
International Workshop on Pattern Recognition in Information Systems (PRIS 2005)
- 24-25 May 2005, Miami, FL (USA) pp. 144-153.

Ezawa, K. J., & Schuermann, T., (1995). A Bayesian network Based Learning System: Architecture
and Performance Comparison with Other Models, in Proceedings of the European
Conference on Symbolic and Quantitative Approaches to Reasoning and
Uncertainty, pp 197 – 206.

Forrest S., Mitchell M. (1993). Relative Building-block fitness and the Building-block Hypothesis.
In Whitley, D, ed. FOGA 2, Morgan Kaufmann, San Mateo, CA.

Freitas, A., A survey of evolutionary algorithms for data mining and knowledge discovery. In
Advances in Evolutionary Computation. Springer- Verlag, 2001.

Goldberg, D.E.; Korb, B. & Deb, K. (1989) Messy Genetic Algorithms: Motivation, analysis,
and first results. Computer Systems, 3, 5, 493-530.

Gomez, J., Dasgupta, D., (2002) Evolving Fuzzy Classifiers for Intrusion Detection, in
Proceedings of the 2002 IEEE Workshop on Information Assurance.

Gomez, J., Gonzalez, F., Dasgupta, D., (2002). Complete Expression Trees for Evolving Fuzzy
Classifier Systems with Genetic Algorithms, in Proceedings of the Evolutionary
Computation Conference GECCO'02, 2002.

Gopalan J., Alhajj R., Barker J., (2006). Discovering Accurate and Interesting Classification Rules
Using Genetic Algorithm, in Proceedings of the 2006 International Conference on
Data Mining, pp. 389-395. June 26-29, 2006.

Symbiotic Evolution of Rule Based Classifiers

203

Gundo K.K., Alatas B., Karci A., (2004). Mining Classification Rules by Using Genetic
Algorithms with Non-random Initial Population and Uniform Operator, Turkish Journal
of Electrical Engineering and Computer Science, Vol.12, No. 1, 2004.

Guo, H.X., Zhu, K.J., Gao, S.W., & Liu, T., (2006). An Improved Genetic k-means Algorithm for
Optimal Clustering, in Proceedings of Sixth IEEE International Conference on Data
Mining - Workshops (ICDMW'06) pp. 793-797.

Harik, G.R. (1997). Learning Gene Linkage to Efficiently Solve Problems of Bounded Difficulty
Using Genetic Algorithm, PhD Dissertation, University of Illinois at Urbana-
Champaign, Urbana, Illinois.

Hasanzade M., (2003). Fuzzy Intrusion Detection, MS. Dissertation, Computer Engineering
Department, Sharif University of Technology, Tehran, Iran, 2003.

Hasanzade, M., Bagheri, S., Lucas, C., (2004). Discovering Fuzzy Classifiers by Genetic
Algorithms, in Proceedings of 4th international ICSC Symposium on Engineering of
Intelligent Systems (EIS2004), 2004, Island of Madeira, Portugal.

Holland, John H. (1986). Escaping Brittleness: The Possibilities of General-Purpose Learning
Algorithms Applied to Parallel Rule-Based Systems. In R. Michalski, J. Carbonell,
and T. Mitchell (Eds.), Machine Learning: An Artificial Intelligence Approach (Vol.
2). Morgan Kaufmann Publishers, Los Altos, CA.

Ishibuchi H., Nakashima T., and Murata (1999). T., A hybrid fuzzy genetics-based machine
learning algorithm: Hybridization of Michigan approach and Pittsburgh approach, in
proceedings of IEEE, fuzzy IEEE.

Ishibuchi H., Yamamoto T., (2002). Fuzzy rule selection by data mining criteria and genetic
algorithms, in Proceedings of Genetic and Evolutionary Computation Conference
(GECCO 2002), pp. 399-406, New York, July 9-13.

Ishibuchi H., Yamamoto T., (2004). Fuzzy Rule Selection by Multi-Objective Genetic Local Search
Algorithms and Rule Evaluation Measures in Data Mining, Fuzzy Sets and Systems,
Vol. 141, no. 1, pp. 59-88, January 2004.

Ishibuchi, H. &, Yamamoto, T., (2004). Rule Weight Specification in Fuzzy Rule-Based Classification
Systems , IEEE Transactions on Fuzzy Systems, vol. 13, no. 4, August 2005.

Janikow, C.Z. (1993) A knowledge-intensive genetic algorithm for supervised learning.
Machine Learning, 13(2-3):180–228.

Liu J.J., & Kwok J.T. (2000). An Extended Genetic Rule Induction Algorithm, in Proceedings of IEEE
Congress on Evolutionary Computation (CEC-2000). La Jolla, CA, USA. July 2000.

Liu, S., Liu, Y., Wang, B., and Feng, X., (2007). An Improved Hyper-sphere Support Vector
Machine, in Proceedings of the Third International Conference on Natural
Computation (ICNC 2007) pp. 497-500.

Lopes C., Pacheco M, Vellasco M, Passos E, (1999). Rule-Evolver: An Evolutionary Approach
For Data Mining, in Proceedings of the 7th International Workshop on Rough Sets,
Fuzzy Sets, Data Mining, and Granular-Soft Computing, RSFDGrC'99, pp 458-462.

Lorenz, A., Blum, M., Ermert, H., & Senge, T., (1997). Comparison of Different Neuro-Fuzzy
Classification Systems for the Detection of Prostate Cancer in Ultrasonic Images, in
Proceedings of the IEEE Ultrasonics Symposium, 1997, Volume: 2, pp 1201-1204.

Maynard Smith, J., Szathmary, E. The Major Transitions in Evolution, WH Freeman: Oxford
UK, 1995.

Merezhkovsky, K. S. (1909), The Theory of Two Plasms as the Basis of Symbiogenesis, a New
Study or the Origins of Organisms. In Proceedings of the Studies of the Imperial
Kazan University, Publishing Office of the Imperial University, (In Russian).

Mendes, R., R., F., Voznika, F., de B., Freitas, A., A., Nievola, J. C., (2001). Discovering Fuzzy
Classification Rules with Genetic Programming and Co-Evolution, In Principles of Data

 Tools in Artificial Intelligence

204

Mining and Knowledge Discovery (Proc. 5th European Conference PKDD 2001) –
Lecture Notes in Artificial Intelligence, Springer-Verlag.

Mill J., Inoue A. (2004). Support Vector Classifiers and Network Intrusion Detection, in
Proceedings of IEEE Conference on Fuzzy Systems 2004, Vol 1. pp 407-410.

MIT Lincoln Labs, (2007). KDD CUP 99 DARPA Intrusion Detection Dataset,
http://kdd.ics.uci.edu/databases/kddcup99.

Mitchell, M. (1999). An Introduction to Genetic Algorithms, MIT Press, 0−262−13316−4,
London, England.

Potter, M.A., De Jong, K.A. (1994). A Cooperative Coevolutionary Approach to Function
Optimization. In: Parallel Problem Solving from Nature (PPSN III), Y. Davidor, H.-P.
Schwefel and R. Manner (Eds.). Berlin: Springer-Verlag, 249-257.

Riquelme J.S., Toro J.C., Aguilar-Ruiz M., (2003), Evolutionary Learning of Hierarchical Decision Rules,
in IEEE Transactions on Systems, Man, and Cybernetics, Vol. 33, Issue 2, pp 324-334.

Rouwhorst, S.E., Engelbrecht A.P., (2000). Searching the Forest: Using Decision Tree as Building
Blocks for Evolutionary Search in Classification. In Proceedings of IEEE Congress on
Evolutionary Computation (CEC-2000), 633-638. La Jolla, CA, USA. July 2000.

Sen, S., Knight, L., & Legg, K. (1997). Prototype based supervised concept learning using
genetic algorithms. In D. Dasgupta and Z. Michalewicz, editors, Evolutionary
Algorithms in Engineering Applications, pages 223–239. Springer.

Smith, S. F. (1980). A Learning System Based on Genetic Adaptive Algorithms, PhD Thesis,
University of Pittsburgh.

Smith, S. F. (1983). Flexible Learning of Problem Solving Heuristics Through Adaptive
Search, Proc. 8th IJCAI, August 1983.

Tan K.C., Yu Q., Heng C.M., Lee T.H., (2003). Evolutionary computing for knowledge discovery
in medical diagnosis, Artificial Intelligence in Medicine 27, pp.129-154.

Teng M., Xiong F., Wang R., Wu Z., Using genetic algorithm for weighted fuzzy rule-based
system, in Proceedings of Fifth World Congress on Intelligent Control and
Automation, 2004.

Toosi A.N., Kahani M. (2007). A New Approach to Intrusion Detection Based on an Evolutionary
Soft Computing Model Using Neuro-Fuzzy Classifiers, Computer Communications,
Vol 30, 2201-2212.

Ueda, N., (2000). Optimal Linear Combination of Neural Networks for Improving Classification
Performance, IEEE Transactions on Pattern Analysis and Machine Learning, vol. 22,
no. 2, February 2000.

Watson, R.A. & Pollack, J.B. (1999), Incremental Commitment in Genetic Algorithms,
Proceedings of GECCO'99., Morgan Kaufmann, 710-717.

Watson, R.A., Pollack, J.B. (2000). Symbiotic Combination as an Alternative to Sexual
Recombination in Genetic Algorithms, in Proceedings of Parallel Problem Solving
from Nature (PPSN VI).

Wilson, S. (1987). Classifier systems and the Animat problem. Machine Learning, 2:199–228.
Yamaguchi, D., Li, G.D., Mizutani, K., and Akabane, T., (2005). Decision Rule Extraction and

Reduction Based on Grey Lattice Classification, in Proceedings of the Fourth
International Conference on Machine Learning and Applications, 2005, 15-17 Dec.
2005.

Zimmermann, H., J., (1995). Fuzzy Set Theory and Its Application, Kluwer Academic
Publishers.

Zhu F., Guan S.U., (2004). Ordered Incremental Training with Genetic Algorithms, International
Journal of Intelligent Systems, Volume 19, Issue 12 , pp 1239-1256.

12

A Multiagent Method to Design Open
Embedded Complex Systems

Jamont Jean-Paul and Occello Michel
University of Grenoble, LCIS/INPG-UPMF Lab

France

1. Introduction
Open physical complex systems involve multiple interconnected software and hardwar
entities which enable logical/physical interactions between them and their shared
environment. They rise to many hierarchical level which exhibit common behaviours. These
entities have their own goals but participate to the accomplishment of the global system.
There are different classes of open physical complex systems like control systems processing
systems, communication systems and interactive systems. Because these systems take over
new wireless technologies, they are more and more distributed, decentralized and often not
completely described.
Through the use of multiagent system to model Open physical complex systems (OCPS) two
types of requirements emerge: requirements in methods and in specific system
architectures. Concerning the specific methods, our contribution is the DIAMOND method
(Decentralized Iterative Approach for Multiagent Open Networks Design (Jamont &
Occello, 2007)). Concerning the requirements in architecture, our contribution is the MWAC
model (Multi-Wireless-Agent Communication) based on our previous work on wireless
sensor networks (Jamont & Occello , 2006).
In this chapter, we focus on specificities of the methodological requirements. We try to
answer to some questions asked by this type of applications in lifecycle terms, about the
design step and the formalism.
A method consists in concepts, in an approach and in tools. So, in a first section, we focus on
the main concept of our works: the multiagent paradigm. In a second part, we present the
approach of the DIAMOND method. The third part describes the different steps and
activities of our method. Before concluding, we propose a discussion of the method in
comparison to other multiagent methods.

2. Multiagent systems
An agent is a software entity evolving in an environment that it can perceive and in which it
acts. It is endowed with autonomous behaviours and has objectives. Autonomy is the main
concept in the agent issue: it is the ability of agents to control their actions and their internal
states. The autonomy of agents implies no centralized control (Wooldridge, 1999).
A multiagent system is a set of agents situated in a common environment, which interact
and attempt to reach a set of goals. Through these interactions a global behaviour, more

 Tools in Artificial Intelligence

206

intelligent than the sum of the local intelligence of multiagent system components, can
emerge.
The emergence paradigm deals with the unprogrammed and irreversible sudden
appearance of phenomena in a system confirming that "the whole is more than the sum of
each part". It is one of the expressions of collective intelligence (Deguet et al., 2006).
The emergence process is a way to obtain dynamic results from cooperation that cannot be
predicted in a deterministic way. There are three types of emerging features (Marcenac,
1996): emergence of structures at the origin of the self-organization process, behaviour and
emergence of properties.
It is difficult to qualify the emergent characteristics of a phenomenon. Some fundamental
elements have been settled by S. Forrest (Forrest, 1991),(Muller; 2004) proposes an
interesting specialization in the multiagent context that has been recently discussed and
completed in (Dessales & Phan, 2005).
It asserts that a phenomenon is emergent if:
• there is a set of agents interacting via an environment, whose state and dynamics

cannot be expressed in terms of the emerging phenomenon to produce in a vocabulary
or a theory D,

• the dynamic of the interacting agents produces a global phenomenon such as, for
example, an execution trace or an invariant,

• the global phenomenon is observable either by the agent (strong sense) or by an
external observer (weak sense) in different terms from the subjacent dynamics i.e.
another vocabulary or another theory D '.

To give a system of agents a particular global functionality, the traditional method consists
in carrying out a functional decomposition of the problem into a set of primitives which will
be embodied by the agents. The alternative suggested by L. Steels (Steels, 1990) aims at
making this functionality emerges from the interactions between the agents. The advantage
of the "emergent functionality" approach is first of all a reinforcement of the robustness of
the system becoming less sensitive to the changes of the environment.
The adaptation of the whole multiagent system is generally obtained through emergence. It
exist a lot of multiagent methods. We give here some references to these different works and
the result of an analysis of these methods through many criteria.

3. Approach
The lifecycle of traditional methods applied to design hardware/software hybrid systems
(see fig.1) starts with a requirements analysis followed by a portioning step. During this
partitioning step, the designer chooses the system parts which must become either hardware
or software parts %: the requirements analysis which is derived in a hardware one and a
software one. At this stage, the two different parts are designed in parallel. At the end of the
lifecycle, the two parts are integrated into a whole operational system. Through this
integration step (and the following tests) some problems can emerge. These problems can
question the software design, the hardware design or the both. Furthermore, it can be
necessary to modify the whole result of the partitioning!
This type of lifecycle doesn't allow to take into account some late modification of
requirements and is thus not well adapted to OPCS which cannot, by definition, be
completely a priori specified.

A Multiagent Method to Design Open Embedded Complex Systems

207

Fig. 1. Lifecycle of a traditional multiagent method

A few works deal with embedded multiagent systems, but new applications are strongl
concerned by this domain (Pervasive computing (Carabelea et al., 2003), Ambiant
computing (Maña & Rudolf, 2007)) and industrial applications of MAS (Parunak, 2000)).
Even if we are at the beginning of the expansion of embedded multiagent systems, we are
sure that embedded MAS methods will be the continuation of traditional embedded system
design lifecycle (see fig 1). Multiagent approaches focus on software parts and forget the
hardware aspects. Hardware aspects are generally taken into account only during the
deployment step (Cossentino03 et al.), and are limited to the choice of the platform where
the agents must be deployed.
We can thus say that the hardware/software hybrid systems design is very partially
covered by MAS methods. An alternative to this type of lifecycle is the codesign approach.
A codesign method unifies the development of both hardware and software parts by the use
of a unified formalism. The partitioning step is pushed back at the end of the life cycle. We
can thus settle at this point of our study that the choice of a specific lifecycle model which
supports a codesign approach is required.
Because of the complex features of our system, the lifecycle model must enable late
modification of specifications. Furthermore, it is necessary to come back on previous design
steps (refinement) and to explore the solution space of the hardware/software compromise.
The design process must accept genericity (incremental criteria are in favour of the
genericity). Finally, we must identify and keep a trace of all the parameters of the different
retained solutions. The evaluation of different lifecycle models in respect with these
previous criteria leads to adopt a spiral lifecycle (Boehm, 1988).
The lifecycle of traditional method applied to design an hardware/software hybrid system
(see fig.1) begin by a requirement analysis followed by, very early, by a portioning step.
During this partitioning step, the designer chooses the system part which must become
hardware part or software part: the requirement analysis which is declined in a hardware
one and a software one. After this step, these two different parts are designed in parallel. At
the end of lifecycle, these two parts are integrated to become operational system. Through
this integration step (and the following test) some problem can emerge. Theses problems
can call into question the software design, the hardware design or the twice. More deeply, it
can be necessary to modify the result of the partitioning!
The evaluation of the different lifecycle models in respect with these previous criteria carries
out the spiral lifecycle (Boehm, 1988) as the best choice in our context.
The DIAMOND method is built to design physical multiagent systems. Four main stages,
distributed on a spiral cycle (see fig.2), may be distinguished within our physical multiagent
design approach. The definition of requirements defines what the user requirements are and
characterizes the global functionalities. The second stage is a multiagent-oriented analysis
which consists in decomposing a problem in a multiagent solution. The third stage of our

 Tools in Artificial Intelligence

208

method starts with a generic design which aims to build the multiagent system, once one
knows what agents have to do without distinguishing hardware/software parts. Finally, the
implementation stage consists in partitioning the system in a hardware part and a software
part to produce the code and the hardware synthesis.

Fig. 2. Lifecycle of a traditional multiagent method

4. The DIAMOND method
4.1 Case study
To illustrate the various phases and activities of our method, we will use the robocup case
study. To make the illustration easily understandable, we will adopt a simplified definition
of requirements.
The experimental conditions are inspired by (Huang et al., 2001). Robots evolve on a football
field (see fig. 3). A video recorder system makes possible to know the position of each robot
as well as of the ball. These positions are periodically broadcasted to all robots. If the ball
goes out of the limits of the field, a robot of the non faulty team recovers the ball and plays
(the order is given by the referee). If a robot has no more battery or is dysfunctioning, the
match is stopped (the order is given by the referee for human safety reasons) and the robot
is withdrawn from the field: all robots must be then motionless. At the beginning of a match
the robots must be located in their camp and the referee decides to give the guardian role to
one robot of each team. So, the game is open and the team, which scores the higher number
of goals in 90 minutes, wins.

A Multiagent Method to Design Open Embedded Complex Systems

209

Fig. 3. Our case study

4.2 Definition of requirements
This preliminary stage begins by analyzing the physical context of the system (identifying
workflow, main tasks, etc...). Then, we study the different actors and their participative user
cases (using UML use case diagrams), the services requirements (using UML sequence
diagram) of these actors. The UML sequence diagram can include physical interaction.
The second step consists in an original step: the study of the running mode and stop mode.
This activity is very significant because it enables to structure the global running of the
system. It is generally wishable that the system works in autonomy. But working with
physical systems requires to identify many others possible behaviours: how must the system
be before to stop it (robot in safety area...)? What must the system states be when it goes
under maintenance? How must the system components be calibrated? What must the state
of all the components be when an emergency stop occurs? Even if the problem is solved
with a decentralized intelligence, this organization of these modes is easily understandable
by the clients and the users. More of that, even if the system is approached with a
decentralized intelligence, the system must respect laws and norms. They are very strong
because the human safety can easily be altered.
This activity puts forward a restricted running of the system. It allows to specify the first
elements necessary for a minimal fault-tolerance. Moreover, it enables to identify
cooperative (or not) situations and to define recognition states in order to analyze, for
example, the self-organizational process of an application. This activity allows to take into
account the safety of the physical integrity of the users possibly plunged in the physical
system.
We have defined 15 different modes regrouped in three families. The stop modes are relate to
the different procedures for stopping the system. Moreover it allows to define the associate
recognition states. The running modes focus on the definition of the recognition states of
normal running, test procedures etc. The failing operations modes focus on the security

 Tools in Artificial Intelligence

210

procedures (for example to allow a human maintenance team to work in the system) or to
specify rules for restricted running etc.
Application to our case study. We find the following actors. The referee (logical actor)
manages the match parameters: choose a goalkeeper and a camp for each team, verifies that
robots respect the rules. It authorizes the human to withdraw a robot when all robots are
motionless.
The manager (physical actor) withdraws robots when a problem occurs. The ball (physical actor)
moves under the robot actions. The opposing team (physical/logical actor) shares the field
with the studied one.
The camera system broadcasts the coordinates of each robot and of the ball.
There are two user cases. The configuration expresses that the referee chooses a field and a
goalkeeper for each team. This user case triggers another one: the games opens the game (see
fig.4).

Fig. 4. Our case study

For our application, the identified modes are:
• Stops modes: Two modes of stops must be characterized: other modes are not exploited.

• Idle: In a idle mode, the robots must be motionless.
• Stops requested on normal mode: when a robot dysfunction occurs, the referee can

decide to freeze the game.
• Running modes:

• Normal mode: in this mode all the robots must answer to requests of the referee,
there is no emergency stop.

• Mode of preparation: during the phase of preparation, robots are positioned on the
ground. Robots should neither then move nor use their actuators. This mode ends
when the parameters setting period starts.

• Mode of test: this mode will be used to calibrate the shooting power.
• Failure modes: only the management of the emergency stop is relevant in our

application.
• Mode of stop aiming to ensure the safety: If an emergency stop is activated, robots

do not have any more the right to move or use effectors.
In this application, where the life period is short, importance of the other modes is not
relevant.

4.3 Multiagent oriented analysis
The multiagent stage is handled in a concurrent manner at two different levels. At the
society level, the multiagent system is considered as a whole. At the individual level, the
system's agents are built. This integrated multiagent design procedure encompasses five
main phases discussed in the following.

A Multiagent Method to Design Open Embedded Complex Systems

211

Situation phase. The situation phase defines the overall settings, i.e., the environment, the
agents, their roles and their contexts. This stems from the analysis stage. We first examine
the environment boundaries, identify passive and active components and we proceed to the
agentification of the problem.
We insist here on some elements of reflexion about the characteristics of the environment
(Russel & Norvig, 1995),(Wooldridge, 2000). We must identify here what is relevant to take
into account from the environment, in the resulting application.
It's, first of all, necessary to determine the environment accessibility degree i.e. what can be
perceived from it. We will deduce from these characteristics which are the primitives of
perception needed by agents. Measurements make possible to measure parameters which
enable to recognize the state of the environment. They thus will condition the decisional
aspect of the agent. The environment can be qualified of determinist if it is predictable by an
agent, starting from the environment current state and from the agent actions. The physical
environment is seldom deterministic. Examining allowed actions can influence the agent
effectors definition. The environment is episodic if its next state does not depend on the
actions carried out by the agents. Some parts of a physical environment are generally
episodically. This characteristic has a direct influence on agent goals which aim to monitor
the environment. Real environment is almost always dynamic but the designer is the single
one able to appreciate the level of dynamicity of the part of the environment in which he is
interested. This dynamicity parameter has an impact on the agent architecture. Physical
environments may require reactive or hydride architectures. The environment is discrete if
the number of possible actions and states reached by the environment are finite. This
criterion is left to the designer appreciation according to the application it considers. A real
environment is almost always continuous.
It is then necessary to identify the active and passive entities which will compose the system.
These entities can be in interaction or be presented more simply as the constraints which
modulate these interactions. It is necessary to specify the role of each entity in the system. This
phase allows to identify the main entities that will be used and will become agents.
Application to our case study. The environment is not accessible. Each robot can know its
geographical position, the position of the ball and of the other robots. Dimensions of the
ground are known and the field of each team is communicated at the beginning of each part.
The positions of each robot can be memorized at different dates to estimate displacements,
directions of the robots and their trajectories. The trajectory of the ball obeys to physical
laws. Agents can estimate this trajectory and act on it. Environment is rather not
determinist. Even if agents cooperate and there is no dysfunction, an agent cannot know
actions of other agents. However elements of the environment are not fully predictible like
the trajectory of the ball. The possible actions on the environment are displacements (robots
and ball). Environment is not episodical because we suppose that no intervention of the
human is possible. The future evolutions depend only on the actions carried out by the
robots. Environment is dynamic and continuous although the feasible actions are finite.
The active entities are the robot-players. The ball is a passive entity which obeys to agent
actions (shootings) by a displacement according to the physical laws.
Individual phase. Decomposing the development process of an agent refers to the
distinction made between the agent's external and internal aspects. The external aspect deals
with the definition of the media linking the agent to the external world, i.e., what and how
the agent can perceive, what it can communicate and according to which type of
interactions, and how it can make use of them.

 Tools in Artificial Intelligence

212

The agent's internal aspect consists in defining what is proper to the agent, i.e. what it can
do (a list of actions) and what it knows (its representation of the agents, the environment,
interaction and organization elements (Demazeau, 1995).
In most cases, the actions are carried out according to the available data about the agent's
representation of the environment. Such a representation based on expressed needs has to
be specified during specifications of actions. In order to guarantee that the data handled are
real data, it is necessary to define the required perception capabilities. We have defined four
types of actions. Primitive actions are tasks which are not physically decomposable. Composed
actions are temporal ordered lists of primitives. Situated actions need to have a world
representation to execute their tasks.
Application to our case study. The agent world representation consists in a collection of
triplets (id,x,y) and in the field dimension. In our application, robot players are modelled by
agents. Their individual capabilities can be specified using a tree to show the different
action levels (fig. 5).

Fig. 5. Actions scheme

We specify the agent context with a context diagram (see fig 6).
After one iteration to take into account the society phase, individual behaviours are
implemented using finite state machine. We can define an agent with the goalkeeper
behaviour. Other agents can alternate two different behaviours (shooter or defender). For
example, the goalkeeper behaviour defines that the agent must always be on a possible
trajectory of shooting.

Fig. 6. Context diagram

Society phase. Interactions among agents are achieved via messages passing. Such exchange
modes are formalized by means of interaction protocols. Although these interaction
protocols are common to all the agents, they are rather external to them. Conflict resolution
is efficiently handled by taking into account the relationships between the agents, that is, by
building an explicit organizational structure. Such an organization is naturally modelled
through subordination relations that express the priority of one agent on another.

A Multiagent Method to Design Open Embedded Complex Systems

213

Application to our case study.
Representation of others: The positions of other players can be known by the capture of
information from the video system (WIFI module). Their directions can be estimated if
agents can memorize the previous positions. Friend's intentions can be announced.
Interactions: between the agents they are carried out by exchange of messages. An agent
must be able to communicate with its team to diffuse its intention. It can use a peer-to-peer
communication to solve a conflict or to choose a trajectory with a friend.
Collaborative actions can be instantiated: a player can request the ball when it has an occasion
for shooting. It can ask somebody to change position to attract an opponent elsewhere.
Organization: A TEAM according to the requirement is composed of a goalkeeper and three
other agents which can be SHOOTER or DEFENDER.
Collective behaviour can be implemented by finite state machines.
Integration phase. We need to analyse the possible influences upon the previous levels.
Those influences are integrated within the agents by means of their communication and
perception assessment capabilities (given in each agent's model through guard and trigger
rules). The decomposition masks the notion of agent's control, i.e., how it handles its focus
of attention, its decisions, and how it links its actions. This dual aspect is based on the two
previous one. Through the integration of social influences within the agents, one will
endow the multiagent system with some dynamics. According to the social analysis we
must give to the agent the possibility to interact in order to choose its role.
Application to our case study. We illustrate this phase with two examples.
Influence: If an agent wants to move to a given point, somebody (a friend or not) can be on
its trajectory. Correction: If the agent on the trajectory is a friend, the agent owning the ball
has the priority.
Influence: Two agents request the ball for shooting. Correction: Agents use an election
protocol (they exchange an estimation of their success probabilities).

4.4 The generic design
This stage is based on component decomposition. We can define a component as an
elementary object, which performs a specific function that allows developers to define
reusable segments of code. It is designed in such a way to easily operate with other
components to create an application. So, a component is a reusable program building block,
which is an identifiable part of a larger program. Components can be combined with others
to build more complex functions. This phase offers an efficient process leading to
component decomposition by starting from the informal description of the multiagent
system built during the previous stage.
The Problem Description Phase. This phase consists in identifying and delimiting the
domain of the general problem, as well as identifying some specific aspects that should be
taken into account. Although this phase is informal, it allows designers to clearly separate
the various aspects embedded within the application. We must choose here the architecture
of the different agents.
The agents are built following hybrid architectures, i.e. a composition of some pure types of
architecture. Indeed, the agents will be of a cognitive type in case of a configuration
alteration, it will be necessary for them to communicate and to manipulate their knowledge
in order to have an efficient collaboration. On the other hand, in a normal mode use it will
be necessary for them to be reactive using a stimuli/response paradigm to be most efficient.

 Tools in Artificial Intelligence

214

Application to our case study At this level, the designer chooses technical solutions for each
sensors/effectors. The context diagram (fig. 6) is detailed (see the table 1).
Using a hybrid architecture for the agents enables to combine the strong features of each of
reactive and cognitive capabilities seen before. We use our ASTRO hybrid architecture
(Occello et al., 1998), especially adapted to a real time context.

Information Specification
Reset Active on high logical level (1bit)
Angle Relative angle in [- 180, +180] coded whole signed on 10 bits

Speed Two speeds are possible. Entirety coded on 2 bits. (00: stop / 01:
slow speed / 10: fast speed)

Strengh Two levels of possible forces. Level coded on 1 bit (0: pass/1:
shooting)

Eject_ball Transition to high level
Date_heure Number of milliseconds run out since the powering (32 bits)

Send_msg Specific protocol bit field (sender 1octet, receiver 1byte, data_lenght
1octet, data 1-25octets)

Receive_msg Specific protocol bit field (same than Send_msg)

Table 1. Details of the context diagram

Agent applicative tasks design phase. We must build the external shell of the agent i.e.
elaborating the interface with the external world for each sensors and effectors. It is time,
here, to choose technological solution for them and to complete the context diagram to
specify all information about the signal. The next step is to design the internal shell of the
agent. We begin by the elaborated actions according to the task tree.
It is necessary at this stage to arrange the components to build the application: the
architecture of the agent will be used as a pattern, at a very high level, for the components
decomposition.
The components have an external and an internal description. The internal description can
be an assembly of components, or a formatted description of a decisional algorithm.

4.5 Implementation stage
Partitioning Phase. The main use of codesign techniques appears in the software/hardware
partitioning of the components defined in the third level. Also it is essential to study the
different partitioning criteria.
A first level relates to agent parts for which the partitioning question doesn't exist. Indeed
some elements must be hardware as input/output periphericals such as for example the
sensors and the actuators.
The second level relates to features for which there are several choices of implementation.
We present below, those which can be considered to be relevant for the agents according to
previous works we have made in this field (Occello et al., 1998),(Jamont et al., 2002),(Luo et
al., 2007) and codesigns work like (Adams & Thomas, 1996):

A Multiagent Method to Design Open Embedded Complex Systems

215

• The cost is present at all the stages of a system design life cycle. On very small series, we
must decrease, as much as possible, the price of the software/hardware development
and the hardware material. In the case of great series, we must reduce manufacturing
costs.

• The performance depends on the considered problem. A real-time application for which
the robustness is a function of the occupation processor time is an example of system
where this criterion is very important. A hardware partitioning is often privileged.

• The flexibility plays in favour of the software. Software modifications have generally a
less significant impact on the whole system than a hardware change. However, the
flexibility of the EPLD (Electrical Programmable Logic Device) and other FPGA (Field
Programmable Gate Array) increases quickly. For example, these architectures are
reprogrammable in-situ : it is possible to modify their specifications without extracting
them from the electronic chart.

• From their nature, software systems are fewer faults tolerant than hardware components
like EPLD. Indeed, microcontrollers use memories, stack structures with possible
overflow etc. The internal fault tolerance will be thus a criterion which will play in favour
of a hardware partitioning.

• The ergonomic constraints gather all the system physical characteristics like weight,
volume, power consumption, thermal release etc. Depending on the application, this
criterion can be highly critical (case of the aeronautics embedded applications). One
more time, the designer must appreciate correctly this criterion.

• The algorithmic complexity has a great importance for some applications. The software
part will be more important if tasks are very complex. In fact, it is very difficult to make
hardware synthesis of highly cognitive features.

Co-simulation and co-validation Phases. This activity allows to simulate the collaboration
between software part, hardware part and their interface.
Implementation Phase. At this level, each component is completely specified with common
graphic specification formalism for the hardware part and the software part. For each
component, the designer has already selected if he wishes a hardware or a software
implementation.
This level must ensure the automatic generation of the code for the components for which
implementation software has been selected. The code is made in a portable language like
Java or C++.
We use a Hardware Description Language which provides a formal or symbolic description
of a component or of a hardware circuit and it interconnections. In our method the
hardware components are specified in VHDL (Breuer et al. , 1999). The compilation of the
code and the hardware synthesis of different specifications in VHDL are carried out like
illustrated on figure 7.
Application to our case study. Today, the agents are embedded on autonomous processor
cards. These cards are equipped with communication modules and with measuring
modules to carry out agent tasks relative to the instrumentation. These cards supply a real
time kernel. The KR-51(the kernel's name) allows multi-task software engineering for C515C
microcontroller. We can produce one task for one capability. We can then quite easily
implement the parallelism inherent to agents and satisfy the real-time constraints.

 Tools in Artificial Intelligence

216

Fig. 7. Software component synthesis and hardware component synthesis

5. Discussion about the DIAMOND method
5.1 Lifecycle and phases
Most existing multiagent methods usually distinguish only analysis and design phases
(Deloach et al., 2001). Very few methods deal with other phases. We can find for example a
deployment phase in MASSIVE or Vowels. This deployment phase takes in our particular
field a great importance since it includes the hardware/software partitioning. A last and
major difference between DIAMOND and other multiagent approach is, as said previously,
that DIAMOND unifies the development of the hardware part and the software part. In a
traditional system design, the partitioning step stands at the beginning. In fact, a hardware
requirement and a software requirement are created from the system requirements.
The software part of the system is built using a multiagent method and its associated
lifecycle.
To cover the whole lifecycle, different formalisms are required to express different things at
different levels (Herlea et al., 1999), for this reason we adopt a lifecycle using four stages
mixing different expressions using more or less formal paradigms and languages (agents,
components, Finite State Machines, Hardware Definition Languages). The most current
lifecycle used in multiagent methods is the classical cascade lifecycle. Even if some works
attempt to introduce iterative cycles as Cassiopeia (W) or Gaia, the proposal of a spiral
lifecycle is very original.
In the definition of requirements phase, we introduce a study of the modes of running and
stops to structure the global running of the system. In the generic design phase, the design
allows an abstraction of the software design and the hardware design. We use components
to build the agents as few multiagent methods introducing an actual componential

A Multiagent Method to Design Open Embedded Complex Systems

217

dimension (Lind, 2001),(Brazier et al., 2002). These components are used to simplify the
work of the designer through visual programming, to manage the complexity through a
functional decomposition, to increase the genericity through reusability, to simplify the
partitioning because the analogy between soft components and chips enables the hardware
tools and the software tools to share a unified vision.
Table 2 comes from the work of G. Picard (Picard, 2004). It gives an insight of the different
methods and the qualitative results of the comparison between them.

M

od
el

 o
f l

ife
cy

cl
e

Re
qu

ie
re

m
en

ts

A
na

ly
si

s

D
es

ig
n

Im
pl

em
en

ta
tio

n

Te
st

D
ep

lo
ie

m
en

t

M
ai

nt
en

an
ce

D
él

iv
ra

bl
es

Q
ua

lit
y

m
an

ag
m

en
t

Pr
oj

ec
t m

an
ag

m
en

t

ADELFE
(Bernon et al., 2002) V + ++ ++ + + + + ++ + ++

AAII
(Kinny et al., 1996) Waterfall - ++ + -- -- -- -- + -- --

Aalaadin
(Ferber & Gutknecht, 1998) Waterfall - ++ + ++ - + - - -- --

Cassiopée
(Drogoul & Collinot, 1998) Iterative -- ++ + -- -- -- -- + -- --

DESIRE
(Brazier et al., 2002) Waterfall - + ++ + ++ -- -- - -- --

Gaia
(Wooldridge et al., 2000) Iterative - ++ ++ -- - -- -- ++ -- --

MaSE
(DeLoach et al., 2001) Waterfall -- ++ ++ + + -- -- ++ -- --

MASSIVE
(Lind, 2004) Incremental + ++ ++ + + ++ + + - -

MESSAGE
(Lind, 2001) Iterative + ++ ++ + + + + ++ + +

PASSI
(Chella et al., 2006) Incremental + ++ ++ + + ++ + ++ -- --

Prométheus
(Padgham et al., 2007) Waterfall - ++ ++ + - -- -- + -- --

Tropos
(Castor et al., 2004) Incremental ++ ++ + + + -- -- - -- --

Voyelles
(Ricordel & Demazeau, 2000) Waterfall - ++ ++ + + + -- -- -- --

DIAMOND Spiral + ++ ++ ++ (+) ++ + + (?) (?)
++ : Properties are fully and explicitly supported --: Properties are not explicitly taken into charges
+ : Properties are taken care of in an indirect way - : Properties are not supported
+ : Properties are potentially Supported

Table 2. Comparison synthesis of the multiagent methods

 Tools in Artificial Intelligence

218

The criteria used in table 2 are:
• Requirements: Is the requirements gathering taken into account?
• Analysis: Is the analysis stage taken into account?
• Design: Is the design stage taken into account?
• Implementation: Is the implementation stage taken into account?
• Test: Is the testing process taken into account?
• Deployment: Is the deployment stage taken into account?
• Maintenance: Is the maintenance stage taken into account?
• Deliverables:
• Do the deliverables are clearly identified and associated with specific steps?
• Quality Management: Is the quality management taken into account?
• Project Management: Are the guidelines of conduct project are clear?

5.2 Models and notations
Multiagent method generally use notations and models from only one origin (Bernon et al.,
2002) like UML (Mase , AAII, MESSAGE, PASSI). Other methods use many notation like
TROPOS (notation i* coming from the knowledge engineering, A-UML (Koning et al., 2001)
for interaction protocols and plan) or DESIRE (graph-based notation for knowledge
modelling and specific hierarchical notation for tasks description). To cover all the phases of
a lifecycle, we think like in (Herlea et al., 1999) that several formalisms are necessary for the
different levels of abstraction.
DIAMOND begins by using UML use cases because they proved reliable for the definition
of requirements. The interpretation of our use case diagrams is slightly different than their
common use (as in (Bernon et al., 2002)) because actors are necessarily outdoor to the system
or its entities. Moreover, an actor can not be in the interaction diagram (this would be
amazing in a traditional use of UML use cases) in the case of physical interactions. These
differences come from the usual software nature of applications.
In the analysis phase, we use context diagrams. These diagrams enable to see easily all the
possible perception and the possible action of the agents. Another advantage is that they
allow to see control flow between the physical part of an agent and its decisional part. In a
word, context diagram allow to specify the external shell of the agents.
In the generic design phase, DIAMOND uses component as operational units as seen
previously. In these components, we use finite state machines or a components set to
describe the internal running. These formalisms enable to generate software code or
hardware specifications in VHDL.
In this section, we compare our method with other multiagent methods (ADELPH, PASSI,
MASE, GAIA, DESIRE, MASSIVE, MAMOSACCO etc.) In a first subsection we talk about
lifecycle and stages. In the second subsection we focus on models and notations.
The methods multi-agents operating adopt mostly notations and models of a single origin
(see table 3).

6. Conclusion
We work currently on the tool associated with the method that we propose. It is created
using the Java language. The part which relates to the creation of agents with components,
manual partitioning and automatic generation of code are operationnal.

A Multiagent Method to Design Open Embedded Complex Systems

219

 Requierement Analysis Design

ADELFE
UML diagrams (use

case, sequence,
collaboration)

UML diagrams
(sequence, class), A-

UML protocols

UML diagrams (class,
paquetage, stéréotypes)

AAII UML diagrams
(collaboration, class) UML object diagrams

Aalaadin AGR organization
diagram A-UML diagrams

Cassiopée FSM/dependency

DESIRE entity relationship
diagram, FSM Components

Gaia Array, logic langage

MaSE UML sequence
diagram UML class diagrams

MAMOSACO Arrays

UML class diagram,
parametred Petri
network, SADT

actigram, OSSAD
processing model

UML class diagrams,
parametreed Petri

networks

MASSIVE UML use case
diagrams UML activity diagram UML class diagrams

MESSAGE UML use case
diagrams

UML diagrams (class
and activity), A-UML

diagrams
(collaboration)

UML class diagrams

PASSI
UML diagrams (use

case, sequence), UML
like packetage diagram

UML diagrams
(sequence, class)

UML deployment
diagrams

Prométheus UML diagrams and A-
UML diagrams

UML and A-UML
diagrams

Tropos i* State diagram, A-UML
protocols

DIAMOND

UML diagrams (use
case, sequence), textual

specifications for the
modes study, glossary

UML diagrams
(sequence), A-UML
protocols, context

diagram (SART), entity
relationship diagram

(organisation)

FSM, components
VHDL

Table 3. Notation used by these different methods

Our future work will be to improve the MASC tool (MultiAgent System Codesign)
associated with the DIAMOND method. The agent design with components and the code
generation in Java and C languages are operational. The VDHL specification generation is
partially developed.

 Tools in Artificial Intelligence

220

Very few works are addressing the problem of the analysis of self-organized embedded
systems. This work proposes some innovative contributions in term of hybrid
software/hardware multiagent lifecycle. It integrates in particular all the phases of the
development from the analysis to the implementation. It introduces a multi-paradigm
spiral lifecycle. It proposes components used as tools for integration, allowing software or
hardware derivation. They enable a unified approach for all kinds of hybrid
hardware/software multiagent systems.

7. References
Adams, J.; Thomas, D. (1996) The design of mixed hardware/software systems, Proceedings

of the 33st Conference on Design Automation, pp 515-520, ISBN 0-89791-779-0, USA,
June 1996, ACM Press.

Bernon, C.; Gleizes, M.-P.; Peyruqueou, S. & Picard, G. (2003), ADELPH: A methodology for
adaptive multi-agent systems engineering., In: Engineering Societies in the Agents
World III, page numbers 156-169, Springer Verlag, ISBN 3-540-14009-3, 2002,Spain.

Boehm, B. W. (1988). A spiral model of software development and enhancement. Computer,
21(5):61–72, 1988, IEEE Computer Society.

Brazier, F. M. T. ; Jonker, C. M. & Treur, J. (2002). Principles of component-based design of
intelligent agents. Data Knowledge Engineering, Vol. 41, No. 1, April 2002, Elsevier,
page numbers 1-27, ISSN 0169-023X.

Breuer, P. T.; Madrid, N.M.; Bowen, J. P.; France, R. B.; Larrondo-Petrie, M.M. & Kloos, C.
D. (1999) Reasoning about vhdl and vhdl-ams using denotational semantics,
Proceedings of the Design, Automation and Test in Europe, pp 346–352, ISBN 0-7695-
0078-1, Germany, March 1999, IEEE Computer Society, Munich.

Carabelea, C.; Boissier, O. & Ramparany, F. (2003) Benefits and requirements of using multi-
agent systems on smart devices, Proocedings of 9th International Euro-Par Conference,
pp 1091-1098, ISBN 3-540-40788-X, Austria, August 2003, Springer Verlag,
Klagenfurt.

Castor, A.; Pinto, R.; Silva, C. T. L. L. & Castro, J. (2004). Towards requirement traceability
in tropos, Proceedings of the Workshop em Engenharia de Requisitos, pp 189–200, ISBN
950-658-147-9, Argentina, Dec. 2004, WER, Tandil.

Chella, A.; Cossentino, M., Sabatucci, L. & Seidita, V. (2006). Agile PASSI: An agile process
for designing agents. Computer Systems: Science & Engineering, Vol. 21, No. 2, March
2006, In press, ISSN 0267-6192.

Antonio Chella, Massimo Cossentino, Luca Sabatucci, Valeria Seidita: Agile PASSI: An agile

process for designing agents. Comput. Syst. Sci. Eng. 21(2): (2006)
Cossentino, M.; Sabatucci, L. & Chella, A. (2003). A possible approach to the development of

robotic multi-agent systems, Proceedings of the IEEE/ACM/WIC Conference on
Intelligent Agent Technology, pp 539–544, ISBN ISBN 0-7695-1931-8, Canada, 2003,
Halifax.

Deguet, J.; Demazeau, Y. & Magnin, L. (2006). Elements about the emergence issue: A
survey of emergence definitions, Complexus, Vol. 3, No. 1-3, 2006, pp. 24-31, ISSN
1424-8492.

A Multiagent Method to Design Open Embedded Complex Systems

221

DeLoach, S. A.; Wood, M. F. & Sparkman, C. H. (2001). Multiagent systems engineering.
International Journal of Software engineering and Knowledge Engineering, Vol. 11, No. 3,
June 2001, page numbers 231-258, ISSN 0218-1940

Dessalles, J.L.; Phan, D. (2005). Emergence in multi-agent systems: cognitive hierarchy,
detection, and complexity reduction, Proceedings of the 11th annual meeting of the
Society of Computational Economics, June 2005, Society of Computational Economics,
University of Washington.

Demazeau, Y. (1995). From interactions to collective behavior in agent-based systems,
Proceedings of European Conference on Cognitive Science, pp. 14-17, ISBN, France, Avril
1995, Saint-Malo

Drogoul, A & Collinot, A. (1998). Applying an agent oriented methodology to the design of
artificial organizations: A case study in robotic soccer. Journal on Agents and Multi-
Agent Systems, Vol. 1, No. 1, 1998, Kluwer Academic Press, page numbers 113-129,
ISSN 1387-2532

Ferber, J. & Gutknecht, O. (1998). A Meta-Model for the analysis and design of organizations
in multi-agent systems, Proceedings of the 1998 International Conference on Multi-
Agent Systems, pp. 128-135, ISBN 0-8186-8500-X, France, July 1998, IEEE Computer
Society, Paris.

Forrest, S. (1991). Emergent computation, The MIT Press, ISBN 978-0262560573, England.
Herlea, D. E.; Jonker, C. M.; Treur, J. & Wijngaards, N. J. E. (1999) Specification of

Bahavioural Requirements within Compositional Multi-agent System Design,
Proceedings of 9th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, pp 8–27, ISBN 3-540-66281-2, Spain, June 1999, Springer, Valencia.

Huang, H.-P.; Liang, C.-C & Lin C.-W. (2001) Construction and soccer dynamics analysis for
an integrated multi-agent soccer robot system, Natl. Sci. Counc. ROC(A), Vol. 25,
No. 2, 2001, pp. 84-93.

Jamont, J.-P; Occello, M. (2007), Designing Embedded Collective Systems: The DIAMOND
Multiagent Method, Proceedings of the 19th IEEE International Conference on Tools with
Artificial Intelligence, pp. 91-94, ISBN 0-7605-3015-X, Greece, October 2007, IEEE
Computer Society.

Jamont, J.-P; Occello, M. (2006), A Self-organized Energetic Constraints Based Approach for
Modelling Communication in Wireless Systems, In: Advances in Applied Artificial
Intelligence, page numbers 101-110, Springer Verlag, ISBN 3-540-35453-0, 2006,
France.

Jamont, J.-P.; Occello, M. & Lagreze A. (2002). A multiagent system for the instrumentation
of an underground hydrographic system, Proceedings of IEEE International
Symposium on Virtual and Intelligent Measurement Systems, pp. 20-25, ISBN 0-7803-
7344-8, USA, May 2002, IEEE Measurement and Instrumentation Society, Mt
Alyeska Resort

Kinny, D.; Georgeff, M. & Rao, A. (1996). A methodology and modelling technique for
systems of BDI agents, Agents Breaking Away: Proceedings of the Seventh European
Workshop on Modelling Autonomous Agents in a Multi-AgentWorld, pp. 56-71, ISBN 3-
540-60852-4, The Netherlands, January 1996, Springer-Verlag

Koning, J.-L.; Huget, M.-P.; Wie, J. & Wang, X. (2001). Extended Modeling Languages for
Interaction Protocol Design, Proceedings of the Second International Workshop on

 Tools in Artificial Intelligence

222

Agent-Oriented Software Engineering, pp. 68-83, ISBN 3-540-43282-5, Canada, May
2001, Springer, Montreal

Lind, J. (2004). Interative Software Engineering for multiagent systems: The MASSIVE Method,
Springer Verlag, ISBN 3-540-42166-1, Berlin

Luo, J.; Xu, L.; Jamont, J.-P.; Zeng, L. & Shi Z. (2007). Flood decision support system on
agent grid: method and implementation. Enterprise Information Systems, Vol. 1, No.
1, (November 2007) , Taylor and Francis, page numbers (1751-1757), ISSN 1751-
1757.

Maña, A. & Rudolf, C.(2007). Developing Ambient Intelligence, Springer, ISBN 978-2-287-
78543-6, Paris

Marcenac, P. (1996). Emergence of behaviors in natural phenomena agent-simulation.
Complexity International, Vol. 3, 1996, ISSN 1320-0682.

Muller, J.-P. (2003), Emergence of collective behaviour and problem solving, In: Engineering
Societies in the Agents World IV, page numbers 1-21, Springer, ISBN SBN 3-540-
22231-6, 2003, England.

Occello, M. ; Demazeau, Y. & Baeijs C. (1998). Designing organized agents for cooperation in
a real time context, Proceedings of the first International Workshop of Collective Robotics,
pp. 25-73, ISBN 3-540-64768-6, France, March 1998, Springer-Verlag, Paris

Padgham, L.; Thangarajah, J. & WinikoffParunak, M., (2007). AUML protocols and code
generation in the Prometheus design tool, Proceedings of the 6th International Joint
Conference on Autonomous Agents and Multiagent Systems, pp.270-271, ISBN 978-81-
904262-7-5, Hawaii, May 2007, IFAAMAS.

Parunak, H. V. D. (2000). A practitioners? review of industrial agent applications.
Autonomous Agents and Multi-Agent Systems, Vol. 3, No. 4, (2000) page numbers
389-407, ISSN 1387-2532

Picard, G. (2004). Methodology for developping adaptive multi-agent systems and designing
software with emergent functionality (PHD thesis), Institut de Recherche en
Informatique de Toulouse, France.

Ricordel, P.-M. & Demazeau, Y. (2000). From analysis to deployment: A multi-agent
platform survey, Proceedings of 1st International Workshop on Engineering Societies in
the Agent World, pp. 93-105, ISBN 3-540-41477-0, Germany, 2000, Springer-Verlag,
Berlin

Russel, S. & Norvig P. (2002) Artificial Intelligence : a Modern Approach – 2nd edition. Prantice-
Hall, ISBN 978-0137903955.

Steels, L. (1990). Cooperation between distributed agents through self-organisation,
Proceedings of IEEE Workshop on Intelligent Robots and Systems, pp 8-14, ISBN 0-7803-
8464-4, Japan, Jul. 1990, IEEE Robotics and Automation Society.

Wooldridge, M.; Jennings, N. R. & Kinny, D. (2000). The GAIA methodology for agent
oriented analysis and design. Journal on Agents and Multi-Agent Systems, Kluwer
Academic Publishers, Vol. 3, No. 3, September 2000, page numbers 285-312, ISSN
1387-2532

Wooldridge, M.-J. (1999). Intelligent agents. In: Multiagent systems: A modern approach to
Distributed Artificial Intelligence, G. Weiss (Ed.), page numbers 27-79, MIT Press, ISBN 0-262-

73131-2, 1999, England.

13

Content-based Image Retrieval Using
Constrained Independent Component Analysis:

Facial Image Retrieval Based on
Compound Queries

Tae-Seong Kim1 and Bilal Ahmed2

1Department of Biomedical Engineering
2Department of Computer Engineering
College of Electronics and Information

Kyung Hee University
Republic of Korea

1. Introduction
Visual information plays a crucial role in various domains, from medical diagnosis,
journalism, crime-prevention to surveillance. Whereas domain specific images carry specific
semantics, the problem of interpreting visual information becomes more complex when we
talk of natural images. The maxim, 'A picture is worth a thousand words' explains this
inherent problem very concisely. Indexing large databases of images for efficient retrieval is
crucial for various domains such as journalism, biomedicine, forensics etc. Manual indexing
of images in such large databases can be highly subjective and time consuming. In contrast,
content-based image retrieval (CBIR) focuses on the development of efficient retrieval
mechanisms based on image features or meta-data used for image annotation.
Conventional approaches to CBIR represent images in the form of image-based features.
These features vary from global image descriptors such as color or intensity histogram to
local ones such as shape and texture. These features along with their combinations have
been used previously for CBIR. For example, in (Deng et al., 2001), a region-based color-
descriptor, modelling the color values along with their percentages in the region, is
proposed. Similarly in (Hadjidemetriou et al., 2004), multi-resolution histograms have been
employed for the retrieval of textured images. In (Jeong et al., 2004), the extraction of color
histograms through Gaussian mixture vector quantization has been proposed. In (Belongie
et al., 2002) and (Petrakis et al., 2002) respectively, shape descriptors and shape matching
algorithms have been proposed for image retrieval.
The use of low-level image features such as color histograms, shape, and texture attributes
introduces a semantic gap (Chen et al., 2004). This semantic gap arises due to the inability of
such low-level features to describe the objects and their inter-relations within the image. The
use of such low-level features places the responsibility of achieving semantically coherent
results on the user-interface. Various techniques of relevance feedback (Rui et al., 1998) have

 Tools in Artificial Intelligence

224

been introduced in this context. Whereas user feedback might be able to lower this gap, the
overall procedure becomes subjective and requires a higher degree of user interaction.
Segmentation-based techniques for image retrieval have also been used for obtaining better
shape, texture, and color descriptions of the image contents (Datta et al., 2005). The
motivation behind this particular approach is that objects within an image can be segmented
and used for querying the database to retrieve more semantically similar images. Various
segmentation techniques, such as the Normalized Cuts (Shi & Malik, 2000), Mean Shift
Procedures, and Expectation Maximization (Carson et al., 2002) algorithms have been used
in image retrieval. Machine-learning approaches augmented with segmentation techniques
have also been used. In (Wang et al., 2001), segmentation results augmented with fuzzy
logic are used to obtain soft similarity measures. The problem of obtaining a semantically
coherent segmentation of an image still remains an open research problem and higher
dependency on segmentation-results is not desirable for achieving a semantically accurate
retrieval performance.
From an image-retrieval point of view, facial images have attracted a lot of attention.
Various machine learning and feature extraction techniques have been employed for the
efficient retrieval of facial images. Earlier retrieval systems, such as the Photobook (Pentland
et al., 1994), use Principal Component Analysis (PCA) for the retrieval of facial images. In
(Liu, 2004), feature extraction through Independent Component Analysis (ICA) in a reduced
PCA space is used for characterizing query images. The overall system comprises of
classifying the input query image based on the nearest-neighbor rule using various
similarity measures. A recent work on facial image retrieval by (Basak et al., 2006) has
focused on representing facial images as a collection of local independent components. For
this purpose, the query images are decomposed into a number of overlapping and non-
overlapping windows to compute the independent components.
The use of multiple images as a compound query has not been explored in much detail.
Conventional CBIR systems do not provide a mechanism through which a user can specify
his search criterion through multiple examples. This is analogous to multi-word queries in
search-engines: the specification of a compound query helps the system in retrieving the
desired results with better accuracy. Similarly, when a user cannot find a single image
which can specify his search criterion, he should be able to use multiple images to formulate
his query. Multiple queries have been used in (Tahagogi et al., 1994): the approach taken is
to find a combined result of the query by using the retrieved images corresponding to each
query image independently. Similarly, (Basak et al., 2006) uses multiple facial images to
retrieve images similar to the independent query-images as well as to their combinations.
In this work, we have devised a system which can cater for both single and multiple
exemplar image retrieval. It does not decompose the query images or the database images to
windows as in (Basak et al., 2006) or uses PCA for dimension reduction (Liu, 2004): thus the
chances of any information loss are minimal. There is also no need to store additional
feature information or the need for any offline learning as in (Basak et al., 2006). Our
approach is centered on the idea of constrained ICA (cICA) (Lu & Rajapakse, 2005) which
has the ability to extract specific independent components conforming to certain prior
information (known as reference signals or images). Query images are provided to the
constrained ICA algorithm as references, and the output of the constrained ICA algorithm
specifies the contribution of each database image to the extracted component. Based on the
magnitude of this contribution factor, the database images are ranked for retrieval.

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries

225

The rest of the chapter gives details about the constrained ICA-based image retrieval system
using multiple query images. Section 2 explains the constrained ICA framework and Section
3 describes the whole system in detail. Experimental results are given in Section 4. Finally,
we conclude in Section 5.

2. Constrained ICA
Conventional ICA techniques perform blind-source separation (BSS) assuming a linear
mixing model of the independent sources. If the observed values at a pixel location from a
set of images are represented as T

nxx),...,(1=x and the original sources as T
mss),...,(1=s .

ICA assumes that each x is a linear mixture of the original independent sources. Therefore,

 Asx = (1)

where A is the mixing matrix of mn x . Conventional ICA algorithms aim at finding a
demixing matrix W to recover all the ICs of the observed image such that Wxs = . In
general, existing ICA algorithms find as many ICs as the number of observations (i.e.,

mn =). The user must manually identify which ICs represent which sources. The primary
reason for this manual intervention is the inability of the ICA algorithms to calculate the
energies or signs of the ICs. This may also lead to problems where the number of sources is
less than the number of observations. Deflation-based ICA techniques (Cichoki et al., 1997);
(Hyvärinen & Oja, 1996) have also been developed, but they also suffer from the arbitrary
ordering of the extracted independent components.
Constrained ICA (Lu & Rajapakse, 2005) has been developed to find only those independent
components which are of interest to the current task at hand. This is achieved by providing
some prior knowledge about these ICs to the constrained ICA algorithm. This prior
information may not be exact, but it could be the specification of statistical properties of the
desired component or just a crude approximation (e.g., template). Therefore, if we have
some a priori information about the desired sources, we can incorporate this information into
constrained ICA. The constrained ICA algorithm uses this a priori information about the
desired IC, encoded into a set of reference images, T

lrr),...,(1=r to obtain a set of output IC

images, T
lyy),...,(1=y which contains statistically independent extracted sources. The

closeness constraint can be written as,

 0),()(≤−= ξε ii ryg w (2)

where w is the weight vector to be learned, ε some closeness measure, andξ an
appropriate closeness threshold parameter. The measure of closeness can take any form,
such as the mean squared-error (MSE), correlation, or any other suitable measure. The
number of reference signals determines the number of independent components to be
extracted from the complete set of observations. The final mathematical model for
constrained ICA can be represented as,

 ∑
=

l

i
iyJ

1
)(maximize (3)

0)(,0)(subject to =≤ WW hg

 Tools in Artificial Intelligence

226

where,

 2)}]({)}({[)(νρ GEyGEyJ ii −≈ (4)

is the one-point contrast function for ICA introduced in (Hyvärinen et al., 2001). ρ is a
positive constant,)(⋅G a non-quadratic function, and ν a zero mean and unit variance
Gaussian random variable.)(Wh constrains the output component to have unit variance.
Equation (4) is a constrained optimization problem and can be solved by the augmented
Lagrangian functions.

3. Constrained ICA-based facial image retrieval
Viewing it from another perspective, the constrained ICA framework can be used for
specifying the type of information we would like to extract from huge amounts of data. The
reference image(s) can be formulated as the query image(s) specified by the user and as the
accuracy of the extracted information depends upon the accuracy of the provided
references. In our case, the image(s) provided by the user would serve this purpose, and
point the constrained ICA algorithm in the appropriate direction. The overall system
architecture is depicted in Fig. 1.

Fig. 1. Overview of the constrained ICA-based CBIR system.

Since constrained ICA extracts components iy from the given set of observations
corresponding to the provided reference image(s), we can ascertain the contribution of each
observation by reconstructing it from the extracted component. The reconstruction
procedure involves the estimation of the mixing matrix A and the reconstruction of the
entire set of observations. Consider that we have n observations T

nxx),...,(1=x and m

extracted sources T
mss),...,(1=s where nm << . The mixing matrix pertaining to the

extracted sources with respect to the entire set of observations can be estimated using,

 += xsA (5)

where +s is the pseudoinverse of the extracted sources. Furthermore the reconstruction of
x can be done using,

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries

227

 Asx =R (6)

where Rx is the set of reconstructed observations.
Once all images have been reconstructed with the extracted IC images, we need to estimate
how well each image has been reconstructed from the extracted sources. This involves the
comparison of each reconstructed image with its original image. Simple measures of
similarity such as correlation or mutual-information can be used. In our case we have used
correlation to determine the similarity between the original and the reconstructed images.

4. Experimental results
We have conducted extensive experiments on a publicly available facial-image database, the
ORL face database (Samaria & Harter, 1994). The ORL database contains ten facial images of
40 individuals with varying pose, expressions, and spectacles. The images were scaled to
64 64× with no pre-processing or feature extraction.
For the purpose of evaluating our retrieval system, we have divided the queries into two
categories: homogeneous and heterogeneous queries. Homogeneous queries contain the
images of the same person with different pose, expression, or occlusion. Heterogeneous
queries are composed of images of different subjects. The main motivation behind this
formulation is to bring out the essence of fusing information from different independent
images and evaluating the semantic coherence of the retrieved images.

4.1 Homogeneous queries
In order to retrieve the facial images of a single person from the database under varying
pose and occlusion conditions (i.e., wearing spectacles), a single example might not be
enough. The same is also true if the database has different expressions and scale. Fig. 2 (left)
shows the results of using a single query. The database contains ten images of each
individual: with a single query image, our system has been able to retrieve eight images in
the top ten retrieved images. The images, which have been left out of the top ten: the image
at (3rd row, 1st column) and image at (3,2) in Fig. 2 (left), have the same individual but with
his head tilted to the right side. The query image given in Fig. 2 (left) was unable to describe
the features present in these left-out images.

Fig. 2. Constrained ICA-based CBIR applied to the ORL database. (Left) A result with a
single query: here the system acts as a face recognition system. (Right) A result using two
images of the same individual with different pose.

 Tools in Artificial Intelligence

228

In Fig. 2 (right), we have used two query images: one depicts the individual with a left tilt
whereas the other depicts the same pose but in the opposite direction. All the ten relevant
images have been retrieved from the database and have the highest ranking, as can be seen
from the results. This particular case shows the fact that the constrained ICA-based retrieval
technique is able to fuse features from two independent images and retrieve images in
which the subject has a straight pose.

4.2 Heterogeneous queries
Fig. 3 shows the results obtained for two heterogeneous queries. In the first query depicted
in Fig. 3 (left), two images of two different individuals have been used. One of them is
wearing spectacles whereas the other has none. In the retrieved images, we see that the
initial nine images correspond to the two individuals, where images of the second subject
wearing spectacles are also given a higher rank. Similarly, after the two top rows, the system
has retrieved images of individuals with and without spectacles and bearing some facial
similarity to the individuals depicted in the query images.

Fig. 3. Results for heterogeneous queries.
In the second case shown in Fig. 3 (right), again images of two different individuals are used.
This time, the top query image has an individual who has a beard and spectacles. Whereas
the other individual is clean shaven and has no spectacles. The images retrieved by the
system not only contain the individuals present in the query but also their various
combinations: persons having both beard and spectacles (the same as the individual in the
top query images), persons having only beard, persons wearing only spectacles with no
beard, and persons having none of these (corresponding to the individual depicted in the
lower query image).

4.3 Image retrieval of covered faces
In the case of image retrieval, query images have a profound effect on the output of the
system. It could be the case that the images available at the time of query formulation
contain only partial information about the target image(s). As an example, consider the case
of querying the database when the available face images are covered with some objects such
as sunglasses or muffler. Fig. 4 (left) depicts a case of such a query in which the lower-half of
the subject’s face is covered with muffler. As the results show, the retrieved images are those
in which all the subjects have their face covered in the same manner.
This situation can be alleviated by fusing information from another face image. The
constrained-ICA based image retrieval framework allows for such information fusion

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries

229

through the use of multiple-query images. Fig. 4 (right) shows the results for such a query:
where along with the covered face, we now provide the system with another face image
without occlusion. Based on this partial information, the system is able to retrieve the
desired face image at (3rd row, 4th column). The system also retrieves the same subject,
wearing sunglasses at (4,3).

Fig. 4. Constrained ICA-based CBIR applied to the Aleix Face database (Martinez &
Benavente, 1998). Two results are shown with a partially covered query image (left) and
augmented query images with a normal face (right).

4.4 Performance analysis
We conducted one hundred simulations of the system with random query formulations for
the homogeneous query case. A hard similarity evaluation was used: only the retrieved
images pertaining to the same individual as depicted in the query were considered relevant
as opposed to (Basak et al., 2006) where it was assumed that user feedback is available.
Simple measures of precision (Baeza-Yates & Ribeiro-Neto, 1999) and recall (Baeza-Yates &
Ribeiro-Neto, 1999) have been used to evaluate the efficiency of the system:

 RL

R

Nprecision N= (7)

 RL

RD

Nrecall N= (8)

where RLN is the number of relevant images in the retrieved images, RN the total number
of retrieved images, and RDN the total number of relevant images in the database. In the
case of Fig. 2 (a), Precision = 10/25 and Recall = 10/10. Note that, when RN equals RDN
the two measures become equal. This is the break-even point of the system and indicates its
overall accuracy.
The evaluation measures for queries consisting of one, two, and three images are shown in
Fig. 5. In the figure, T1, T2, and T3 represent the break-even points of the system for the
queries formulated from one, two, and three images respectively. In the case of single-image
queries, the system has achieved an accuracy of 76%. Whereas, in the case of compound
queries composed of two and three images, this accuracy increases to 80% and 90%
respectively. In contrast to the conventional systems, the constrained ICA-based retrieval

 Tools in Artificial Intelligence

230

system achieves this higher level of performance without any feature-extraction and offline-
learning.

Fig. 5. Performance evaluation on homogeneous queries. The graph shows the precision (P)
and recall (R) values for queries formulated with 1, 2, and 3 images.

5. Conclusion
In this work, we have proposed a new technique of facial image retrieval based on
constrained ICA. Our technique requires no offline learning, pre-processing, and feature
extraction. The system has been designed so that none of the user-provided information is
lost, and in turn more semantically accurate images can be retrieved. As our future work,
we would like to test the system in other domains such as the retrieval of chest x-rays and
CT images.

6. Acknowledgement
This research was supported by the MKE (Ministry of Knowledge Economy), Korea, under
the ITRC (Information Technology Research Center) support program supervised by the
IITA (Institute of Information Technology Advancement) (IITA-2008-(C1090-0801-0002)).

7. References
Baeza-Yates, R. A. & Ribeiro-Neto, B. A. (1999). Modern Information Retrieval. ISBN:

020139829X, Addison-Wesley.
Basak, J.; Bhattacharya, K. & Chaudhury, S. (2006). Multiple Exemplar-Based Facial Image

Retrieval Using Independent Component Analysis. IEEE Transactions on Image
Processing, 15, 12, (December 2006) 3773–3783, ISSN: 1057-7149.

Content-based Image Retrieval Using Constrained Independent Component Analysis:
Facial Image Retrieval Based on Compound Queries

231

Belongie, S.; Malik, J. & Puzicha, J. (2002). Shape matching and object recognition using
shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24, 4,
(April 2002) 509–522, ISSN: 0162-8828.

Carson, C.; Belongie, S., Greenspan, H. & Malik, J. (2002). Blobworld: Image segmentation
using expectation-maximization and its applications to image querying. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24, 8, (August 2002) 1026–
1038, ISSN: 0162-8828.

Chen, Y.; Li, J. & Wang, J. Z. (2004). Machine Learning and Statistical Modeling Approaches to
Image Retrieval. ISBN: 1402080344, Kluwer Academic Publishers.

Cichoki, A.; Thawonmas, R. & Amari, S. (1997). Sequential blind signal extraction in order
specified by stochastic properties. Electronics Letters, 33, 1, (Janunary 1997) 64–65,
ISSN: 0013-5194.

Datta, R.; Li, J. & Wang, J. Z. (2005). Content-Based image retrieval - approaches and trends
of the new age. Proceedings of the 7th ACM SIGMM International Workshop on
Multimedia Information Retrieval. Singapore, November 2005.

Deng, Y.; Manjunath, B. S., Kenney, C., Moore, M. S. & Shin, H. (2001). An efficient color
representation for image retrieval. IEEE Transactions on Image Processing, 10, 1,
(January 2001) 140–147, ISSN: 1057-7149.

Hadjidemetriou, E.; Grossberg, M. D. & Nayar, S. K. (2004). Multiresolution histograms and
their use for recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 26, 7, (July 2004) 831–847, ISSN: 0162-8828.

Hyvärinen, A.; Karhunen, J. & Oja, E. (2001). Independent Component Analysis. ISBN:
047140540X, Wiley-Interscience.

Hyvärinen, A. & Oja, E. (1996). Simple neuron models for independent component analysis.
International Journal of Neural Systems, 7, 6, (February 1996) 671–687, ISSN: 0129-
0657.

Jeong, S.; Won, C.S. & Gray, R. M. (2004). Image retrieval using color histograms generated
by Gaussian mixture vector quantization. Computer Vision and Image Understanding,
9,1-3, (April 2004) 44–66, ISSN: 1077-3142.

Liu, C. (2004). Enhanced independent component analysis and its application to content
based face image retrieval. IEEE Transactions on Systems, Man, and Cybernetics-Part
B: Cybernetics, 34, 2, (April 2004) 1117–1127, ISSN: 1083-4419.

Lu, W. & Rajapakse, J. C. (2005). Approach and applications of constrained ICA. IEEE
Transactions on Neural Networks, 16, 1, (January 2005) 203–212, ISSN: 1045-9227.

Martinez, A. M. & Benavente, R. (1998). The AR Face Database. CVC Technical Report #24,
June 1998.

Pentland, A.; Picard, R. W. & Sclaroff, S. (1994). Photobook: tools for content-based
manipulation of image databases. In Proc. SPIE Storage and Retrieval for Image and
Video Databases II, San Jose, CA, USA, February 1994.

Petrakis, E. G. M.; Diplaros, A. & Milios, E. (2002). Matching and retrieval of distorted and
occluded shapes using dynamic programming. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24, 11, (November 2002) 1501 – 1516, ISSN: 0162-
8828.

Rui, Y.; Huang, T. S., Ortega, M. & Mehrotra, S. (1998). Relevance feedback: A power tool for
interactive content-based image retrieval. IEEE Transactions on Circuits and Systems
for Video Technology, 8, 5, (September 1998) 644–655, ISSN: 1051-8215.

 Tools in Artificial Intelligence

232

Samaria, F. & Harter, A. (1994). Parameterization of a stochastic model for human face
identification. Proceedings of 2nd IEEE Workshop on Applications of Computer Vision,
Sarasota FL, December 1994.

Shi, J. & Malik, J. (2000). Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22, 8, (August 2000) 888–905, ISSN: 0162-
8828.

Tahaghoghi, S. M. M.; Thom, J. A. & Williams, H. E. (2001). Are two pictures better than
one?. Proc. of the 12th Australasian Database Conference, pp. 138–144, Gold Coast,
Queensland, Australia, January 2001.

Wang, J. Z.; Li, J. & Wiederhold, G. (2001). SIMPLIcity: Semantics-sensitive integrated
matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 23, 9, (September 2001) 947–963, ISSN: 0162-8828.

14

Text Classification Aided by Clustering:
a Literature Review

Antonia Kyriakopoulou
Athens University of Economics and Business

Greece

1. Introduction
Supervised and unsupervised learning have been the focus of critical research in the areas of
machine learning and artificial intelligence. In the literature, these two streams flow
independently of each other, despite their close conceptual and practical connections. In this
work we exclusively deal with the text classification aided by clustering scenario. This
chapter provides a review and interpretation of the role of clustering in different fields of
text classification with an eye towards identifying the important areas of research. Drawing
upon the literature review and analysis, we discuss several important research issues
surrounding text classification tasks and the role of clustering in support of these tasks. We
define the problem, postulate a number of baseline methods, examine the techniques used,
and classify them into meaningful categories.
A standard research issue for text classification is the creation of compact representations of
the feature space and the discovery of the complex relationships that exist between features,
documents and classes. There are several approaches that try to quantify the notion of
information for the basic components of a text classification problem. Given the variables of
interest, sources of information about these variables can be compressed while preserving
their information. Clustering is one of the approaches used in this context. In this vein, an
important area of research where clustering is used to aid text classification is the area of
dimensionality reduction. Clustering is used as a feature compression and/or extraction
method: features are clustered into groups based on selected clustering criteria. Feature
clustering methods create new, reduced-size event spaces by joining similar features into
groups. They define a similarity measure between features, and collapse similar features
into single events that no longer distinguish among their constituent features. Typically, the
parameters of the cluster become the weighted average of the parameters of its constituent
features. Two types of clustering have been studied: i) one-way clustering, i.e. feature
clustering based on the distributions of features in the documents or classes, and ii) co-
clustering, i.e. clustering both features and documents.
A second research area of text classification where clustering has a lot to offer, is the area of
semi-supervised learning. Training data contain both labelled and unlabelled examples.
Obtaining a fully labelled training set is a difficult task; labelling is usually done using
human expertise, which is expensive, time consuming, and error prone. Obtaining
unlabelled data is much easier since it involves collecting data that are known to belong to

 Tools in Artificial Intelligence

234

one of the classes without having to label them. Clustering is used as a method to extract
information from the unlabelled data in order to boost the classification task. In particularly
clustering is used: i) to create a training set from the unlabelled data, ii) to augment the
training set with new documents from the unlabelled data, iii) to augment the dataset with
new features, and iv) to co-train a classifier.
Finally, clustering in large-scale classification problems is another major research area in
text classification. A considerable amount of work is done on using clustering to reduce the
training time of a classifier when dealing with large data sets. In particular, while SVM
classifiers (see (Burges, 1998) for a tutorial) have proved to be a great success in many areas,
their training time is at least O(N2) for training data of size N, which makes them non
favourable for large data sets. The same problem applies to other classifiers as well. In this
vein, clustering is used as a down-sampling pre-process to classification, in order to reduce
the size of the training set resulting in a reduced dimensionality and a smaller, less complex
classification problem, easier and quicker to solve. However, it should be noted that
dimensionality reduction is not accomplished directly using clustering as a feature
reduction technique as discussed earlier, but rather in an indirect way through the removal
of training examples that are most probably not useful to the classification task and the
selection of the most representative redundant training set. In most of the cases this involves
the collaboration of both clustering and classification techniques.
The chapter is organized as follows: the next section presents a review of the literature on
text classification aided by clustering. It provides a comprehensive summary of the
alternative views and applications of clustering discussed above and their implications for
text classification. A broader perspective on clustering and text classification research is then
provided by discussing important research themes that emerge from the review of the
literature and by classifying them into meaningful concept groups. We conclude by pointing
out open issues and limitations of the techniques presented.

2. The literature review
2.1 Clustering as a feature compression and/or extraction method
Clustering as a feature compression and/or extraction method includes: i) one-way
clustering, and ii) co-clustering.

2.1.1 One-way clustering (clustering features)
In text classification using one-way clustering, a clustering algorithm is applied prior to a
classifier to reduce feature dimensionality by grouping together “similar” features into a
much smaller number of feature clusters, i.e. clusters are used as features for the
classification task replacing the original feature space. A crucial stage in this procedure is
how to determine the similarity of features. Three main clustering methods have been
applied in the literature: information bottleneck, distributional clustering, and divisive
clustering.
An important feature clustering method that formulates a principle for the extraction and
efficient representation of relevant information is the information bottleneck (IB) method
(Tishby et al., 1999). The objective of the IB method is to extract the information from one
variable X that is relevant for the prediction of another variable Y. In other words, the
method finds an efficient compressed representation of the variable X, denoted X’, such that

Text Classification Aided by Clustering: a Literature Review

235

the predictions of Y from X through X’ is as close as possible to the direct prediction of Y
from X. The compactness of the representation is determined by the mutual information
I(X;X’) while the quality of the clusters is measured by the fraction of information they
capture about Y, that is I(X’;Y)/I(X;Y). Obviously there is a trade-off between compressing
the representation and preserving meaningful information. The desirable is to keep a fixed
amount of meaningful information about the relevant variable, Y, while minimizing the
number of bits from the original variable X (maximizing the compression). In an alternative
agglomerative implementation of the IB method, (Slonim & Tishby, 1999) attain maximum
mutual information per cluster between feature data and given categories. This
implementation can be considered as a bottom-up hard implementation of the original top-
down soft hierarchical IB method. They demonstrate the algorithm on a subset of
20Newsgroups corpus, achieving compression by 3 orders of magnitude while maintaining
about 90% of the original mutual information. The IB clustering method with its variations
is used in the context of text classification by many authors. In this vein the classifier is
applied in a reduced space where features represent clusters.
More specifically, in (Slonim & Tishby, 2001) the IB clustering method is used together with
the Naive Bayes (NB) classifier. First, the feature clusters that preserve the information
about the classes as much as possible are found using the agglomerative IB method. Then
these clusters are used to represent the documents in a new, low dimensional feature space
and the NB classifier is applied on this reduced space. Results from 20Newsgroups corpus
show that when the size of the data sets is large, using feature clusters does not improve
significantly the classification performance. However, when a small sample training set is
used the method yields a significant improvement in classification accuracy, from 5% to
18%, compared to using the original feature space. (Verbeerk, 2000a, 2000b) applies the
minimum description length (MDL) (Rissanen, 1989) principle to the agglomerative
algorithm of (Slonim and Tishby, 2001) in order to define the number of clusters to be used
for the classification task.
(Bekkerman et al., 2001, 2003) compare two classification schemes based on two
representations: the simple, typical bag-of-words (BOW) representation (Salton & McGill,
1983) together with mutual information feature selection, and a representation that is based
on feature clusters computed via the IB method. The comparison is performed over 20NG,
Reuters-21578 and WebKB with SVMs used for the classification task. The results of the
experiments are contradictory revealing a sensitivity of the algorithm to the datasets.
(Mubaid & Umair, 2006) use the IB clustering method with a least squares (Felici &
Truemper, 2002) classifier. The method has been tested with the WebKB, 20NG and Reuters-
21578 datasets and is compared against SVM. The experimental results show that the
performance of the method is equally good and in some cases outperforms SVM, especially
when there is limited training data.
(Baker & McCallum, 1998) apply distributional clustering as a feature clustering method for
text classification. Distributional clustering (Pereira et al, 1993) is a special case of the
general IB clustering algorithm as it is shown in (Slonim and Tishby, 2001). The similarity
between two features, ft and fs , is measured as the similarity between the class variable C
distribution they induce: P(C|ft) and P(C|fs). In the case of text classification, the similarity
of two features is the similarity between their joint distributions with the category variable.
For clustering this means that features with similar distributions over the classes (should)
belong to the same cluster. Intuitively, if two different features have similar distributions

 Tools in Artificial Intelligence

236

over the classes, they will play a similar role in the classification process, and thus might as
well be clustered together. Using a Naïve Bayes classifier for the classification task, they
compare their method with feature selection methods such as Latent Semantic Indexing,
class-based clustering, mutual information, and Markov-blanket-based feature selection
(Koller & Sahami, 1996). Their results show that distributional clustering outperforms the
other methods by drastically reducing the number of features, achieving compression by 3
orders of magnitude, while loosing only 2% classification accuracy. An interesting outcome
concerns the application of a feature selection method prior to the feature clustering
method. It actually improves the feature clustering method, suggesting that there is place
for combinations of the two methods.
(Dhillon et al, 2003a) propose an information-theoretic feature clustering algorithm, termed
as divisive clustering, and apply it to text classification. The method derives a global
objective function that explicitly captures the optimality of feature clusters in terms of a
generalized Jensen-Shannon divergence (Lin, 1991) between multiple probability
distributions. Then a fast, divisive algorithm that monotonically decreases this objective
function value is applied. The algorithm has many good qualities. Is optimises over all
clusters simultaneously and it is much faster than the agglomerative strategies proposed by
(Baker & McCallum, 1998) and (Slonim & Tishby, 2001) obtaining better feature clusters.
Experiments using the Naive Bayes and SVM classifiers on the 20 Newsgroups and Dmoz
data sets show that divisive clustering improves classification accuracy especially at lower
number of features. When the training data is sparse, divisive clustering achieves higher
classification accuracy than the maximum accuracy achieved by feature selection strategies
such as information gain and mutual information.
(Lavelli et al., 2004) carry out experiments on feature classification tasks (i.e. grouping
together features according to their meaning into prespecified classes) and feature clustering
tasks in order to compare the two representations. Also, (Lewis, 1992) studies the properties
of clustered feature representations on a text classification task. See (Jain et al., 1988) for a
comprehensive survey on one-way clustering.

2.1.2 Co-clustering (clustering features and documents)
Using co-clustering in text classification, a two-stage procedure is usually followed: feature
clustering and then document clustering. In this way a reduction for both dimensions is
attained.
The double-clustering (DC) algorithm (Slonim & Tishby, 2000) is a co-clustering two-stage
procedure based on the IB method. Intuitively, in the first stage of DC, feature clustering
generates coarser pseudo features, which reduce noise and sparseness that might be
exhibited in the original feature space. Then, in the second stage, documents are clustered as
distributions over the “distilled” pseudo features, and therefore generate more accurate
document clusters. An extension of the DC algorithm, the so called Iterative Double
Clustering (IDC) (Yaniv & Souroujon, 2001) applies the DC algorithm in an iterative
manner. Whenever the first DC iteration succeeds in extracting a meaningful structure of the
data, a number of the next consecutive iterations can continually improve the clustering
quality. This is achieved due to the generation of progressively less noisy data
representations. Experiments conducted on text classification tasks indicate that IDC
outperforms DC and competes even SVM when the training set is small. The works of
(Slonim & Tishby, 2000), (Slonim et al., 2001), (Yaniv & Souroujon, 2001) use heuristic

Text Classification Aided by Clustering: a Literature Review

237

procedures to cluster documents and features independently using an agglomerative
algorithm.
(Dhillon et al, 2002, 2003b) on the other hand, propose an information-theoretic co-
clustering algorithm that intertwines both row (feature) and column (document) clustering.
The algorithm starts with a random partition of rows, X, and columns, Y, and computes an
approximation q(X,Y) to the original distribution P(X,Y) and a corresponding compressed
distribution by co-clustering rows and columns intertwined, i.e. the row-clustering
incorporates column-clustering information and vice versa. The algorithm iterates until it
almost accurately reconstructs the original distribution, discovers the natural row and
column partitions and recovers the ideal compressed distribution. Experiments conducted
demonstrate the efficiency of the algorithm especially in the presence of sparsity.
(Dai et al., 2007) extend the co-clustering algorithm of (Dhillon et al., 2002, 2003b) and
present a co-clustering classification algorithm (CoCC) that focuses on classifying
documents across different text domains. There is a labelled data set Di from one domain,
called in-domain, and an unlabelled data set Do from a related but different domain, called
out-of-domain, that is to be classified. The two datasets are drawn from different
distributions, since they are from different domains. The algorithm is based on two
assumptions. First, the set C of class labels in Di prescribes the labels to be predicted in Do.
Second, even though the two domains have different distributions, they are similar in the
sense that similar words describe similar categories, thus, the probability of a class label
given a word is very close in the two domains. The algorithm applies co-clustering between
all features and out-of-domain documents (new tasks) in Do. Feature clustering is
constrained by the labels of in-domain (old) documents Di. The feature clustering part in
both domains serves as a bridge. For the classification task, each out-of-domain cluster is
mapped to a corresponding class label based on the correlation with the document
categories in Di.
The idea of clustering features and documents to improve text classification is also pursued
in (Takamura & Matsumoto, 2002; Takamura, 2003). They empirically show that the
assumption that documents in the same category are generated from an independent
identical distribution is inaccurate, and propose a new method called two-dimensional
clustering to alleviate this problem. According to this method, training examples are first
clustered so that the i.i.d. assumption is more likely to be true and features are also clustered
in order to deal with the data-sparseness problem caused by the high dimensionality of the
feature space. Two classifiers (NB and SVM) are trained on the training examples of each
cluster and the testing examples are classified and assigned the label of the class of the
cluster (all training examples in each cluster are supposed to have the same class label). The
comparison of the method with distributional clustering (Baker & McCallum, 1998) and
feature clustering on Reuters-21578 and 20NG shows promising results.
Table 1 summarizes the methods presented in this section.

2.2 Clustering in semi-supervised classification
Clustering in semi-supervised classification is used as a method to extract information from
the unlabelled data in order to boost the classification task. In particularly clustering is used:
i) to create a training set from the unlabelled data, ii) to augment the training set with new
documents from the unlabelled data, iii) to augment the dataset with new features, and iv)
to co-train a classifier.

 Tools in Artificial Intelligence

238

Goal Authors Clustering method
(Baker & McCallum, 1998) Distributional clustering

(Slonim & Tishby, 2001) IB
(Verbeerk, 2000a, 2000b) Agglomerative IB

(Bekkerman et al., 2001, 2003) Agglomerative IB
(Mubaid & Umair, 2006) IB

One-way clustering:
cluster feature space and
replace it with a feature
cluster representation

(Dhillon et al, 2003a) Divisive clustering
(Yaniv & Souroujon, 2001) Iterative double clustering

(Dhillon et al, 2002, 2003b) Information-theoretic co-
clustering

(Dai et al., 2007) Co-clustering classification
Co-clustering: cluster both

features and documents

(Takamura & Matsumoto,
2002);(Takamura, 2003) Two-dimensional clustering

Table 1. Clustering as a feature compression and/or extraction method

2.2.1 Create a training set from the unlabelled data
(Fung and Mangasarian, 2001) propose a model for classifying two-class unlabelled data,
called clustered concave semi-supervised SVM (CVS3VM). First, a k-median clustering
algorithm finds k cluster centres for the unlabelled examples such that the sum of distances
between each example and the closest cluster centre is minimized. Then, examples within a
certain distance from these k cluster centres are treated as representative examples of the
clusters, and hence of the overall dataset, and are given to an expert or oracle to label.
Finally, a linear SVM is trained using this small sample of labelled data. The model is
effectively compared to other methods.
(Li et al., 2004) follow a similar approach where a k-means clustering algorithm is used to
cluster the unlabelled data into a certain number of subsets and to assign corresponding
cluster labels. Then, an SVM classifier is trained on this labelled set.

2.2.2 Augment the training set with new documents from the unlabelled data
The clustering based text classification (CBC) approach (Zeng et al., 2003) improves
classification performance by using unlabelled data, U, to augment the training, labelled
data, L. According to this method a clustering algorithm is first applied to L. For each class,
the centroids of the labelled data are computed and used as the initial centroids for k-means.
The k value for k-means is set to the number of classes in the classification task. Accordingly,
the label of each centroid is equal to the label of the corresponding examples of each class.
Then, k-means runs for both L and U and k clusters are created. The most confident
examples from each cluster (i.e. the ones nearest to the cluster’s centroid) are added to L.
This is considered to be a soft-constrained version of k-means because the constraints are not
based on exact examples but on their centroid, thus reducing the bias in L. Finally, the
augmented L and the rest of U are used to train and test a Transductive SVM (TSVM)
classifier. Their experimental results demonstrate that CBC outperforms existing algorithms,
such as TSVMs and co-training, especially when the size of the labelled dataset is very small.

Text Classification Aided by Clustering: a Literature Review

239

(Chapelle et al., 2002) propose a framework to incorporate unlabelled data in a kernel
classifier based on the “cluster assumption”, i.e. nearby points are likely to have the same
class label, and two points are likely to have the same class label if they belong to the same
cluster. Using spectral methods (Spielman & Teng, 1996; Ng et al., 2002) they show how to
design kernels such that the induced distance is small for points in the same cluster and
large for points in different clusters. This representation with the points naturally clustered,
is then used to train a discriminative learning algorithm. The testing set, if available during
training, can be considered as unlabelled data; therefore spectral clustering is applied to
training, unlabelled and testing data. Otherwise, an approximation of each testing example
as a linear combination of the training and unlabelled data is computed. The experiments
show encouraging results. The algorithm is applicable to a purely supervised learning task.
(Zhou et al., 2003) also base their method on the “cluster assumption” and apply spectral
clustering to represent the labelled and unlabelled data. The keynote of the method is to let
every labelled point in the representation iteratively spread its label information to its
neighbours until a global stable state is achieved. Then, the label of each unlabelled point is
set to be the class of which it has received most information during the iteration process. The
algorithm demonstrates effective use of unlabelled data in experiments including digital
recognition and text categorization.

2.2.3 Augment the dataset with new features
Unlike direct methods like CBC, which label the unlabelled data, the technique of (Raskutti
et al., 2000a), augments the feature space with new features derived from clustering the
labelled and unlabelled data. A non-hierarchical single-pass clustering algorithm is used to
cluster labelled and unlabelled examples. In order to derive only the useful information
from the clusters, the clusters are sorted by their sizes, and the largest N clusters are chosen
as representatives of the major concepts. Each cluster contributes the following features to
the feature space of the labelled and the testing examples: i) a binary feature indicating if
this is the closest of the N clusters, ii) similarity of the example to the cluster’s centroid, iii)
similarity of the example to the cluster’s unlabelled centroid, i.e. the average of the
unlabelled examples that belong to the cluster, and iv) for each class in the labelled set,
similarity of the example to the cluster’s class l-centroid defined as the average of the
examples in class l that belong to this cluster. The clusters are thought of as higher level
“concepts” in the feature space, and the features derived from the clusters indicate the
similarity of each document to these concepts. The unlabelled data are used to improve the
representation of these concepts. They evaluate the method using SVM classifiers on well-
known corpora, and find significant improvements in the classification performance.
In (Kyriakopoulou & Kalamboukis, 2007) the training and testing sets are augmented with
new features derived from clustering without using unlabelled data. Consider a k-class
categorization problem, (k>=2), with a labelled l-training sample {(x1, y1),…,(xl, yl)} of feature
vectors x є Rn and corresponding labels yi є {1, …, k}, and an unlabelled m-testing sample
{(x1*,…,xm*} of feature vectors. The approach consists of three steps: clustering, expansion
and classification step. In the clustering step, the number of clusters is chosen to be equal to
k, i.e. the predefined number of classes. A divisive clustering algorithm with repeated
bisections is selected to cluster both training and testing sets. In the expansion step, each
cluster contributes one meta-feature to the feature space of the training and testing sets:
given the total n features that are used in the representation of the l+m feature vectors, and

 Tools in Artificial Intelligence

240

the k clusters derived from the clustering step, create meta-features xn+1,…,xn+k. A document
x in the cluster Cj is characterized by the meta-feature xn+j. Finally, in the classification step,
linear SVM/transductive SVM classifiers are trained on the expanded training set and
classify the expanded testing set. Evaluation of this approach using several widely used
corpora indicates that it is extremely useful improving the classifier’s performance
especially when the number of the training examples is very small. The algorithm has also
been successfully used in a spam-filtering setting (Kyriakopoulou & Kalamboukis, 2006).
Also, it can be directly applied to a purely semi-supervised task using unlabelled data as an
additional source of information.
In (Takamura, 2003) given the co-occurrences of features and documents of the training set,
the features are first hard clustered. Let H be the reduced matrix resulting from clustering.
The relation between a feature vector d and its reduced vector s is Hd=s. Next, the two
vectors are concatenated into a vector d’. Then, the testing set is classified with SVM using d’
as input. Takamura explains how the expansion of the feature space is equivalent to using a
special kernel in the original feature space, where the form of the mapping to a higher
dimensional space depends on the given data. Experiments conducted on Reuters-21578 and
20NG show that the method is effective especially when the training set is small.

2.2.4 Co-training
In general, a co-training algorithm produces an initial weak classifier from a few labelled
examples and later uses unlabelled data to improve its performance. The idea was first
introduced in (Blum & Mitchell, 1998). The key defining features of this problem class are
that (i) the features can be factored into two (or more) components, i.e. there are two distinct
views of an example x, which are redundantly sufficient to correctly classify the example,
and (ii) the two components are independent and identically distributed, so that the features
in one view of the example x do not always co-occur with the features in the second view. A
different approach to co-training is given in (Goldman & Zhou, 2000). See (Abney, 2002;
Seeger, 2000) for a comprehensive survey on co-training.
The use of “concepts” derived by clustering as in (Raskutti et al., 2000a) provides an
alternate description of the data, similar to the redundant views used in co-training. In this
vein, (Raskutti et al., 2002b) present a co-training strategy to make use of unlabelled data.
Two predictors are trained in parallel, and each predictor labels the unlabelled data to train
the other predictor in the next round. The process repeats for a number of iterations. The
predictors are SVMs, one trained using the original word presence features view, and the
other trained with solely the new cluster features that are derived by clustering both
labelled and unlabelled data. The new features include membership information as well as
similarity to clusters’ centroids for the more populous clusters as described in their previous
work (Raskutti et al., 2000a). This new feature space creates an alternative redundant view
of the data as imposed by the co-training framework of (Blum & Mitchell, 1999). They
evaluate the method using SVM classifiers on Reuters-21578, 20Newsgroups, and WebKB
corpora. Their results are encouraging and confirm previous findings.
A different co-training approach is based on co-training between clustering and
classification (Kyriakopoulou, 2007). Unlike the procedure in (Blum & Mitchell, 1999) it does
not require a priori the existence of two distinct properties of the underlying data
distribution in order to work. Also, it doesn’t use two different supervised learning
algorithms that complement each other as in (Goldman & Zhou, 2000). Instead, there is one

Text Classification Aided by Clustering: a Literature Review

241

original feature space, which is used interchangeably by an unsupervised and a supervised
learning algorithm, and each algorithm augments it by propagating its results in the form of
corresponding meta-features. Specifically, following the procedure in (Kyriakopoulou &
Kalamboukis, 2007), at every round of co-training a “hard” clustering algorithm groups the
examples of the training and testing sets into k clusters. The examples that belong to the
same cluster are augmented with a meta-feature that denotes membership information to
this cluster. Then a separate SVM classifier for each class of the classification task is build
from the augmented feature space. Each SVM classifier returns a prediction for each
example, which is interpreted as the likelihood that the example belongs to a certain class.
The predictions of the underlying classifiers for each example are compared and each
example is assigned the label of the class with the highest prediction. The labels information
is translated into meta-features that are used to augment the feature space and the algorithm
iterates. According to experimental findings the combination of clustering with classification
in a co-training setting, and the addition of corresponding meta-features, are successfully
used as an additional source of information about margins. The experimental results on
widely used datasets demonstrate the superiority of the approach over SVMs.
Table 2 summarizes the methods presented in this section.

2.3 Clustering in large-scale classification problems
Clustering in large-scale classification problems is used as a down-sampling pre-process to
classification, in order to select the most representative training examples according to: i)
clustering and information from the resulting hyperplane of a SVM initially trained on
cluster representatives, ii) clustering and prior class label information, iii) a combination of
cases i and ii, iv) solely clustering results, and v) problem decomposition.

2.3.1 Select most representative training data according to clustering and information
from the resulting hyperplane of a SVM initially trained on cluster representatives
In this case, first, the training examples are clustered. Then, cluster representatives (clusters’
centroids) are used to train an initial SVM classifier. Next, follows a process that selects the
clusters that contain the most representative training examples according to a combination
of the clustering and classification results. Usually, this process is called declustering and
corresponds to an expansion of the training set according to clustering (i.e. the examples of a
cluster are no longer represented by the cluster’s centroid; instead all the examples are
considered). Lastly, a SVM is trained on the new training set. The following algorithms
differ in the selection of the cluster representatives, and the way the clustering and
classification results are combined in order to select the clusters that contain the best
candidates from the training examples. In concluding, they exploit the distributional
properties of the training data, i.e. the natural clustering of the training data, and the overall
layout of these clusters relative to the decision boundary of SVMs.
• The clustering-based SVM (CB-SVM) method (Yu et al., 2003) uses the hierarchical

clustering technique named BIRCH (Zhang et al., 1996) to cluster the training examples.
The key idea of CB-SVM is to use a hierarchical clustering algorithm to get a finer
description of the training data closer to a SVM decision boundary and a coarser
description away from it. Let Tp and Tn be the hierarchical trees built from the positive
and the negative training examples respectively. Then, a SVM is trained from the
centroids of the root nodes (i.e. clusters) of Tp and Tn. According to the solution of the

 Tools in Artificial Intelligence

242

SVM, the clusters whose centroids are support vectors for the SVM and the clusters that
are very close to the support vectors (satisfying a certain distance constraint) are
declustered into the finer level using the tree structure. These clusters may introduce
new support vectors for the SVM, and are thus accumulated into the training set. A new
SVM is constructed from the augmented training set, and the declustering process is
repeated until nothing is accumulated, i.e. this selective declustering procedure reaches
leafs’ level. Experiments show that CB-SVM is scalable for very large data sets while
also generating high classification accuracy.

Goal Authors
Clustering/
Classification
method

Basic method

(Fung &
Mangasarian, 2001)

k-means/linear
SVM

Unlabelled data selected by k-means
are labelled by an oracle or expert.

Create a
training set
from the
unlabelled
data

(Li et al., 2004) k-means/linear
SVM

Unlabelled data selected by k-means
are labelled by cluster labels.

(Zeng et al., 2003) k-means/TSVM

Training and unlabelled data are
clustered. Unlabelled data nearest to
clusters’ centroids are added to the
training set.

(Chapelle et al.,
2002)

Augment
the training
set with
new
documents
from the
unlabelled
data (Zhou et al., 2003)

Spectral
analysis

Creation of diagonal matrix that
contains clustering information.

(Raskutti et al.,
2000a)

non-
hierarchical
single-pass
clustering
algorithm/SVM

Training and unlabelled data are
clustered. Each cluster contributes
new features to the feature space of
the training and testing examples.

(Takamura, 2003) hard clustering The features of the training set are
clustered.

Augment
the dataset
with new
features

(Kyriakopoulou &
Kalamboukis, 2006;
Kyriakopoulou &
Kalamboukis, 2007)

divisive
clustering
algorithm
/SVM

Training and testing data are
clustered. Each cluster contributes a
new feature to the feature space of
the training and testing examples

(Raskutti et al.,
2000b)

non-
hierarchical
single-pass
clustering
algorithm/SVM

Clustering creates a redundant view
in a co-training framework

Co-training

(Kyriakopoulou,
2007)

divisive
clustering
algorithm/SVM

Clustering is used as unsupervised
classifier in a co-training framework.

Table 2. Clustering in semi-supervised classification

Text Classification Aided by Clustering: a Literature Review

243

• (Awad et al., 2004) also apply a hierarchical clustering algorithm, called dynamically
growing self-organizing tree (DGSOT) (Luo et al.), as a reduction method of the training
set for SVM classification. The authors propose two alternatives to train a SVM for two
classes based on the combination of DGSOT and SVM. The first approach generates two
hierarchical trees, one for each class, up to a certain level, i.e. they are not fully grown.
Then, a SVM is trained on the clusters’ references of the trees top nodes (clusters). After
computing the margin, the nodes that contain a support vector are declustered by
adding their children nodes to the training set. The process of training and declustering
is repeated until a stopping criterion holds. In the second approach, one more step is
added to the previous procedure before declustering. Specifically, the distance between
nodes in the training set is measured. Since the distance between nodes lying in the
decision boundary area is the least, the nodes having distance more than the average
are excluded. Unlike the approach of (Yu et al., 2003), that first builds the hierarchical
tree and then starts to train the SVM, in this approach clustering goes in parallel with
training the SVM. During the tree construction and declustering process, DGSOT re-
distributes data among newly added children of a node and re-evaluates clustering
results. The growth of the tree is controlled, because non-support vector nodes will be
stopped from growing, and only support vector nodes will be allowed to grow.
Experiments on several datasets against other relevant techniques give contradictory
results. The second approach outperforms the rest but needs more time. Also, the
algorithm is sensitive on the initial small training set, giving high error rates at the
beginning of the training process, which is not fully recovered till the end.

• ClusterSVM (Boley & Cao, 2004) partitions the training data into pair-wise disjoint
clusters using adaptive clustering. Then, a SVM is trained using the centroids of these
clusters. Based on this initial SVM, it can be judged whether a cluster contains either
only support vectors or only non-support vectors. The clusters that contain both
support vectors and non-support vectors based on the decision boundary of the initial
SVM are repeatedly divided into sub-clusters that approximately contain either only
non-support vectors or only support vectors. Clusters having only non-support vectors
are replaced by their representatives. Experiments on artificial and real world datasets
prove the efficiency of clusterSVM over popular algorithms such as SMO.

• A similar approach named support cluster machines (SCMs) (Yuan et al., 2006) uses k-
means to partition the negative training examples into disjoint clusters, and then trains
an initial SVM using the positive examples and the representatives of the negative
clusters. With the global picture of the initial SVM, it can approximately identify the
support vectors and non-support vectors. A shrinking technique is then used to remove
the examples, which are most probably not support vectors. This procedure of
clustering and shrinking is performed iteratively until some stopping criteria are
satisfied.

• The kernel based incremental clustering algorithm (KBIC) method uses a scalable
kernel based clustering algorithm for the selective sampling based training of non-
linear SVMs (Asharaf et al., 2007). This is a two-phase algorithm. In the first phase,
KBIC is used to generate a high level description of the data (clusters) in an appropriate
kernel induced feature space. The cluster prototypes obtained are used to train a SVM
and the corresponding support vectors are identified. In the second phase, a
declustering process that expands all the clusters near the boundary creates the training
set for the subsequent training of a SVM.

 Tools in Artificial Intelligence

244

2.3.2 Select most representative training data according to clustering and prior class
label information
In this case, the selection of the representative training examples is determined by the
composition of the clusters according to the available class label information.
• (Almedia et al., 2000) group the training data in k clusters using k-means. Clusters

formed only by examples that belong to the same class label are disregard and only
cluster centres are used. On the other hand, clusters with examples belonging to more
than one class labels are unchanged and all training examples are considered. Clusters
with mixed composition are likely to happen near the separation margins and they may
hold some support vectors. Consequently, the number of training examples for the
SVM training is smaller and the training time can be decreased without compromising
the generalization capability of the SVM.

• (Fang et al., 2002) apply a clustering approach based on principal component analysis
named principle direction divisive partitioning (PDDP) to cluster the training examples.
The goal is to minimize noise effects in the training procedure by using those examples
that are part of pure clusters, i.e. the ones that are dominated by one of the categories.
The training examples that are clustered in pure nodes are used to seed a Naïve Bayes
classifier. The authors evaluate the performance of the methods against several
interesting variants and show improvements on classification performance.

• (Awad et al., 2004) apply the DGSOT hierarchical clustering algorithm to generate a
hierarchical clustering tree from the training examples, and determine the most
qualified nodes to decluster based on the heterogeneity of nodes. Heterogeneous nodes
are those nodes that have data points assigned to them from different classes, thus, they
are more likely to lie in the marginal area between two classes. Then, a SVM is trained
on the training examples of the declustered nodes. Experiments on several datasets
against other relevant techniques did not give satisfactory results.

• (Cervantes et al., 2006) apply SVM classification based on fuzzy partitioning clustering.
The original training set is fuzzy clustered into k clusters with respect to a given
criterion. The clusters obtained have elements of mixed category or uniform category.
SVM is trained on the centroids of the clusters with mixed category elements, because
these elements have bigger likelihood to be support vectors. Getting the clusters closer
to the decision hyperplane and eliminating the clusters far away reduces the original
data set. Then a de-clustering is applied to the reduced clusters and subsets from the
original data set are obtained. Finally, SVM is used again and finishes classification. The
experimental results show that the number of support vectors obtained using the SVM
classification based on the fuzzy partitioning is similar to the normal SVM approach while
training time is significantly smaller. However, the number of the clusters k is user-defined
in order to avoid computational cost for determining the optimal number of clusters.

• (Li et al, 2007) propose the support cluster machine algorithm (SCM) to effectively deal
with large-scale classification problems. It is a classification model built for clustering.
Based on the learning framework of SVMs it defines clustering as a dual optimisation
problem with a decision function formulised following the same steps as in SVMs. The
goal is to maximize the margin between the positive and the negative clusters of a class,
i.e. between clusters obtained only from the positive examples of a class and clusters
obtained only from the negative examples accordingly. The examples are clustered
using the threshold order-dependent (TOD) clustering algorithm (Friedman & Kandel,
1999). After clustering (or training phase), the training support clusters obtained can be
directly used in the decision function to measure the similarity between a cluster and a
testing example. The experimental results confirm that the SCM is very effective for

Text Classification Aided by Clustering: a Literature Review

245

large-scale classification problems due to significantly reduced computational costs for
both training and testing and comparable classification accuracies.

2.3.3 Select most representative training data according to clustering, information
from the resulting hyperplane of a SVM initially trained on cluster representatives,
and prior class label information
This case combines the two previous cases.
• Minimum enclosing ball clustering (MEB) (Cervantes et al., 2008) employs the concept

of core-sets (Badoiu et al., 2002)(Kumar et al., 2003) over the training examples, L. The
obtained clusters are of the following type: (i) clusters with only positive training
examples, Ω+, (ii) clusters with only negative training examples, Ω-, and (iii) clusters
with both positive and negative examples (or mix-labelled), Ωm. MEB is used as a data
selection method. To this end, only the centres of the Ω+ and Ω- clusters and all the
examples of the mix-labelled Ωm clusters are selected to form a reduced training set, Lr,
used to train a SVM classifier with the sequential minimal optimisation (SMO)
algorithm (Platt, 1998). Then, a de-clustering process augments Lr by including the
examples in the clusters whose centres are support vectors of the classifier’s solution.
Taking the recovered data as new training data set, SVM classification with SMO algorithm
is used again to get the final decision hyperplane. The experimental results show that the
accuracy obtained by the approach is very close to the classic SVM method, while the
training time is significantly shorter, enabling it to successfully handle huge data sets.

2.3.4 Select most representative training data according to solely clustering results
Various assumptions about the clustering results and the information they carry are
adopted in order to build the redundant training set.
• (Sun et al., 2004) use k-means to cluster the input space. Because the data that decisively

affect SVM classifiers are those at boundary of each class, it is assumed that the data
residing on the boundaries of the clusters are critical data that together with the
centroid of each cluster are used to train a SVM.

• (Wang et al., 2005) also combine the k-means clustering technique with SVM to build
classifiers. K-means runs on the original training data and all cluster centres are
regarded as the compressed data for building classifiers. Accordingly, SVM classifiers
are built on the compressed data. The experiments show that it is possible for the
algorithm to build classifiers with many fewer support vectors and higher response
speed than SVM classifiers. Moreover, testing accuracy of the resulting classifiers can be
guaranteed to some extent. This method also employs a parameter tuning method to
achieve the required generalization performance at acceptable response time.

2.3.5 Problem decomposition
There are several decomposition methods that try to modify the SVM algorithm so that it
can be applied to large datasets.
• The clustering support vector machines model (CSVMs model) (He at al., 2006) is

different from the previous algorithms in this section in that all the training examples
are kept during the training process. Using the theory of granularity computing the
CSVMs model is able to divide a complex problem into a series of smaller and
computationally simpler problems. To accomplish this a k-means clustering algorithm
is used to cluster the training set into sub-clusters upon which SVMs are subsequently
trained in parallel.

 Tools in Artificial Intelligence

246

Table 3 summarizes the results from this section.

Goal Authors Clustering
method Training sample selected or removed

(Yu et al., 2003) BIRCH

The clusters whose centroids are support
vectors for the SVM and the clusters that are
very close to the support vectors are
declustered

(Awad et al., 2004)
dynamically
growing self-
organizing tree

i) Clusters containing support vectors are
declustered
ii) Distant clusters are removed

(Boley & Cao, 2004) adaptive
clustering

Clusters having only non-support vectors
are replaced by their representatives

(Yuan et al., 2006) k-means Clusters having only non-support vectors
are removed

Select most
representative
training data
according to
clustering and
information from
the resulting
hyperplane of a
SVM initially
trained on cluster
representatives (1)

(Asharaf et al., 2007)
kernel based
incremental
clustering

Clusters near the boundaries are
declustered

(Almedia et al., 2000) k-means

Clusters formed by examples that belong to
the same class label are disregard and only
cluster centres are used. All training
examples from clusters of mixed
composition are considered.

(Fang et al., 2002)
principle
direction divisive
partitioning

Clusters formed by examples that belong to
the same class label are considered.

(Cervantes et al.,
2006)

fuzzy
partitioning
clustering

(Awad et al., 2004)
dynamically
growing self-
organizing tree

Clusters of mixed class label composition
are declustered and all training examples
are considered.

Select most
representative
training data
according to
clustering and
prior class label
information (2)

(Li et al, 2007) TOD clustering
algorithm

Support clusters obtained in the training
phase are directly used in the decision
function

Select most
representative
training data
according to (1)
and (2)

(Cervantes et al.,
2008)

minimum
enclosing ball
clustering

The centroids of clusters with only positive
or only negative training examples, all the
examples of clusters with mixed
composition, all the examples of the clusters
whose centroids are support vectors are
used.

(Sun et al., 2004) k-means
The centroids and the training data residing
at the boundaries of the clusters are
selected.

Select most
representative
training data
according to
solely clustering
results

(Wang et al., 2005) k-means The centroids of the clusters are selected.

Problem
decomposition (He at al., 2006)

clustering
support vector
machines model

All training examples are used. The training
set is clustered into subclusters upon which
SVMs are subsequently trained in parallel.

Table 3. Clustering in large-scale classification problems

Text Classification Aided by Clustering: a Literature Review

247

3. Conclusions and future directions
We presented several clustering methods for dimensionality reduction to improve text
classification. Experiments show that one-way clustering is more effective than feature
selection, especially at lower number of features. Also, when dimensionality is reduced by
as much as two orders of magnitude the resulting classification accuracy is similar to a full-
feature classifier. In some cases of small training sets and noisy features, feature clustering
can actually increase classification accuracy. In the case of IB, various heuristics can be
applied in order to obtain finer clusters, greedy agglomerative hard clustering (Slonim &
Tishby, 1999), or a sequential K-means like algorithm (Slonim et al., 2002). Co-clustering
methods are superior to one-way clustering methods as shown through corresponding
experiments (Takamura, 2003). Benefits of using one-way clustering and co-clustering as a
feature compression and/or extraction method include: useful semantic feature clusters,
higher classification accuracy (via noise reduction), and smaller classification models. The
second two reasons are shared with feature selection, and thus clustering can be seen as an
alternative or a complement to feature selection, although it does not actually remove any
features. Clustering is better at reducing the number of redundant features, whereas feature
selection is better at removing detrimental, noisy features. The reduced dimensionality
allows the use of more complex algorithms, and reduces computational burden. However, it
is necessary to experimentally evaluate the trade-off between soft and hard clustering.
While soft clustering increases the classification model size, it is not clear how it affects
classification accuracy. Other directions for exploration include feature weighting and
combination of feature selection and clustering strategies.
There are four cases of semi-supervised classification using clustering considered in the
area. In the first case, in the absence of a labelled set, clustering is used to create one by
selecting unlabelled data from a pool of available unlabelled data. In the second case, it is
used to augment an existing labelled set with new documents from the unlabelled data. In
the third case, the dataset is augmented with new features derived from clustering labelled
and unlabelled data. In the last case, clustering is used under a co-training framework. The
algorithms presented demonstrate effective use of unlabelled data and significant
improvements in classification performance especially when the size of the labelled set is
small. In most experiments, the unlabelled data come from the same information source as
the training and testing sets. Since the feature distribution of the unlabelled data is crucial to
the success of the method, an area of future research is the effect of the source and nature of
information in the unlabelled dataset and clustering.
Lastly, clustering reduces the training time of the SVM i) by modifying the SVM algorithm
so that it can be applied to large data sets, and ii) by finding and using for training only the
most qualified training examples of a large data set and disqualifying unimportant ones. A
clustering algorithm and a classifier cooperate and act interchangeably and complementary.
In the first case, many algorithms have been proposed (sequential minimal optimisation,
projected conjugate gradient, neural networks amongst others) in order to simplify the
training process of SVM, usually by breaking down the problem into smaller sub-problems
easier to solve. In the second case, the training set is clustered in order to select the most
representative examples to train a classifier instead of using the whole training set. The
clustering results are used differently by the various approaches, i.e. the selection of the
representative training examples follows different methods. Some of the proposed
algorithms manage to decrease the number of training examples without compromising the

 Tools in Artificial Intelligence

248

generalization capability of the SVM. However, there were other approaches that gave
contradictory results revealing the difficulty of the problem under examination.
Some methods are applied only on linear problems. Even though some of them can also be
used to train non-linear SVMs, the iterative nature of their cluster generation/exploration
strategy makes them very expensive to be used in large-scale datasets. There is a need for
methods that perform a small number of data scans in order to work. Incremental clustering
can also come in useful. Constructing effective indexing structures for non-linear kernels is
an interesting direction of future work since it has high practical value especially for pattern
recognition of large data sets. Developing an effective indexing structure for high
dimensional problems is an interesting direction of future work.
Another important topic for exploration is the choice of the number of word and/or
document clusters to be used for the classification task. This and various other parameters
are usually defined using various heuristics or are tuned manually. An investigation of
automatic approaches to tune the parameters is also desirable.
This review reveals that the area under research is vivid and that clustering is applied in
many sub-domains of the problem of text classification. The clustering field can, and indeed
must play an important role in enabling effective classification. It is important to invent new
designs that are able to support new forms of collaboration but it is essential that this should
be done only on the basis of a better understanding of what needs to be accomplished. In
this paper, an attempt has been made to achieve such an understanding by abstracting
patterns of current applications of clustering to aid classification. We believe that text
classification aided by clustering is worthy area of focus for information retrieval, machine
learning and artificial intelligence research; both for its direct application and for the insight
it gives into other similar problems. Research should focus on model selection and theoretic
analysis.

4. References
Abney, S., (2002). Bootstraping. Proceedings of the 40th Annual Meeting of the Association for

Computational Linguistics (ACL), pp. 360-367.
Almeida, M. B., Braga, A. P., Braga, J. P., (2000). SVM-KM: speeding SVMs learning with a

pnori cluster Selection and k-means. IEEE 6th Brazilian Symposium on Neural
Networks, SBRN 2WO.

Asharaf, S., Murty, M. N., Shevade, S. K., (2007). Cluster based training for scaling non-
linear Support Vector Machines. Proceedings of the International Conference on
Computing: Theory and Applications (ICCTA'07).

Awad, M., Khan, L., Bastani, F, Yen, I. L., (2004). An effective support vector machine SVMs
performance using hierarchical clustering, in Proceedings of the 16th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI'04), pp. 663-667.

Badoiu, M., Har-Peled, S., Indyk. P., (2002). Approximate clustering via core-sets, in
Proceedings of the 34th Symposium on Theory of Computing.

Baker L. D., McCallum A. K., (1998). Distributional clustering of words for text classification,
Proceedings of SIGIR’98, 21st ACM International Conference on Research and
Development in Information Retrieval, pages 96–103, Melbourne, AU. ACM Press,
New York, US.

Bekkerman R., El-Yaniv R., Tishby N., Winter Y., (2001). On Feature Distributional
Clustering for Text Categorization. Proceedings of SIGIR’01, 24th ACM International

Text Classification Aided by Clustering: a Literature Review

249

Conference on Research and Development in Information Retrieval, pages 146–153, New
Orleans, US, ACM Press, New York, US.

Bekkerman R., El-Yaniv R., Tishby, N., Winter Y., (2003). Distributional Word Clusters vs.
Words for Text Categorization, Journal of Machine Learning Research, 3, 1183-1208.

Blum, A., Mitchell, T. (1998). Combining labeled and unlabeled data with co-training. COLT:
Proceedings of the Workshop on Computational Learning Theory.

Boley, D., Cao, D., (2004). Training support vector machine using adaptive clustering. In
Proceeding of 2004 SIAM International Conference on Data Mining.

Burges, C. J. C., (1998). A Tutorial on Support Vector Machines for Pattern Recognition. Data
Mining and Knowledge Discovery 2:121 – 167.

Cervantes, J., Li, X., Yu, W., (2006). Support vector machine classification based on fuzzy
clustering for large data sets, in MICAI 2006 Advances in Artificial Intelligence, Lecture
Notes in Computer Science (LNCS), vol. 4293, Springer, Berlin, pp. 572-582.

Cervantes, J., Li, X., Yu, W., Li, K., (2008). Support vector machine classification for large
data sets via minimum enclosing ball clustering. Neurocomputing, Vol. 71, Issue 4-6,
pp. 611-619.

Chapelle, O., Weston, J., Scholkopf, B., (2002). Cluster kernels for semi-supervised learning.
In NIPS, volume 15.

Dai, W., Xue G.R., Yang, Q., Yu, Y., (2007). Co-clustering based classificaiton for out-of-
domain documents. In Proceedngs of KDD 2007.

Dhillon I., Mallela S., Kumar R., (2002). Enhanced word clustering for hierarchical text
classification, in Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, Edmonton, Alberta, Canada, pp. 191-200.

Dhillon I., Mallela S., Kumar R., (2003a). A Divisive Information-Theoretic Feature
Clustering Algorithm for Text Classification, Journal of Machine Learning Research 3,
1265-1287.

Dhillon I., Mallela S., Modha, S., (2003b). Information theoretic co-clustering. In Proceedings
of the ACM SIGKDD Conference.

Fang, Y., C., Parthasarathy, S., Schwartz, F., (2002). Using Clustering to Boost Text
Classification. In Proceedings of the IEEE ICDM Workshop on Text Mining.

Felici, G., Truemper, K., (2002). A minsat approach for learning in logic domains. Informs. J.
Computing, Vol. 14, No. 1.

Friedman, M., Kandel, A. (1999). Introduction to pattern recognition, Chapter Distance
Functions, 70–73. London, UK: Imperial College Press.

Fung, G. and Mangasarian, O.L., (2001). Semi-supervised support vector machines for
unlabeled data classification. Optim. Methods Software. v15 i1. 29-44.

Goldman, S., Zhou, Y. (2000). Enhancing supervised learning with unlabeled data. Proc. 17th
International Conf. on Machine Learning, pp. 327–334, Morgan Kaufmann, San
Francisco, CA.

He, J., Zhong, W., Harrison, R., Tai, P. C., Pan, Y., (2006). Clustering support vector
machines and its application to local protein tertiary structure prediction. ICCS
2006, part II,LNCS 3992, pp. 710-717.

Jain, A. K., Dubes, R.C., (1988). Algorithms for Clustering Data. PrenticeHall, Englewood
Clis, New Jersey.

Koller, D., Sahami, M., (1996). Toward optimal feature selection. In proceedings of te 13th
International Conference on Machine Learning (ICML-96).

 Tools in Artificial Intelligence

250

Kumar, P., Mitchell, J.S.B., Yildirim, A., (2003). Approximate minimum enclosing balls in
high dimensions using core-sets, ACM J. Exp. Algorithmics, 8.

Kyriakopoulou, A., (2007). Using Clustering and Co-training to Boost Classification
Performance. In proceedings of the 19th IEEE International Conference on Tools with
Artificial Intelligence, volume 2, pp. 325-330.

Kyriakopoulou, A., Kalamboukis, T., (2006) Text classification using clustering. In
Proceedings of the ECML-PKDD Discovery Challenge Workshop.

Kyriakopoulou, A., Kalamboukis, T., (2007). Using clustering to enhance text classification.
In Proceedings of the 30th annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 805 – 806

Lavelli, A., Sebastiani, F., Zanoli, R., (2004). Distributional term representations: an
experimental comparison. CIKM 2004: 615-624.

Lewis, D. D., (1992). An Evaluation of Phrasal and Clustered Representations on a Text
Categorization Task. Proceedings of the 15th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval.

Li, B., Chi, M., Fan, J., Xue, X., (2007). Support Cluster Machine. In Proceedings of the 24th
International Conference on Machine Learning, Corvallis, OR.

Li, M., Cheng, Y., Zhao, H., (2004). Unlabeled data classification via support vector machine
and k-means clustering. In Proceedings of the International Conference on Computer
Graphics, Imaging and Visualization, CGIV'04, pp. 183-186.

Lin, J., (1991). Divergence measures based on shannon entropy. IEEE Transactions on
Information Theory, 37 (14):145–51.

Luo, F., Khan, L., Bastani, F., Yen, I.L., Zhou, J., A Dynamical Growing Self-Organizing Tree
(DGSOT) for Hierarchical Clustering Gene Expression Profiles, The Bioinformatics
Journal, Oxford University Press, UK.

Mubaid, H.A., Umair, S.A., (2006). A new text categorization technique using distributional
clustering and learning logic. IEEE Transactions on Knowledge and Data Engineering,
Vol. 18, No. 9.

Ng, A. Y., Jordan, M. I., Weiss, Y, (2002). On spectral clustering: Analysis and an algorithm.
In T. Dietterich, S. Becker and Z. Ghahramani (Eds.), Advances in Neural Information
Processing Systems (NIPS), 14.

Pereira F., Tishby N., Lee L., (1993). Distributional clustering of English words, Proceedings of
the 31st Annual Meeting of the Association for Computational Linguistics, p. 183-190.

Platt, J., (1998). Fast training of support vector machine using sequential minimal
optimization. In Advances in Kernel Methods: Support Vector Machine, MIT Press,
Cambridge, MA.

Raskutti, B., Ferrá, H., Kowalczyk, A., (2002a). Using Unlabelled Data for Text Classification
through Addition of Cluster Parameters. Proceedings of the Nineteenth International
Conference on Machine Learning, Pages: 514 – 521.

Raskutti, B., Ferrá, H., Kowalczyk, A., (2002b). Combining clustering and co-training to
enhance text classification using unlabelled data, Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining.

Rissanen, J, (1989) Stochastic Complexity in Statistical Enquiry. World Scientific.
Salton, G. and McGill, M. J. (1983). Introduction to Modern Information Retrieval. McGraw-

Hill, New York, NY.

Text Classification Aided by Clustering: a Literature Review

251

Seeger, M. (2000). Input-dependent regularization of conditional density models.
Technical Report. http://www.kyb.tuebingen.mpg.de/bs/people/seeger/

Slonim, N., Tishby, N., (1999). Agglomerative Information Bottleneck. Advances in Neural
Information Processing Systems, p. 617-623.

Slonim, N., Tishby, N., (2000). Document Clustering using Word Clusters via the
Information Bottleneck Method. In Proceedings of the ACM SIGIR.

Slonim, N., Tishby, N., (2001). The power of word clustering for text classification. In
Proceedings of the European Colloquium on IR Research, ECIR.

Slonim, N., Friedman, N., Tishby, N., (2001). Agglomerative Multivariate Information
Bottleneck. Neural Information Processing Systems (NIPS 01).

Slonim, N., Friedman, N., Tishby, N., (2002). Unsupervised document classification using
sequential information maximization. In Proc. of SIGIR, pages 129-136.

Spielman, D. Teng, S. (1996). Spectral partitioning works: planar graphs and finite element
meshes. In 37th Annual Symposium on Foundations of Computer Science. Burlington,
VT, pp. 96–105. Los Alamitos, CA: IEEE Comput. Soc. Press.

Sun, S., Tseng, C. L., Chen, Y. H., Chuang, S. C., Fu, H. C. (2004). Cluster-based support
vector machines in text-independent speaker identification. In Proceedings of the
International Joint Conference on Neural Network.

Takamura, H., (2003). Clustering approaches to text categorization, Doctor’s thesis, NAIST-IS-
DT0061014.

Takamura, H., Matsumoto, Y., (2002). Two-dimensional Clustering for Text Categorization.
In Proceedings of Sixth Conference on Natural Language Learning (CoNLL-2002), Taipei,
Taiwan, pages 29-35, August-September.

Tishby, N. Z., Pereira, F., Bialek, W., (1999). The Information Bottleneck Method. In
Proceedings of the 37th Allerton Conference on Communication, Control and Computing.

Verbeek, J., (2000a). An information theoretic approach to finding word groups for text
classification. Master 's thesis, Institute for Logic, Language and Computation (ILLC-
MoL-2000-03), Amsterdam, The Netherlands.

Verbeek, J. (2000b). Supervised Feature Extraction for Text Categorization. Benelearn: Annual
Machine Learning Conference of Belgium and the Netherlands.

Wang, J., Wu, X., Zhang, C. (2005). Support vector machines based on K-means clustering
for real-time business intelligence systems. Int. J. Business Intelligence and Data
Mining, Vol. 1, No. 1, pp.54–64.

Yaniv R. E., Souroujon O., (2001). Iterative Double Clustering for Unsupervised and Semi-
supervised Learning. In proceedings of the 12th European Conference on Machine
Learning, ECML.

Yu, H., Yang, J., Han, J., (2003). Classifying large data sets using SVMs with hierarchical
clusters, in Proceedings of the 9th ACM SIGKDD 2003, Washington, DC, USA.

Yuan, J., Li, J., & Zhang, B. (2006). Learning concepts from large scale imbalanced data sets
using support cluster machines. Proceedings of the ACM International Conference on
Multimedia, (pp. 441–450).

Zhang, T., Ramakrishnan, R., Livny, M. (1996). BIRCH: An efficient data clustering method
for very large databases. Proc. of the 1996 ACM SIGMOD Int’l Conf. on Management
of Data, pp. 103–114.

 Tools in Artificial Intelligence

252

Zeng, H., J., Wang, X., H., Chen, Z., Lu, H., Ma, W., Y., (2003). CBC: Clustering Based Text
Classification Requiring Minimal Labeled Data. In Proceedings of the 3rd IEEE
International Conference on Data Mining (ICDM'03).

Zhou, D., Bousquet, O., Lal, T. N., Weston, J., Scholkopf, B.. (2003). Learning with local and
global consistency. In 18th Annual Conf. on Neural Information Processing Systems.

15

A Review of Past and Future Trends in
Perceptual Anchoring.
Silvia Coradeschi and Amy Loutfi

Örebro University
Sweden

1. Introduction
Anchoring is the problem of how to create, and to maintain in time the connection between
the symbol- and the signal-level representations of the same physical object. In particular
robotic systems with symbolic components need to solve the anchoring problem in order to
connect the information present in symbolic form with the sensor data that the robot obtains
from the physical world. Previously, solutions to the anchoring problem have been
implemented on a system by system basis and could therefore only be applied to restricted
domains. However, in recent years, the study of anchoring problem per se has gained an
increased interest and an attempt to frame the anchoring problem and provide a theoretical
groundwork to dealing with anchoring particularly on artificial systems have been
explored. The first definition of anchoring was in (Coradeschi & Saffiotti, 2000) and a
community working on anchoring has been established in a number of workshops and a
special journal issue (Coradeschi & Saffiotti, 2001;2003;2004). In this chapter, we present the
latest developments in anchoring and outline the future trends. In addition, a specific
framework is outlined and used as an example to illustrate the main challenges to be
addressed in perceptual anchoring.
The anchoring problem is concerned with the grounding of symbols that refer to specific
object entities such as “a cup” or even more specifically “cup-22”. Anchoring is not
concerned with the process of grounding general properties such as “blue” or general
concepts such as “difficult”. This is the symbol grounding problem (Harnad, 1990) and
anchoring is rather a subset of symbol grounding that is limited to physical objects.
Anchoring must take the flow of continuously changing sensor input into account to allow
for object persistence in time and space. Even though some properties of an object may
change while others remain static, the symbol-percept correspondence should remain intact
and should hold the current and updated information. This dynamic maintenance of
information differentiates anchoring from pattern recognition which for the most part does
not take into account this dynamic aspect or the presence of symbols. One way to consider
persistence is to have an internal structure which reifies the correspondence between
symbols and sensor data. Thus, many of the contributions in anchoring focus on this
internal representation and its formalism.

 Tools in Artificial Intelligence

254

2. Perceptual anchoring in robotics

Fig. 1. Examples of anchoring in robotics. (Left) A Robocup domain where similar objects
create ambiguities. (Right) Human robot interaction in a home environment where symbolic
references to objects are commonly used (photograph by courtesy of Federico Pecora).
Traditionally, anchoring can be seen as a process which creates a shared representation to
link several subsystems of an agent, such as the planner to the motion control. In bottom-up
approaches, the sensor data determines the initiation of an anchoring process, whereas top-
down approaches may initiate an anchoring process upon request. In robotic systems, a
number of key challenges are relevant for both bottom-up and top-down anchoring
processes. First, uncertainty and ambiguity arise when dealing with real sensors. For these
reasons, anchoring may need to consider a number of sub-processes or functionalities which
can handle uncertainties and also recover if incorrect decisions are taken. In addition,
symbolic descriptions eventually used to link to the perceptual data can be vague and
cannot be assessed in terms of a specific quantified sensor value. For instance the concept “a
large ball” where the concept large can refer to a range of values whose boundaries are not
well defined (Coradeschi et al, 2001). Ambiguous cases can also occur where perceptually
similar objects are equally valid candidates in the result of a request. In these cases, further
actions may be necessary to resolve the ambiguity (Karlsson et al., 2008). Further, to
facilitate human robot interaction, symbols are rarely used in isolation but rather as part of a
semantic network where ontological and common sense knowledge plays an important role.
As a result, symbolic descriptions may be subject to interpretation and need to handle or
cope with variances. For example in Fig. 1, an agent can receive a command to “find a ball”,
or “find the closest ball” using both definite and indefinite types of references. Further, in
scenarios where multiple agents are present, it is important to coordinate and achieve
consensus among agents so that a common anchoring is possible.

3. An example of an anchoring framework
Here we present an instantiation of an anchoring framework and its core functionalities that
illustrate how an anchoring modality works in a real robotic system. Other frameworks
have been explored and a discussion of these contributions is given at the end of this
section.
The anchoring framework here is based upon (Coradeschi & Saffiotti, 2000) and contains the
following main ingredients:
• A symbol system including: a set X = {x1, x2, …} of individual symbols (variables and

constants); a set P = {p1, p2, …} of predicate symbols; and an inference mechanism
whose details are not relevant here.

A Review of Past and Future Trends in Perceptual Anchoring.

255

• A perceptual system including: a set Π = {π1, π2, …} of percepts; a set Ф= {φ1, φ2, …} of
attributes; and perceptual routines. A percept is a structured collection of
measurements assumed to originate from the same physical object; an attribute φi is a
measurable property of percepts, with values in the domain Di.

• A predicate grounding relation g = P x Ф x D, that embodies the correspondence between
unary predicates and values of measurable attributes.

The perceptual system generates percepts and associates each percept with the observed
values of a set of measurable attributes and the symbol-percept correspondence is reified in
an internal data structure, called an anchor. Since new percepts are generated continuously
within the perceptual system, this correspondence is indexed by time.
At every moment t, α(t) contains: a symbol, meant to denote an object; a percept, generated
by observing that object; and a signature, a collection of property values meant to provide
the (best) estimate of the values of the observable properties of the object.
To handle anchors, we require functionalities able to create, maintain and remove anchors.

3.1 Creation of anchors
The creation of anchors can occur in both a top-down and bottom-up fashion. Bottom-up
acquisition is driven by an event originating from a sensing resource (e.g. the recognition of
a segmented region in an image) when perceptual information which cannot be associated
to any existing anchor is perceived. Top-down acquisition occurs when a symbol needs to be
anchored to a percept, such a call may originate from an external user or a top-level module
(e.g. planner).
Acquire
This functionality initiates a new anchor whenever a percept is received which currently
does not match any existing anchor. It takes a percept π, and return an anchor α , defined at
t and undefined elsewhere. To make this problem tractable, a priori information is given
with regards to which percepts to consider. In bottom-up acquisition, a randomly generated
symbol is attributed to the anchor. Furthermore, information about the object and its
properties are included into the world model used by the planner, in this way the object can
be reasoned about and acted upon.
Find
Takes a symbol x and a symbolic description and returns an anchor α defined at t (and
possibly undefined elsewhere). It checks if existing anchors that have already been created
by the Acquire satisfy the symbolic description, and in that case, it selects one. Otherwise, it
performs a similar check with existing percepts (in case, the description does not satisfy the
constraint of percepts considered by the Acquire). If a matching percept is found an anchor
is created. Matching of an anchor or percept can be either partial or complete. It is partial if
all the observed properties in the percept or anchor match the description, but there are
some properties in the description that have not been observed.

3.2 Maintenance of anchors
At each perceptual cycle, when new perceptual information is received, it is important to
determine if the new perceptual information should be associated to existing anchors. The
following functionality addresses the problem of tracking objects over time.
Track
The track functionality takes an anchor α, defined for t-k and extends its definition to t. The
track assures that the percept pointed to by the anchor is the most recent and adequate

 Tools in Artificial Intelligence

256

perceptual representation of the object. We consider that the signatures can be updated as
well as replaced but by preserving the anchor structure we affirm the persistence of the
object so that it can be used even when the object is out of view. This facilitates the
maintenance of information while the robot is moving as well as maintaining a longer term
and stable representation of the world on a symbolic level without catering to perceptual
glitches.

Fig. 2. Graphical illustration of the anchoring functionalities where bottom-up and top-
down information is possible and different sensing modalities are used (Louti et. al, 2005).

3.3 Deletion of anchors
By having an anchor structure maintained over time, it is possible to preserve the perceptual
information even if the object is not currently perceived (caused by the object being out of
view and/or by the inaccuracy in the measurement of perceptual data). The challenge is to
determine if the association of new percepts is justified or whether certain anchors should be
removed. Mechanisms for destroying invalid anchors need to be in place. This is a difficult
problem, because conceptually it is not clear when it is appropriate to remove anchors from
the system. Anchors could be removed if they are not relevant for the current task, because
the object to which it refers has been physically removed from the environment or the
reliability of the perceptual information has expired. Anchors may also need to be removed
if they have been associated to invalid perceptual data such as sensory glitches. We
currently adopt simple solutions in which objects that are not perceived when expected
decrease in a “life” value of the respective anchor. When the anchor has no remaining life,
the anchor is removed. The decreasing life of anchors is shown in Fig. 4. A more adequate
strategy to handle the maintenance of anchors may also be to include a “long term” memory
where anchors may be stored for future use.

3.4 Integration of the functionalities
The event-based functionalities are restricted to the Find and Acquire while the Track
functionality is regularly called. Fig. 4 shows an overview and an example of the framework

A Review of Past and Future Trends in Perceptual Anchoring.

257

and its functionalities. In the example in the figure, anchors are created bottom-up from the
visual percepts. Later, additional features of that object are required, for example, the
olfactory property. These features are stored in the anchor. When a top-down request is sent
to the anchor module to find a cup with matching properties denoted by the symbol “cup-
22”, the Find functionality anchors the symbol to the perceptual data.
As seen in the figure, properties can be collected at different time points using different
modalities. Even when certain perceptual properties are updated, such as the smell
property, which may change over time, other perceptual properties are maintained.
Conversely, if the visual percepts of an anchor are replaced, the smell property previously
obtained is not lost. In this way, the anchor is used to compensate for any dynamically
changing features of an object. Furthermore, the perceptual description of anchors can be
accessed by the planner to reason about perceptual knowledge. In certain cases, this may
result in specific calls to perceptual actions in order to disambiguate between similar objects.

3.5 Case study
Here we outline a brief example of how the anchoring module operates within a simple
corridor monitoring scenario. In each corridor there may be several objects, in this case
garbage cans. The robot automatically toggles between the task of patrolling the corridor,
inspecting objects and waiting for commands from the user. Patrolling the corridor involves
moving from corridor to corridor in a discovery for new objects and recognition of previous
objects. When an inspect is invoked, the robot visits each object collecting the odour
property. The inspect is usually autonomously invoked when new objects are detected.
The robot is equipped with several heterogeneous sensing modalities such as a camera,
sonar, tactile sensors, and an electronic nose. In this example, the modalities of interest are
the vision, and e-nose. The vision component is trained to detect any visual signal matching
garbage cans. For each found object we extract a number of properties such as color, size
and relative position using different heuristics. The collection of the properties belonging to
an object is called a percept.
The electronic nose component is able to classify odours providing a symbolic categorical
description (Loutfi et al., 2005). The robot is also able to localize itself within the corridor
using odometry and has a number of high level processes such as a planner which reasons
about actions and a plan executor which can monitor motion control.
Before we begin to outline the corridor example, let us first examine the structure of an
anchor. Fig. 3 shows two anchor structures that have been created bottom-up from a
segmented image. The anchoring module updates anchors such that at every moment t, α(t),
contains:
Name - For top-down anchors a name is a symbol denoting the object in the planner (e.g.,
Silvia's Cup). For anchors that have been created bottom-up the name is initially arbitrary.
Symbolic description In general a symbolic description is given in a top-down fashion,
however for bottom-up anchors the symbolic description may also be derived directly from
the perceptual information of the object. For example, the odour classification module may
populate the symbolic description with the linguistic odour name when classifying an odour
associated to a particular object.
Perceptual description The perceptual description is a vector which consists of the
important properties of the object such as position (relative and global), colour, shape, and
when available the odour signature.
In the figure the two anchors, Gar-36 and Gar-34, are visually similar however Gar-36
currently has an olfactory property. In the current implementation an anchor is “baptised”

 Tools in Artificial Intelligence

258

with the name of the percept which initially invoked the bottom-up process. As will be
shown in the next example, the percept may be updated but the anchor persists using the
tracking functionality.

(

: GAR-36
: ANCHOR-8
: ((SHAPE = GARBAGE)

)
: (<TR GAR-36 30 [KN
29 GREEN #1=GARBAGE L<1979,-173>~0 BL<1979,-
173>~0 :IN-ROOM CORR-2 :NEC 0.21000004 :LIFE
0.8]>)

ANCHOR

NAME

ID

SYMBOLIC-DESCRIPTION

PERCEPTUAL-DESCRIPTION

(COLOUR=GREEN)(SMELL=ETHANOL)

(ANCHOR

: GAR-34
: ANCHOR-6
: ((SHAPE = GARBAGE
CAN) (COLOUR=GREEN))
: (<TR GAR-35 30 [KN
29 GREEN #1#GARBAGE L<1958,347>~0
BL<1958,347>~0 :IN-ROOM CORR-2 :NEC 0.21000004
:LIFE 0.8]>

NAME

ID

SYMBOLIC-DESCRIPTION

PERCEPTUAL-DESCRIPTION

Fig. 3. (Left) Segmented image from the vision module observing two green garbage cans at
the center of the screen. (Right) The anchors created in a bottom-up manner for each object.
Gar-34 refers to the garbage can on the left of the image and Gar-36 refers to the garbage can
on the right.
In Fig. 4 The local space of the robot together with the visual image from the camera as well
as the creation, deletion and updating of anchors is depicted during a run through the
corridor. The figure contains four snapshots described as follows:

Fig. 4. The top row shows the camera images at different time points, the middle row shows
the activity at the anchoring level. Grey bars indicate anchors with olfactory properties. The
bottom row shows the corresponding local perceptual space given the changing
representation of visual percepts (Loutfi et. al, 2005).

A Review of Past and Future Trends in Perceptual Anchoring.

259

Scene 1 - The robot begins patrolling the corridor, two visual percepts are detected and two
anchors denoted by Gar-1 and Gar-2, are created. An inspect is performed and both anchors
obtain olfactory properties, shown in the Figure by the grey colouring. Since the anchors are
created in a bottom-up fashion their labels are arbitrary.
Scene 2 - As the robot continues its patrol, another object is inserted into the environment at
a later time. Note however, that the previous two anchors are still maintained by the track
functionality. Although the local space shows only the current percepts, the anchoring
module updates the link between the anchor Gar-1 and the percept Gar-27. A new anchor is
also created for the third object denoted by Gar-3 with visual percept Gar-24.
Scene 3 - The robot approaches the object in order to acquire its odour property and the result is
stored in the corresponding anchor. Some time later, the object is removed from the environment.
The life of the anchor slowly decreases when an expected percept is no longer detected.
Scene 4 - The anchor is removed from the system and unless it is perceived again, its
properties cannot be accessed by the find functionalities described above.
This simple scenario shows how the anchoring module is used to create an internal structure
which can then maintain the perceptual coherence of objects, considering each object has
both spatial and olfactory properties. Even when visual properties of anchors are being
updated, the stored smell property remains until a new odour character is acquired by the
next inspect action. The previous odour character is then stored in the odour repository.

3.6 Other approaches to anchoring
The example above illustrates the main theoretical ingredients necessary for an anchoring
module. In the literature, the study of anchoring per se has led to different approaches to
address the problem of maintenance and creation of the symbol-percept correspondence
referring to objects. Chella et. al, (2003) present a framework where conceptual spaces
(Gärdenfors, 2000) are used to combine in a unary formalism all features referring to a
specific object, and consequently the combination of the features referring to the object is a
single point inside the conceptual space. Similarly, Bonarini et al (2001) have also presented
an anchoring framework where concept layer is used to combine features while also using
previously established domain knowledge, from a “world modeller”. Modayil & Kuipers
(2007) examines unsupervised learning approaches to bootstrap an ontology of objects to
sensor input from a robot. Four multiple learning stages are combined in which an object is
first individualized, then tracked and described (using shape models) and finally
categorized. A collection of works have also extended the anchoring framework beyond the
traditional notion of physical objects and contends with: embodied interactions between the
robot and objects in the its environment (Chinellato et al, 2007), human movement (Fritsch
et al, 2003), actions sequences represented in situation calculus to dynamic properties of
objects using conceptual spaces (Chella et al. 2007), perceptually indistinguishable objects
(Santore & Shapiro, 2004).

4. Cooperative anchoring
In the previous sections, anchoring has only been considered in the context of single robotic
systems. In the case of multiple robotic systems with different and heterogeneous devices
cooperating, the anchoring problem undertakes a new complexity. In a distributed system,
individual agents may need to anchor objects from perceptual data coming either from
sensors embedded directly on the robot or information coming from other devices. Further,
agents each with its own anchoring module may need to reach a consensus in order to
successfully perform a task.

 Tools in Artificial Intelligence

260

Sensor fusion plays an important role for multi-agent or “cooperative” anchoring. A
cooperative anchoring approach based on the presented framework has been explored in
(LeBlanc & Saffiotti, 2008) which considers primarily the problem of fusing pieces of
information coming from a distributed system. In this work, both complex devices such as
mobile robots and simple devices contain pieces of information which may need to be fused
together in order to create a global notion of an anchor. Each agent maps items of
information into its own anchor space (inspired by Gardenfors’ conceptual spaces) where an
anchor space is a multi-dimensional domain such as colour, position, weight etc. The
individual anchor spaces are mapped into a shared anchor space and from within the
shared space information is compared and combined as needed. This is done using the
fuzzy intersection of n-dimensional fuzzy sets of the individual anchor spaces. Fig. 5 shows
a concrete example where a block is seen from two cameras and an RFID is acquired by an
RFID reader. The information is fused in a shared anchoring space using fuzzy sets.

Fig 5. Different elements in a scenario where a mobile robot and a camera mounted in a
ceiling detect a parcel and perform cooperative anchoring (courtesy of K. Leblanc, Leblanc
& Saffiotti, 2008).
Another proposed solution for dealing with multi-robot anchoring also extends single—robot
systems presented in the previous section. Bonarini et al, (2007) extend their framework to a
multi-agent case by combining the information from different agents in a global representation
at the conceptual level using a fusion model based on clustering techniques.
Decentralized approaches have also been considered in (Guirnaldo et al, 2004) where each
agent has its own anchoring module and broadcasts its anchors to other agents. In this
approach, agents have defined roles of leaders and followers and in case of conflict the
leader’s anchor is accepted, thus it is not clear how fusion would occur if two equally
ranked agents conflict. The challenge of achieving an agreement among agents about the
objects that are perceived is an open problem. The challenge of reaching an agreement has
been studied in the multi-agent community in (Goldman et al, 2007; Kararzyniak &
Pieczynska, 2006). Such work can form the basis for a system where agreement or consensus
can be achieved between multiple agents using decentralized anchoring.

A Review of Past and Future Trends in Perceptual Anchoring.

261

5. Anchoring for human robot interaction
Another emerging trend is to study the anchoring process that occurs together with human
operators and users. Anchoring is specially suited to HRI application since the symbolic
level has clear benefit while communicating with non-experts. Communicate about objects
is often central in HRI and such communication requires a coordinated symbol-percept link
between human and robot.

? (FIND-ANCHOR ’ANCH
’((SHAPE = GARBAGE) (COLOR = GREEN)))
- FOUND 2 CANDIDATES: PLEASE CHOOSE
- 1. GREEN GARBAGE LEFT BEHIND OF
RED BALL
- 2. GREEN GARBAGE RIGHT BEHIND OF
RED BALL
? 1
- REFORMULATING:
- (FIND-ANCHOR ’ANCH ’((SHAPE =
GARBAGE) (COLOR = GREEN) (LEFT-OF =
BALL-2) (BEHIND-OF = BALL-2)))
- FOUND: ((ANCHOR ANCH-1 ANCH ...))

Fig 6. Spatial Relations used to resolve ambiguous situations.
A dialogue system for human-robot collaborations is a particular instance of the anchoring
problem, when dialogue about physical objects is concerned. An example of such a dialogue
system is explored in (Kruijff & Brenner, 2007), there information about the object state as
well as a history of the object state is used to describe changes in a scene. An important
feature of this approach is that it considers descriptions that contain spatial relations among
the objects. Spatial relations are crucial when human describe and recognize objects. While
communication among devices can be based on coordinates this is not meaningful when the
communication is with humans. Further works on using spatial relations and computation
of spatial relations between anchors for human robot interaction was explored in (Melchert
et. al, 2007). In this work, the spatial relations were used to provide meaningful object
descriptions but also could facilitate human participation in the anchoring by using human
interaction in the disambiguation process between visually similar anchors. In Fig. 6, an
example is shown where a request to find a green garbage can is sent to the anchoring
system. The anchoring system cannot disambiguate between the two identical garbage cans
and ask the user if he means garbage can on the left and behind the red ball or the one on
the right. The user selects the first option and a new request containing the additional
information is sent to the anchoring module that succeeds in finding the object. The
returned descriptions for the spatial relations of objects present all possible relations of
objects. For cases of HRI it would be more beneficial to generate object descriptions with
salient and relevant information for the human users (Jordan & Walker, 2005) .
Other works which examine human participation in the anchoring process include (Yu &
Ballard, 2004). Here a learning approach is used where spoken names of objects are
grounded to image data representing the object. Similarly (Roy, 2005) explores a theoretical
framework for involving human participation in the grounding of language to both
perception and action using a manipulator robot.

 Tools in Artificial Intelligence

262

6. Anchoring in symbiotic robotic system
Symbiotic robotic systems are an emerging trend in robotics that combine many of the
ingredients in the previous two sections, namely many devices operating in parallel and
human users interacting with the system (Coradeschi & Saffiotti, 2006). The advantage of
the symbiotic robotic systems is that many of the current challenges in robots can be
circumvented, for instance localization can be helped by cameras on the ceiling and an id of
an object can be provided by en RFID tag. However, a symbiotic system require a solution of
the two anchoring problems just mentioned, that is, cooperative anchoring and anchoring in
cooperation with humans with the additional difficulty that the solutions should be
compatible and guarantee a coherent anchoring process. Consider as an example the
following scenario:

“Johanna, an elderly woman living alone in her apartment, has a medical condition
which affects her blood pressure. Suddenly, while cooking, Johanna feels faint and
must sit down. She signals to Emil, her domestic robot, and asks where she last left
her blood pressure medicine. Emil communicates with other devices in the home
and a camera in the bedroom detects a small bottle on the bedside table. To
recognize whether this is the correct medicine, the vacuum cleaner robot already
present in the bedroom, is sent to the bedside table. The bottle is successfully
recognized as Orvaten (used to treat Johanna’s hypotension) using the RFID reader
on the vacuum cleaner robot. Emil tells Johanna that the medicine is on the bedside
table and Johanna then asks Emil to fetch the medicine for her.”

In this scenario, the information from the camera and the RFID reader needs to be combined
to recognize the correct medicine and an anchor needs to be established that connects “the
blood pressure medicine of Johanna” with the sensor data corresponding to the object and
coming from the different devices. The position of the object is also stored and can be then
used by Emil to get the medicine. An important challenge in symbiotic systems is the
establishment of a shared ontology where concepts referring to objects are coherent between
agents, robots, pervasive devices and most importantly the human users. Such ontology
forms the basis of the communication among the participant in the anchoring process and
provides additional information that can be used in the anchoring process such as function
of objects, how different part of objects are related and classes and subclasses of objects. For
example, Orvaten is used to treat hypotension, is inside a bottle with an etiquette, and is a
subclass of medication. Generate object descriptions that are both meaningful to a specific
agent and salient to a task is also essential in systems where different actors are present. In
the scenario, the most useful description to Johanna is that the medicine is on the bedside
table; while Emil who fetches the medicine may need the actual color and shape of the bottle.
The study of anchoring within the symbiotic system has been examined in a few cases. In
Mastrogiovanni et al. (2007) a symbolic data fusion system for an ambient intelligent
environment is presented consisting of several cognitive agents with different capabilities.
Lopes et al. (2002) describe a way to utilize the KRR component for knowledge acquisition and
information disambiguation. Similarly, in (Melchert et al. 2007) we have also examined how
KRR system such as LOOM can be integrated into an anchoring framework in the context of
the symbiotic system for improved cooperation between devices and human users.

7. Conclusions
For artificial intelligence to be used as tools for robotic systems, it is important to be able to
capitalize on the work in symbolic AI systems. To accomplish this goal, it is necessary to

A Review of Past and Future Trends in Perceptual Anchoring.

263

connect the symbolic information to the sensory percepts from the robotic system. This
chapter has discussed this important aspect especially concerning the symbol-percept
correspondence referring to physical objects. This problem has been defined as the
anchoring problem and a number of examples of anchoring in practice have been given.
Furthermore, three emerging trends for anchoring has been highlighted: cooperative
anchoring, anchoring for HRI and anchoring in symbiotic robotic system where greater
symbolic processing is used and thus creating additional challenges for anchoring.

8. References
A. Bonarini, M. Matteucci, and M. Restelli. Anchoring: do we need new solutions to an old

problem or do we have old solutions for a new problem? In Proc. AAAI Fall
Symposium on Anchoring Symbols to Sensor Data in Single and Multiple Robot Systems,
2001.

A. Bonarini, M. Matteucci, and M. Restelli. Problems and solutions for anchoring in multi-
robot applications. Journal of Intelligent and Fuzzy Systems, 18:245–254, 2007.

A. Chella, M. Frixione, and S. Gaglio. Anchoring symbols on conceptual spaces: the case of
dynamic scenarios. Robotics and Autonomous Systems, 43(2):175-188(14), 2003.

A. Chella, H. Dindo, and I. Infantino. Imitation learning and anchoring through conceptual
spaces. Applied Artificial Intelligence, 21(4&5):343–359, 2007.

E. Chinellato, A. Morales, E. Cervera, and A. Del Pobil. Symbol grounding through robotic
manipulation in cognitive systems. Robotics and Autonomous Systems, 55(12):851–
859, 2007.

 S. Coradeschi, D. Driankov, L. Karlsson, and A. Saffiotti. Fuzzy anchoring. In Proc of the
IEEE Intl Conf on Fuzzy Systems, pages 111–114, Melbourne, AU, 2001.

S. Coradeschi and A. Saffiotti. Anchoring symbols to sensor data: preliminary report. In
Proc. of the 17th American Association for Artificial Intelligence Conf. (AAAI), pages
129–135, 2000.

S. Coradeschi and A. Saffiotti, editors. Anchoring Symbols to Sensor Data in Single and
Multiple Robot Systems: Papers from the AAAI Fall Symposium. AAAI Press,
Menlo Park, California, 2001.

S. Coradeschi and A. Saffiotti. An introduction to the anchoring problem. Robotics and
Autonomous Systems, 43(2-3):85–96, 2003.

S. Coradeschi and A. Saffiotti, editors. Robotics and Autonomous Systems, special issue on
Perceptual Anchoring. Elsevier Science, 2003.

S. Coradeschi and A. Saffiotti, editors. Anchoring symbols to sensor data. Papers from the
AAAI Workshop Technical Report WS-04-03. AAAI Press, Menlo Park, California,
2004.

S. Coradeschi and A. Saffiotti. Symbiotic robotic systems: Humans, robots, and smart
environments. IEEE Intelligent Systems, 21(3):82–84, 2006.

G. Cortellessa, A. Loutfi, and F. Pecora. An on-going evaluation of domestic robots. In Proc.
of the HRI-08 Workshop on Robotic Helpers, pages 87–91, Amsterdam, NL, 2008.

J. Fritsch, M. Kleinehagenbrock, S. Lang, F. Loemker, G. A. Fink, and G. Sagerer. Multi-
modal anchoring for human-robot-interaction. Robotics and Autonomous Systems,
43(2):133-147(15): 2003.

P. Gärdenfors. Conceptual Spaces: The Geometry of Thought. MIT Press, Cambridge,MA, 2000.

 Tools in Artificial Intelligence

264

C. Goldman, M. Allen, and S. Zilberstein. Learning to communicate in a decentralized
environment. Autonomous Agents and Multi-Agent Systems, 15(1):47–90, 2007.

S. Guirnaldo, K.Watanabe, and K. Izumi. Enhancing the awareness of decentralized
cooperative mobile robots through active perceptual anchoring. International Journal
of Control, Automation and Systems, 2:450–462, 2004.

S. Harnad. The symbol grounding problem. Physica D, 42:335–346, 1990.
P. Jordan and M. Walker. Learning content selection rules for generating object descriptions

in dialogue. Journal Artif. Intell. Res. (JAIR), 24:157–194, 2005.
L. Karlsson, A. Bouguerra, M. Broxvall, S. Coradeschi, and A. Saffiotti. To secure an anchor -

a recovery planning approach to ambiguity in perceptual anchoring. AI
Communications, 21(1):1–14, 2008.

R. Katarzyniak and A. Pieczynska. The outline of the strategy for solving knowledge
inconsistencies in a process of agents’ opinions integration. In 6th International
Conference Computational Science, Volume 3993 of Lecture Notes in Computer
Science, pages 891–894, 2006.

G. Kruijff and M. Brenner. Modelling spatio-temporal comprehension in situated human-
robot dialogue as reasoning about intentions and plans. In Symposium on Intentions
in Intelligent Systems, AAAI Spring Symposium Series, 2007.

K. LeBlanc and A. Saffiotti. Cooperative anchoring in heterogeneous multi-robot systems. In
Proc. of the IEEE Int. Conf. on Robotics and Automation (ICRA), Pasadena, CA, 2008.

L.S. Lopes. Carl: from situated activity to language level interaction and learning. In Proc.
Intl. Conf. on Intelligent Robots and Systems, pages 890–896, Lausanne, 2002.

A. Loutfi, M. Broxvall, S. Coradeschi, and L. Karlsson. Object recognition: A new application
for smelling robots. Robotics and Autonomous Systems, 52:272–289, 2005.

A. Loutfi, S. Coradeschi and A. Saffiotti. Maintaining Coherent Perceptual Information
Using Anchoring. In Proc. of the Nineteenth International Joint Conference on Artificial
Intelligence. 2005.

F. Mastrogiovanni, A. Sgorbissa, and R. Zaccaria. A distributed architecture for symbolic
data fusion. In Proceedings of 20th International Joint Conference on Artificial
Intelligence, Hyderabad, India, 2007.

J. Melchert, S. Coradeschi, and A. Loutfi. Knowledge representation and reasoning for
Perceptual anchoring. In 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), Patras, Greece, 2007.

J. Melchert, S. Coradeschi, and A. Loutfi. Spatial relations for perceptual anchoring. In
Proceedings of AISB’07, AISB Annual Convention, Newcastle upon Tyne, UK, 2007.

J. Modayil and B. Kuipers. Autonomous development of a grounded object ontology by a
learning robot. National Conference on Artificial Intelligence (AAAI-07), 2007.

D. Roy. Semiotic Schemas: A Framework for Grounding Language in the Action and
Perception. Artificial Intelligence, 167(1-2): 170-205, 2005.

J. Santore and S. Shapiro. Identifying an object that is perceptually indistinguishable from
one previously perceived. In Proceedings of the Nineteenth National Conference on
Artificial Intelligence, pages 968–969. 2004.

C. Yu and D. Ballard. On the integration of grounding language and learning objects. In
Proceedings of the Nineteenth National Conference on Artificial Intelligence, pages 488–
494, 2004.

16

A Cognitive Vision Approach to
Image Segmentation

Vincent Martin and Monique Thonnat
INRIA Sophia Antipolis Méditerranée, project-team PULSAR

France

1. Introduction
Image segmentation consists in grouping pixels sharing some common characteristics. In
vision systems, the segmentation layer typically precedes the semantic analysis of an image.
Thus, to be useful for higher-level tasks, segmentation must be adapted to the goal, i.e. able
to effectively segment objects of interest. Our objective is to propose a cognitive vision
approach to the image and video segmentation problem. More precisely, we aim at
introducing learning and adaptability capacities into the segmentation task. Traditionally,
explicit knowledge is used to set up this task in vision systems. This knowledge is mainly
composed of image processing programs (e.g., specialized segmentation algorithms and
post-processing’s) and of program usage knowledge to control segmentation (e.g., algorithm
selection and algorithm parameter settings).
In real world applications, when the context changes, so does the appearance of the images.
It can be due to local changes (e.g., shadows, reflections) and/or global illumination changes
(e.g., due to meteorological conditions). The consequences on segmentation results can be
dramatic. This context adaptation issue emphasizes the need of automatic adaptation
capabilities. Our first objective is to learn the contextual variations of images in order to
discriminate between different segmentation actions. The identification of the contexts will
lead to different segmentation actions as algorithm selection.
When designing a segmentation algorithm, internal parameters (e.g., thresholds or minimal
sizes of regions) are set with default values by the algorithm authors. In practice, it is often
up to an image processing expert to supervise the tuning of these free parameters to get
meaningful results. As seen in Figure 1, it is not clear how to choose the best parameter set
regarding the segmented images: the first one is quite good but several parts of the insect
are missing; the second one is also good, since the insect is well outlined, but too many
meaningless regions are also present. However, complex interactions between free
parameters make the behaviour of the algorithm fairly impossible to predict. Moreover, this
awkward task is tedious and time-consuming. Thus, the algorithm parameter tuning is a
real challenge. To solve this issue, our objective is threefold: first, we want to automate this
task in order to alleviate users’ effort and prevent subjective results. Second, the fitness
function used to assess segmentation quality should be generic (i.e. not application
dependent). Third, no a priori knowledge of segmentation algorithm behaviours is required,
only ground truth data should be provided by users.

 Tools in Artificial Intelligence

266

Fig. 1. Illustration of the problem of algorithm parameter tuning. An image is segmented
with the same algorithm (based on colour homogeneity) tuned with two different parameter
sets.

The very first problem of segmentation is that a unique general method still does not exist:
depending on the application, algorithm performances vary. This is illustrated in Figure 2
where two different algorithms are applied on the same image. The first one seems to be
visually more efficient to separate the ladybird from the leaf. The second one produces too
many regions not very meaningful. Basically, two popular approaches exist to set up the
image segmentation task in a vision system. A first approach is to develop a new
segmentation algorithm dedicated to the application task. A second approach is to
empirically choose an existing algorithm, for instance by a trial-and-error procedure. The
first approach leads to develop an ad hoc algorithm, from scratch, and for each new
application. The second approach does not guarantee adapted results and robustness. So, a
need exists for developing a new approach to the algorithm selection issue. When facing
different algorithms, this approach should be able to automatically choose the one best
suited with a segmentation goal and the image content.

Fig. 2. An example of the segmentation of an image with two different algorithms. The first
algorithm forms regions according to a multi-scale colour criterion while the second uses a
local colour homogeneity criterion.

Once all the algorithms have been optimized, a third issue is to select the best one. However,
when images of the application domain are highly variable, it remains quite impossible to
achieve a good segmentation with only one tuned algorithm. Our objective is to make use of
the extracted knowledge of context variations and parameter tuning to associate a
segmentation action to each identified context.
Finally, in many computer vision systems at the detection layer, the goal is to separate the
object(s) of interest from the image background. When objects of interest and/or image
background are complex (e.g. composed of several subparts), a low-level algorithm cannot
achieve a semantic segmentation, even if optimized. For this reason, a fourth issue is to
refine the image segmentation to provide a semantically meaningful segmentation to higher
vision modules.

A Cognitive Vision Approach to Image Segmentation

267

Our final objective in this chapter is to show the potential of our approach through a
segmentation task in a real-world application. The segmentation task we focus on is image
segmentation in a biological application related to early pest detection and counting. This
implies to robustly segment the objects of interest (mature white flies) from the complex
background (rose leaves). Our goal is to demonstrate that the cognitive vision system
coupled with our adaptive segmentation approach achieves a better detection rate of white
flies than tuned with an ad hoc segmentation.
This chapter is structured as follows. Section 2 introduces the reader to image segmentation
in the context of computer vision systems. We propose an overview on topics closely related
to our problem. Section 3 details each step of our learning approach. Section 4 shows how
the learnt segmentation knowledge is used to perform adaptive image segmentation. The
next section is dedicated to the validation of the approach for a real world application: the
segmentation step of a cognitive vision system dedicated to the recognition of biological
organisms in static images. Concluding remarks and suggestions for future work are
discussed in section 6.

2. Related work
In this section, we present some previous work related to image segmentation, segmentation
performance evaluation, algorithm parameter optimization and algorithm selection.

2.1 Image segmentation
Several surveys of segmentation techniques have been published. Three of them (Pal & Pal,
1993; Skarbek & Koschan, 1994; Lucchese & Mitra, 2001) review about 300 publications
giving a fair overview of the state-of-the-art in segmentation at the image-based processing
level. Pal and Pal (Pal & Pal, 1993) mainly evaluate algorithms for grey-valued images and
introduce three of the first attempts to exploit colour information. Skarbek and Koschan
(Skarbek & Koschan, 1994) concentrate their survey on colour image segmentation. They
classify the algorithms according to the underlying concepts of the homogeneity predicate
and identify four categories: pixel-based, area-based, edge-based and physics-based
approaches. Lucchese and Mitra (Lucchese & Mitra, 2001) also review exclusively colour
segmentation approaches and use a similar categorization: feature space based, image
domain based and physics based techniques. We can summarize these studies by making
some important remarks, closely akin to the conclusions of (Skarbek & Koschan, 1994) in
their survey:
1. General purpose algorithms are not robust and usually not algorithmically efficient.
2. All techniques are dependent on parameters, constants and thresholds which are

usually fixed on the basis of few experiments. Tuning and adapting parameters is rarely
performed.

3. As a rule, authors ignore comparing their novel ideas with existing ones.
4. As a rule, authors do not estimate the algorithmic complexity of their methods.
5. It seems that separating processes for region segmentation and for object recognition is

the reason of failure of general purpose segmentation algorithms.
6. Several different colour spaces are employed for image segmentation. Nevertheless, no

general advantage of one of the colour spaces with regard to the other colour spaces has
been found yet.

 Tools in Artificial Intelligence

268

2.2 Segmentation performance evaluation
Considering the increasing number of segmentation algorithms, the problem of performance
segmentation evaluation becomes a primordial task. Two reasons motivate this statement:
researchers must be able to compare their algorithm to other ones, and end-users must be
able to choose an algorithm depending on the problem to solve. Usually, segmentation
results are visually assessed by the algorithm’s designer, which only allows subjective and
qualitative conclusions on the algorithm performance. A generic method for the
segmentation evaluation task does not exist, but many approaches have been proposed and
can be classified into two principal classes: unsupervised methods and supervised methods
(see Figure 3). The first class gathers the methods which do not require any a priori
knowledge of segmentation results to evaluate. Their principle consists in estimating
empirical criteria based on image statistics. The second class groups together evaluation
methods based on a priori knowledge as a reference segmented image, usually named a
ground truth (GT). A good survey of all these methods can be found in (Zhang, 1996) and in
(Rosenberger et al., 2005).

Supervised
Methods

Empirical
Methods

Region-based
Segmentation

Edge-based
Segmentation

Manual
Segmentation

Synthetic
Image

Input
Image

Segmentation
Algorithm

Segmentation
Assessment Value

OR

OR OR

OR

A priori Knowledge

Fig. 3. Segmentation evaluation diagram starting from an input image and returning a
segmentation assessment value

2.2.1 Unsupervised methods
The major advantage of unsupervised methods is that they do not require the intervention
of an expert, just the definition of a metric of quality/discrepancy measure by the user is
needed. Thus, these methods are totally automatic. However, defining a metric that could
match all the segmentation objectives defined by the user is not a tricky task. Hence, quality
measures are at best heuristic, since no specific knowledge of object(s) to segment is
available. This tends to consider unsupervised performance evaluation method not very
pertinent. Among the variety of proposed discrepancy measures, we can cite the well-
known Rosenfield, Borsotti, Rosenberg or Charbrier criteria. A recent survey of these
unsupervised methods can be found in (Zhang, 2008).

A Cognitive Vision Approach to Image Segmentation

269

2.2.2 Supervised methods
Reference segmentations are achieved generally by hand or by generating synthetic images.
In the last case, the ground truth data are objective and precise, in the contrary of subjective
and imprecise hand-made expert drawing. These methods try to determine how far the
actually segmented image is from the reference image in a quantitative manner, e.g. based
on the number of misclassified pixels versus the reference segmentation. There are also a
variety of discrepancy methods for the supervised evaluation of image segmentation. Some
interesting ones can be found in (Yasnoff et al., 1977), (Everingham et al., 2002), and
(Mezaris et al., 2003). The use of a ground truth is double-edged: it makes this class of
methods potentially the most general and the less biased but this also supposes that ground
truths are easily available. From this study, it also clearly appears that multi-objective
methods yield better results than stand-alone methods (edge-based or region-based).
However, the manner to combine measures remains an issue.
If we take a look at the number of publications around the segmentation evaluation
problem, we can see that at present, this number is about one thousand concerning the
segmentation algorithms, one hundred concerning the evaluation methods, and does not
raise ten concerning the comparison of evaluation methods. If more efforts have been
recently put on segmentation evaluation, it is still difficult to define wide-ranging
performance metrics and statistics. Several explanations justify this limitation: (1) no
common mathematical model or general strategy for evaluation is available especially for
analytic methods; (2) no single evaluation can cover all aspects of segmentation algorithms;
(3) appropriate ground truths are hard to determine objectively. Then, to overcome such
limitations, potential research directions may explore methods combining multiple metrics
in an effective manner (e.g., using learning) and methods considering the final goal of the
segmentation.
Research is currently underway in terms of using these metrics as a mean to optimize
parameters within a segmentation algorithm or to select the best adapted algorithm. This
involves using an optimization procedure which is also a challenge in the context of image
segmentation. The next section discusses this issue.

2.3 Algorithm parameter optimization
In this section, we relate some work dealing with segmentation algorithm parameter
optimization. All the following approaches rely on three independent components: a
segmentation algorithm with its free-parameters to tune, a segmentation quality assessment
function and a global optimization algorithm as seen in Figure 4.
Researchers have experienced many segmentation optimization approaches during the last
decade. Almost all of the free derivative optimization techniques have been tested.
Interesting frameworks can be found in (Bahnu et al., 1995; Peng & Bahnu, 1998; Mao et al.,
2000; Cinque et al., 2002; Gelasca et al., 2003; Pignalberi et al., 2003; Abdul-Karim et al.,
2005). In the worst case, results of optimized segmentations are equivalent to the ones
obtained with default parameters. In most of the cases, segmentation quality is improved
and time spent to tune algorithms is drastically reduced. The authors present their
frameworks as generic by nature and then widely applicable. This affirmation is well-
founded in an analytical point of view since the three main components are considered
separately. Nonetheless, each described framework has been set up for a particular
segmentation task where the fitness function has been specifically elaborated for the

 Tools in Artificial Intelligence

270

application using implicit domain knowledge. Thereby, it has not been proved how the
fitness function can affect the performance of the optimization. Moreover, if authors have
often assessed their optimization methods against default segmentations, they did not make
any quantitative evaluation regarding to other optimization techniques. A comparative
study of optimization algorithms has to be done.

Segmentation Segmentation
Evaluation

Global
Optimization

Algorithm

Stop?

Updated Segmentation
Parameters

Image

Algorithm Parameter
 Space

Ground Truth*

yes

no

* in supervised evaluation

Fig. 4. The segmentation parameter optimization framework

2.4 Algorithm selection
In this section, we focus on the algorithm selection problem. Here, the goal is not to find the
best parameter setting but rather to find the most suitable algorithm among several ones for
a given segmentation task. Due to the still increasing number of algorithms, this problem
has taken a big interest during the last decade. Basically, researchers tackle the problem with
two different philosophies: model representation approach versus expert system approach.
In (Xia et al., 2005), the authors make the assumption that the choice of a segmentation
algorithm can be predicted from a global feature vector. In other words, this means that a
relationship between algorithm behaviours and global variations of image characteristic can
be established (by means of learning techniques). The principal drawback is that the training
process is imitated by the user assessment reliability. The task of visual algorithm ranking is
time-consuming and then hardly conceivable in the case of large image and algorithm sets.
As depicted by the authors, objective performance evaluation criteria (i.e. automatic) should
be investigated to free users from the tedious training stage. In (Zhang & Luo, 2000), the
authors propose a framework for automatic algorithm selection based on knowledge driven
hypothesis-and-test optimization model. An expert system is designed to use evaluation,
heuristic, and high-level knowledge (as a priori restrictions about domain dependent object
features) to segment an image with the best adapted segmentation algorithm.
Globally, the two approaches rely on strong hypothesis concerning their field of
applications: variations between images must be easy to model, algorithm behaviours
within the images must be well-established, and high-level knowledge of objects to segment
must be provided as a key-element of the performance evaluation. Actually, the lack of
theory on segmentation rules out these approaches to be universally applicable. Indeed,
application domains with image variations difficult to model disable the model
representation approach, and the expensive knowledge acquisition task needed to build

A Cognitive Vision Approach to Image Segmentation

271

expert systems limits their applicability. We can add that the model representation approach
appears to be more realistic in a computing point of view as compared to expert systems.

2.5 Conclusion
We have reviewed the segmentation task in the field of computer vision systems. If
researchers agree that segmentation is one of the fundamental problems in computer vision,
the efforts devoted to cope with this issue since the last four decades have still not led to a
unified solution. Most of the vision systems are application dependent and their
segmentation step is based on heuristic rules for, as example, the tuning of algorithm
parameters. It is, however, well-established that such a priori knowledge is determined by
domain experts from the context in which the segmentation takes place. Hence, the
generalization to other domain of application is strongly limited. Nonetheless, it appears
that the recent cognitive vision approach (ECVISION, 2005) has identified some avenues of
researches to cope with these limitations, as integration of machine learning techniques into
the knowledge acquisition task.

3. Supervised learning for image segmentation
In this section, we present our cognitive vision approach to image segmentation. We have
defined in section 1 the expectations of the segmentation task in computer vision systems
(context adaptation, algorithm selection and tuning). We have seen in section 2 that these
challenging issues have been tackled by many different approaches. Our goal is to propose a
methodology that takes the best of each approach.
In the context of cognitive vision, we propose a framework with a reusability property to
ease the set up of the segmentation task in vision systems. More precisely, our framework
does not require image segmentation skills: the complexity of this tricky task is hidden by
means of automatic algorithm parameter tuning and segmentation assessment. Moreover,
the acquisition of the segmentation knowledge is made convenient by user-friendly
interactivity. The second property of cognitive vision we are aiming at is the property of
genericity. In our framework, the different components are not application dependent.
Consequently, this framework can be used with different segmentation algorithms and for
different real-world applications. The third cognitive property of our framework is its
adaptation faculty to image content and to application needs. To this end, we use learning
techniques for context adaptation, algorithm selection and parameter tuning.

3.1 Overview
Our framework consists of two stages: a learning stage and an adaptive segmentation stage.
The framework relies on training data composed of manual segmentations of the training
images with semantic region annotations. The learning stage extracts the segmentation
knowledge from the training data by means of:
• a data mining module to extract and learn contextual variations,
• an optimization procedure for automatic segmentation parameter tuning,
• a learning module for context adaptation (i.e. to associate a segmentation action to each

identified context),
• a learning module for semantic segmentation; the goal is to train region classifiers with

respect to the annotated manual segmentations of the training images.

 Tools in Artificial Intelligence

272

The learning stage is sketched in Figure 5. The module for adaptive image segmentation
relies on the learnt segmentation knowledge. It will be described in section 4. The following
sections details each step of the learning stage.

Training
Image Set

Segmentation
Algorithms

Ground Truth
Data

Learning
Module

Learnt Clusters
of Training Images

Learnt Algo
Parameters

Trained Region
Classifiers

Segmentation
Knowledge Base

Fig. 5. The learning module for adaptive image segmentation.

3.2 Data mining for learning image contextual variations
Our strategy for algorithm selection is to tackle the problem a priori of the segmentation. In
this case, the goal is not to directly select the algorithm depending on its relative
performance evaluation but depending on the image to segment. Usually, variations
between images lead to a variability in the segmentation. As a consequence, similar images
should be segmented with the same algorithm and different images should be segmented
with different algorithms or different parameter settings. These variations can be induced by
changes in background appearance, changes in illumination source, or changes in imagery
device configuration. The goal is to identify the different situations leading to different
segmentation configurations. To this end, we define the context of an image as the
quantitative representation of its local and global characteristics. Practically, the context is
described by a d–dimensional feature vector v(I) extracted from the whole image (e.g., a
colour histograms). In our experiments, we have used a Density-Based Spatial clustering
algorithm called DBScan proposed by Ester et al. (Ester et al., 1996) to identify the image
clusters. This algorithm is well-adapted for clustering noisy data of arbitrary shape in high-
dimensional space as histograms. Starting from one point, the algorithm searches for similar
points in its neighbourhood based on a density criterion to manage noisy data. Non
clustered points are considered as ‘noise’ points. The runtime of the algorithm is of the order
O(n log n) with n the dimension of the input space. DBScan requires only one critical input
parameter, the Eps-neighbourhood, and supports the user in determining an appropriate
value for it. A low value will raises to many small clusters and may also classify a lot of
points as noisy points, a high value prevents from noisy point detection but produces few
clusters. A good value would be the density of the least dense cluster. But it is very hard to
get this information on advance. Normally one does not know the distribution of the points
in the space. If no cluster is found, all points are marked as noise. In our approach, we set
this parameter so as to have at the most 15% of the training images classified as ‘noise’ data.
We denote κ a cluster of training images belonging to the same context θ. The set of the n
clusters is noted { }nκκ ,,1 …=Κ and the corresponding context set { }nθθ ,,1 …=Θ . Once the
clustering is done, the internal data structures (here R-trees) and the DBScan parameters
(Eps-neighbourhood, cluster IDs, etc.) are learnt.

A Cognitive Vision Approach to Image Segmentation

273

3.3 Learning for segmentation parameter tuning
In this section, we detail our parameter optimization framework. The goal is to optimize the
parameterisation of segmentation algorithms according to ground truth segmentations of
the training images. For this task, the user must provide:
1. Manual segmentations of the training images with closed outlined regions.
2. Segmentation algorithms with their free parameters, i.e. the sensitive parameters to be

tuned, as well as their range values. This kind of knowledge is often given by the
algorithm’s author.

3.3.1 Formalization of the optimization problem
Let I be an image of the training image set ℑ, GI be its ground truth (e.g. a manual
segmentation), A be a segmentation algorithm and pA vector of its free parameters. The
segmentation of I with algorithm A is defined as A(I, pA). We define the segmentation
quality A

IE with the assessment function ρ as follows:

 ()()I
AA

I GpIAE ,,ρ= (1)

The value A
IE is an assessment value of the matching between the segmentation and the

ground truth. This can be goodness or a discrepancy measure.
The purpose of our optimization procedure is to determine a set of parameter values A

Ip̂
which minimizes/maximizes:

 ()()I
A

p

A
I GpIAp

A
,,maxmin/argˆ ρ= (2)

The final assessment value A
IÊ and the optimal parameter set A

Ip̂ make a pair sample noted

()A
I

A
I Ep ˆ,ˆ . This pair forms the segmentation knowledge for the image I and the algorithm A.

The set of all collected pairs constitutes the segmentation knowledge S set such that:

 ()∪
ℑ∈

=
I

A
I

A
I EpS ˆ,ˆ (3)

One key-point of this optimization procedure is the definition of the assessment function ρ.
The quality of the final result varies according to this fitness function. The choice of a
segmentation performance evaluation metric is hence fundamental. It is discussed in the
next section.

3.3.2 Definition of the segmentation performance evaluation metric
As stated in section 2.2, it is not obvious to select a performance evaluation metric because
no single metric can cover all aspects of segmentation algorithms. We propose to use a
boundary-based metric and to evaluate the segmentation in terms of both localization
accuracy and the shape accuracy of the extracted regions. The biggest advantage of
boundary-based metrics against region-based metrics is their lower computational cost. It is
always faster to count and compare some boundary pixels than a lot of region pixels. This
metric is broadly usable since it mainly relies on generic concepts (false and missed
boundary pixel rates).
The region boundary set for the ground truth and for the segmentation result are noted G

IB
and A

IB respectively. Two types of errors are considered: missing boundary rate B
me and

 Tools in Artificial Intelligence

274

false boundary rate B
fe . The former, B

me , specifies the percentage of the points on G
IB that are

mistakenly classified as non-boundary points; while the latter, B
fe , indicates the percentage

of the points in A
IB that are actually false alarms. Therefore,

G
I

B
m B

T
e 1= and

A
I

B
f B

T
e 2= (4)

where

() (){ }A
I

G
I BxBxxT ∉∧∈= |1

And () (){ }G

I
A
I BxBxxT ∉∧∈= |2

 (5)

and |.| is the cardinal operator.
We define the segmentation quality A

IE with the assessment function as follows:

 () ()B
f

B
m

G
I

A
I

A
I eeBBE +==

2
1,ρ (6)

with []0,1A
IE ∈ .

The value 0A
IE = indicates perfect boundary pixel matching between the segmentation

result and the ground truth when using algorithm A. The value 1A
IE = indicates that all

pixels are misclassified. However, it is easy to show that this metric comes up against
unsuited response to under-segmented results, as illustrated in Figure 6. Segmentation in
panel (a) shows two regions with a quite good ground truth overlap, only three pixels are
misclassified. In the panel (b), the segmentation shows only one region and
the quality score is logically less than in (a). In the last panel (c), two regions are present but
the centre region badly overlaps the corresponding ground truth centre region. In
opposition with visual assessment, the segmentation quality is worst than in Figure 6(c).

Ground truth boundary pixel

Detected boundary pixel

 Pixel

(a)

063.0
47
3

,
48
3

=

==

A
I

B
f

B
m

E

ee
(b)

125.0
36
0,

48
12

=

==

A
I

B
f

B
m

E

ee
(c)

304.0
56
20,

48
12

=

==

A
I

B
f

B
m

E

ee

Fig. 6. Limitation of the segmentation evaluation metric when weighting terms (B

mw and B
fw)

are not used.

A Cognitive Vision Approach to Image Segmentation

275

The metric is improved by introducing two weighting terms B
mw and B

fw which quantify the

average distance between misclassified points to the ground truth boundary such that:

 ()
11

1 ˆ,B A
m I

x T
w dist x x

T ∈

= ∑ (7)

with A
Ix̂ the closest pixel to x belonging to A

IB , and

 ()
22

1 ˆ,B G
f I

x T
w dist x x

T ∈

= ∑ (8)

with G
Ix̂ the closest pixel to x belonging to G

IB ; ()21 , xxdist is the Euclidean distance
between two pixels x1(u,v) and x2(u,v) in a 4-neighbourhood such that:

 () () ()2 2

1 2 1 2 1 2, () () () ()dist x x x u x u x v x v= − + − (9)

Since B
mw and B

fw have no fixed upper bounds, the normalization factor is useless and the

segmentation quality measure becomes:

A
IE = B

m
B
m ew × + B

f
B
f ew ×

 = ()∑
∈ 1

ˆ,1
Tx

A
IG

I

xxdist
B + ()∑

∈ 2

ˆ,1
Tx

G
IA

I

xxdist
B

 (10)

The search of A
Ix̂ (resp. G

Ix̂) is made easier by the use of a distance map (Maurer &
Raghavan, 2003) computed from A

IB (resp. G
IB). This operation is exemplified in Figure 7.

By taking back the example in Figure 6 with the new definition of the evaluation metric, the
values of A

IE for the cases (a), (b), and (c) are respectively 0.168, 0.75, and 0.679, yielding a
good correlation with a visual assessment.

(a) region-based
segmentation composed of 2

regions

(b) region boundary
representation of the
segmentation in (a)

(c) distance map of (b), the grey-
level value of a pixel represents

the Euclidean distance to the
nearest boundary pixel

Fig. 7. An example of a distance map from a binary contour segmentation.

 Tools in Artificial Intelligence

276

Once our performance evaluation metric is defined, the goal is now to minimize the
segmentation error A

IE in order to learn optimal segmentation parameters. This is the role of
our closed-loop global optimization procedure.

3.3.3 Choice of the optimization algorithm
Of primary importance in this optimization procedure is finding an optimal segmentation
parameter setting A

Ip̂ for each ℑ∈I . We also aim at providing a good evaluation study of
the tested optimization techniques in terms of performance versus computational cost and
parameter setting. In the family of free derivative techniques, we propose the following
criteria to assess the optimization algorithms:
1. Since the segmentation of an image is the most expensive process in the optimization

loop, the number of maximum segmentation algorithm calls might be set as a
parameter. Indeed, even if the ultimate goal of an optimization procedure is to find a
global optimum, the computational cost should remain realistic.

2. The optimization algorithm must be able to converge whatever the evaluation profile,
i.e. robust enough to find (quasi-)global optimum of various non-smooth functions.

3. The final quality of the optimization procedure should no be too dependent of the
tuning of the optimization algorithm parameters, whatever the segmentation algorithm.

We have seen in our survey (see section 2.3) that several optimization techniques have been
applied to tackle the segmentation optimization problem. Although all of them are suitable
with our problem, no comparative study exists to help us in our choice. Thus, we have
decided to focus on two techniques which are worth being compared. The first one is the
Simplex algorithm (Nelder & Mead, 1965) and the second is a standard genetic algorithm
(Goldberg, 1989) using non-overlapping populations and optional elitism. In one hand,
simplex is easy to use, fast to converge, but requires to define a initializing strategy (starting
point(s) and starting step) and do not guarantee to find a global optimum. In an other hand,
genetic algorithms are robust but are slower to converge and their parameters must be set
carefully.
After all pair samples ()A

I
A
I Ep ˆ,ˆ have been extracted for all segmentation algorithms to test,

the next step is to select and tune the one(s) which will be learnt for each identified context.
The following section discusses our learning strategy for context adaptation.

3.4 Learning for context adaptation
The previous parameter optimization step allows us to objectively compare the
segmentation algorithms with regards to their best performance scores. A straightforward
strategy for the selection of an algorithm is thus to take the first best. Nevertheless, the
problem becomes more difficult when the training images are heterogeneous, due for
instance to global or local variations in the background. In this case, one segmentation
algorithm could be the best adapted for the segmentation of a training image subset and
another one for another subset. We propose to tackle this problem by associating one
algorithm per subset. More precisely, we propose to rank the segmentation algorithms for
each previously identified context. The context adaptation strategy can be formalized as
follows:

)ˆ,()(

:
A

d

pAIv
SRf

6
→ (11)

A Cognitive Vision Approach to Image Segmentation

277

However, it is impossible to continuously predict the algorithm behaviour according to
image variations and therefore the function cannot be seen as a regression model. Our
approach is to tackle this modelling problem by applying an unsupervised clustering of the
training images to identify the different contexts, i.e. clusters of images having similar
feature vectors. Then, for each cluster (i.e. images of the same context), segmentation
algorithms are ranked and the best one is learnt. The best algorithm is the one performing
the best average performance on the cluster. For each algorithm, a mean parameter set is
computed as follows:

1 ˆ

A

A A
I

IA

p p
∈ℑ

=
ℑ

∑ (12)

where ℑA is the subset of training images for which the algorithm A has obtained the best
evaluation results among the other algorithms. Finally, for each training image of the cluster
and each algorithm A tuned with Ap , the segmentation quality is computed again. The
algorithm having the best average performance on the training image set is finally selected.
We obtain a discrete function F taking a context identifier θ as input and returning an
algorithm A with a mean parameter setting Ap such as:

:

(,)A

F S
A pθ

Θ→

6
 (13)

This selection strategy comes to select the robustest algorithm based on objective
comparisons, i.e. the algorithm which can deliver the best results for the cluster with a
globally relevant parameter set. However, this straightforward ranking approach has two
major drawbacks. First, by selecting only one algorithm and averaging its parameters, it
reduces the previously extracted segmentation knowledge amount to one mean case.
Second, even if the selected algorithm over performs the others in most of the cases, the
parameter averaging can have disastrous effects on the algorithm performance.
The principal purpose of this strategy is to overcome the drawbacks of a pure global ranking
strategy by dividing the solution space and by restricting the ranking process onto each
subspace. The main advantage on ranking algorithms inside a subspace is that evaluation
profiles are likely more correlated.
In this section, we have shown that the algorithm selection problem cannot be separated
from the parameter tuning problem. This statement means that a solution to the algorithm
selection issue is composed of both an algorithm and a parameter setting. We have
described our twofold strategy for learning the algorithm selection based on image-content
analysis and algorithm ranking. Starting from a training image set and segmentation
algorithms, our approach first identifies different situations based on image-content
analysis, then select the best algorithm with a mean parameter set for each identified context
based on optimized parameter values. At the end of the learning process, contexts are learnt
with their associated pairs ()ApA, .

3.5 Learning for semantic image segmentation
In this section, we propose an approach for semantic image segmentation based on high-
level knowledge acquisition and learning. Even if the segmentation is optimized, low-level

 Tools in Artificial Intelligence

278

segmentation algorithms cannot reach a semantic partitioning of the image. Thus, compared
to the ground truth, some regions remain over-segmented, as illustrated in Figure 8. If we
can assign the right label to each region, neighbouring regions with similar labels are
merged and, as a consequence, the residual over-segmentation becomes invisible. This
means to be able to map region features onto a symbolic concept, i.e. a class label. We use
the example-based modelling approach as an implicit representation of the low-level
knowledge. This approach has been applied successfully in many applications such as
detection and segmentation of objects from specific classes e.g., (Schnitman et al., 2006;
Borenstein & Malik, 2006). Starting from representative patch-based samples of objects (e.g.,
fragments), modelling techniques (e.g., mixture of Gaussian, neural networks, naive Bayes
classifiers) are implemented to obtain codebooks or class-specific detectors for the
segmentation of images. Our strategy follows this implicit knowledge representation and
associates it with machine learning techniques to train region classifiers. The following sub-
sections describe this stage in details.

(a) original image (b) ground truth (c) segmentation with
default parameters

(d) segmentation with
optimized parameters

Fig. 8. An example of a parameter optimization loop. The final result (d) is not perfect since
some regions are over-segmented with respect to the ground truth (b).

3.5.1 Class knowledge acquisition by region annotations
In our case, region annotations represent the high-level information. This approach assumes
that the user is able to gather, in a first step, a representative set of manually segmented
training images, i.e. a set that illustrates the variability of object characteristics which may be
found. Then, the user must define a domain class dictionary composed of k classes as

{ }kyyY ,,1 …= . This dictionary must be designed according to the problem objectives. For
instance, y1 = background class, y2 = object class #1, and so on. Once Y is defined, the user is
invited, in a supervised stage, to label the regions of the manually segmented images with
respect to Y. From a practical point of view, an annotation is done with the help of a
graphical user interface we have developed. This tool allows interacting with a region-based
segmentation of an image by clicking into a region and by selecting the desired class label y
(see Figure 9).
At the end of the annotation task, we obtain a list of labelled ground truth regions which
belong to classes defined by the user. Since the segmentation result is not exactly the same
than the manual segmentation, the next step is to map, for each training image, the labels of
ground truth regions onto the regions of the region map A

IR resulting from the segmentation
of the image I with the selected algorithm A tuned with the parameter set Ap , as described
in section 3.4. The mapping is done by majority overlap such as for each region A

IRr∈ ,

A Cognitive Vision Approach to Image Segmentation

279

Fig. 9. Region annotations with the developed graphical tool.

0

max ()| arg max ,
()

,

i r

h ry i H if T
ry r

y else

⎧ = >⎪= ⎨
⎪
⎩

 (14)

with |r| the number of pixels of the region r, T a threshold, and
{ })(,),(,),()(1 rhrhrhrH ki ……= the label histogram of the region r such that for a pixel u and

a label yi, { } kiyuyrucardrh ii ,,1,)(|)(…∈=∈= .
If the ratio of the most represented class in the region does not reach the threshold T (here
fixed at 0.8), the region label is set to Yy ∉0

. This prevents from labelling badly segmented
region as sketched in Figure 10.

Labelled Ground Truth
(2 regions)

Segmentation Result
(5 regions)

Superposed Segmented Regions and
Pixel Labels from Ground Truth Mapping Result

Pixel not Labelled
Pixel of Class #1
Pixel of Class #2

Fig. 10. Example of the mapping between a labelled ground truth regions and segmented
regions.

 Tools in Artificial Intelligence

280

We also denote the set of all region annotations

 { }0() | ()
A
II r R

RA y r y r yℑ
∈ℑ ∈

= ≠∪ ∪ (15)

and the set of all annotated regions Rℑ such as:

 { }0| ()
A
II r R

R r y r yℑ
∈ℑ ∈

= ≠∪ ∪ (16)

for each region, a feature vector x(r) is extracted and makes with the label a pair sample
noted ())(),(ryrx . The set of all collected pair samples from ℑ constitute the training data set
such as:

 (){ }0(), () | ()
A
II r R

T x r y r y r yℑ
∈ℑ ∈

= ≠∪∪ (17)

Tℑ represents the knowledge of the semantic segmentation task and is composed, at this
time, of raw information. In the following section, we address the problem of knowledge
modelling by statistical analysis.

3.5.2 Segmentation knowledge modelling
The first step towards learning statistical models from an image partition is to extract a
feature vector from each region. But which low-level features are the most representative for
a specific region labelling problem? In more general terms, which features are useful to
build a good model predictor? This fundamental question, referring to the feature selection
problem, is a key issue for most of the class-based segmentation approaches.
Feature Extraction
When defining a set of features for classification problems, two approaches can be
considered: a first approach aims at building relevant feature sets, while a second approach
more focus on the usefulness of each feature. In the first case, the choice of relevant features
mostly relies on knowledge of the domain. In the second case, the goal is clearly to select
features useful for building a good predictor, even if some relevant features may be
excluded. We propose a trade-off approach: starting from heuristically selected features we
aim at training robust region classifiers. To this end, we combine generic features, such as
colour and texture and apply a feature selection algorithm.
In our approach, colour histograms represent the colour information of each segmented
region. Two parameters must be set: the colour space (cs) as RGB, HSV, or XYZ, on which
the histograming is applied, and the quantization parameter q which defines the number of
bins. In our approach, we do not state a priori the relevance of one colour space against
others as well as the best quantization level. We rather consider these variables as
parameters of the feature selection problem.
Texture feature extraction techniques have received considerable attention during the past
decades and numerous approaches and comparative studies have been presented (Reed &
du Buf, 1993). The most commonly used are the grey-level co-ocurence matrices introduced
by Haralick (Haralick, 1979), the Law’s texture energy (Laws, 1980), and the Gabor multi-
channel filtering (Jain & Farrokhnia, 1991). For the characterization of texture, we use
oriented Gaussian derivatives (OGD) to generate rotation invariant feature vectors. OGD are

A Cognitive Vision Approach to Image Segmentation

281

equivalent to the Gabor features but are computationally simpler. The basic idea is to
compute the energy of a region as a steerable function. This energy is computed for different
power channel, which are the result of convolving the region pixels with OGD filters of a
specific order. As colour histograms, texture feature vectors depend on the parameter q.
The final feature vector representing a region is a concatenation of the feature vectors
extracted from each cue. The feature extraction process is applied on each region of the
annotated regions set Rℑ so as to build the training data set Tℑ.
Following our cognitive approach of the segmentation problem, we need to avoid manually
selected and tuned algorithms. At the feature selection level, this means to be able to
automatically select and tune the feature extraction algorithm.
Feature Selection
The feature selection is used to reduce the number of features, remove irrelevant,
redundant, or noisy data, and it brings the immediate effects of speeding up and improving
the prediction performance of learning models. Since feature selection is a fertile field of
research, we refer the reader to surveys (Guyon & Elisseeff, 2003; Kohavi & John, 1997;
Blum & Langley, 1997) as good starting literatures. The optimality of a feature subset is
measured by an evaluation criterion. Feature selection algorithms designed with different
evaluation criteria broadly fall into two categories: the filters and the wrappers. Filters select
subsets of features as a pre-processing step, independently of the chosen predictor. Well-
known methods dedicated to this purpose are basic linear transforms of the input features
like Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (LDA).
Techniques based on iterative search are also widespread as sequential forward/backward
algorithms (e.g. SFFS, SBS, ReliefF). Wrappers utilize the learning machine of interest (e.g.,
SVM, neural networks) as a black box to score subsets of features according to their
predictive power. Consequently, wrappers are remarkably universal and simple. An
interesting comparative study of such feature selection algorithms can be found in (Molina
et al., 2002).
The feature selection approach we propose is derived from wrappers. Our goal is to find the
best feature extractor configuration which minimizes the joint classification errors of the
class predictors applied on the training data set Tℑ. Unlike classical approaches, we act on
the feature extractor parameters to generate different feature vectors, instead of reducing the
feature vector itself. This approach is sketched in Figure 11. The two free parameters of our
selected feature extractors are the colour space encoder for colour feature extractor, and the
quantization level for both colour and texture feature extractors. The goal is to find the best
combination able to induce the minimum region classification errors. The quality estimation
is conducted via a cross-validation procedure which gives, for each region classifier, the
classification Mean Square Error (MSE). A global MSE is then computed by averaging the
MSE of each region classifiers.

Region Feature
Extraction

Region Classifiers Training

Stop?

Updated Feature Extractor Parameters

Optimal
Feature

Extractor

Training
Image Set

yesTraining Data
Set Building Cross-ValidationPredictor

Training

no

Fig. 11. Feature selection schema based on tuning of the feature extractor parameters.

 Tools in Artificial Intelligence

282

We use an iterative search strategy to cover the value spaces of the two parameters q and cs.
This technique guarantees to find a global optimal solution but is computationally
expensive: first, it requires to run M x N x O region classifier training procedures, with M
the number of quantization levels (typically equals to 256), N the number of color spaces,
and O the number of classifiers to train; second, when the value of q increases, so does the
size of the feature vector. So, to avoid an unreasonable computational time, the choice of the
training algorithm must take into account this computational constraint.
Training Algorithm for Class Modelling
After extracting a feature vector for each region of the training data set, the next step is to
model the knowledge in order to produce region classifiers (one classifier per class). For a
feature vector x(r) and a class yi,

 ()() () | ()i ic r p y r y x r= = (18)

with []1,0)(∈rci
 is the estimated probability associated with the hypothesis: ‘’feature vector

x(r) extracted from region r is a representative sample of the class yi’’. The set of these
trained region classifiers is noted { }kccC ,,1 …= .
A variety of techniques have been successfully employed to tackle the problem of
knowledge modelling such as naives Bayes networks, decision trees or support vector
machine (SVM). We propose to use SVM (Burges, 1998) as a template-based approach. SVM
are known to be efficient discriminative strategies for large scale classification problems
such as in image categorization (Chen & Wang, 2004) or object categorization (Huang &
LeCun, 2006). SVM yields also state-of-the-art performance at very low computational cost.
SVM training consists of finding an hyper-surface in the space of possible inputs (i.e. feature
vectors labelled by +1 or -1). This hyper-surface will attempt to split the positive samples
from the negative samples. This split will be chosen to have the largest distance from the
hyper-surface to the nearest of the positive and negative samples.
We adopt a one-vs-rest multi-class scheme with probability information (Wu et al., 2004) to
train one region evaluator per class. We use SVM with radial basis function as region
classifiers. There are two parameters while using RBF kernels: C (penalty parameter of the
error term) and γ (kernel parameter). It is not known beforehand which C and are the best
for one problem; consequently some kind of model selection (parameter search) must be
done. To fit the C and γ parameters, we adopt a grid-search method using 5-fold cross-
validation on training data. Basically, pairs of (C, γ) are tried and the one with the best cross-
validation accuracy is picked. This straightforward model selection efficiently prevents
over-fitting problems. The model selection is wrapped in the feature selection schema with
which it shares the cross-validation step. The training stage ends up when all combinations
of ((q,cs),(C, γ)) have been tested. The one giving the lowest global classification error is
picked and the region classifiers are trained a last time with this configuration.

3.6 Conclusion
In this section, we have presented our learning approach for adaptive image segmentation.
We have detailed each step of the learning module for context adaptation, algorithm
parameter tuning, and semantic image segmentation. The algorithm parameterisation issue
is tackled with a generic optimization procedure based on three independent components.
We have designed our performance evaluation metric to be broadly applicable and with a
low computational cost. It allows assessing a large variety of segmentation algorithms and

A Cognitive Vision Approach to Image Segmentation

283

only relies on manual segmentations. However, further experiments need to be done to
assess the performance and the accuracy of the two optimization algorithms (the Simplex
algorithm and a Genetic Algorithm). The final step of the learning module is to train region
classifiers to refine the segmentation according to semantic region labelling. In this task, the
user must annotate the regions of the manually segmented images with class labels. Our
approach is based on the discriminative power of the SVM Classifiers to ground low-level
region features into symbolic classes. We have also proposed an unsupervised method for
the learning of SVM and region feature extractor parameters. The goal is to optimize the
performance of the classifiers without the help of the user.

4. Adaptive image segmentation
The originality of our approach is to combine bottom-up segmentation and a top-down
process of region labelling in a complementary manner: in a first step, segmentation is
optimized by dynamic algorithm selection and parameter tuning. Then, the bottom-up
segmentation is refined thanks to region labelling to achieve the expected semantic
segmentation. A new image (i.e. not belonging to the training set) segmentation is achieved
by the adaptive image segmentation module in four steps (see Figure 12) using the
segmentation knowledge base (learnt clusters of training images, learnt parameters, and
trained region classifiers):
1. Context Prediction: a global feature vector is extracted from the image. The feature

vector is classified among the previously identified clusters. The classification is
obtained by assessing the distance of the feature vector to the cluster centres.

2. Algorithm selection: from the identified context, the corresponding segmentation
algorithm with learnt parameters is selected.

3. Bottom-up segmentation: the image is segmented using the selected algorithm. This
algorithm is tuned with the learnt parameters specific to the identified context.

4. Semantic segmentation: for each region of the segmented image, features are extracted
and given as input to the region classifiers. The most probable label is assigned to the
region. The final labelled partition representing the semantic segmentation of the image
is returned to the user.

Bottom-up segmentation

Semantic Segmentation

Segmented Image

Context Prediction

Algorithm Selection

New Image

Learnt Clusters
of Training Images

Learnt
Parameters

Trained Region
Classifiers

Fig. 12. Adaptive segmentation of an input image based on algorithm selection, parameter
tuning, and region labelling.

 Tools in Artificial Intelligence

284

For a new incoming image I not belonging to the training set, a feature vector is first
extracted then classified into a cluster. The classification is based on the minimization of the
distance between the feature vector and the cluster set { }iκ as follows:

[]

()
1,

() | arg min (),i i ii n
I v I i dist v Iθ κ κ

∈
∈ ⇔ ∈ = (19)

The pair ()ApA, associated with the detected context
iθ is returned.

Once the algorithm is selected and tuned, the image is segmented. For each region, a feature
vector is extracted using the optimized ()csq,ˆ parameter set and given as input to each
trained region classifiers

ic . Classes are scored according to the classifier responses { })(rci

and finally, the returned label)(ry is such as:

 () arg max ()iii
y r c r= (20)

When all regions are labelled, neighbouring regions with the same label are merged to form
a semantic partitioning of the image. This final segmentation is returned to the user.

5. Experiment for adaptive image segmentation
We present below the experimentations we have conducted to assess our framework. The
first application we focus on is the segmentation of biological objects in their natural
environment. More precisely, the goal is to segment white flies on rose leaves (see Figure
13). The images are acquired from a flatbed scanner. White flies are very small objects
(2mm), their wings are semi-translucents, and they can be seen from different points of
view. Rose leaves are highly textured with many veins and present various appearances.

5.1 Segmentation algorithms
In this section, we briefly describe the segmentation algorithms we used for our experiment.
Our set is composed of algorithms reflecting different segmentation strategies as developed
in section 2.1 namely region growing, split-and-merge, watershed, or thresholding
techniques. The Table 1 summarizes these algorithms and gives important information
concerning their free parameter with their ranges and default values provided by the
algorithms’ authors.

5.2 Parameter optimization assessment
Before assessing the optimization procedure, we illustrate the optimization problem with
some examples of evaluation profiles. We present 1D and 2D profiles for the different
segmentation algorithms (except the CWAGM which has a parameter space in R3) for the
four training images of the Figure 13. The best segmentation quality correspond to an
assessment value 0=A

IE . Concerning the CSC algorithm (see Figure 14), the shapes of the
curves are similar for the four images and present a global minimum which falls in the same
part of the parameter space. The global optima for the SRM algorithm (see Figure 15) are
found in a very narrow band of the parameter space. Many local optima characterize the
curves of the EGBIS algorithm (see Figure 16). The thresholding algorithm behaviour is
more straightforward regarding to the obtained curves (see Figure 17). Globally, two

A Cognitive Vision Approach to Image Segmentation

285

performance levels are revealed where good performances are achieved for a large range of
the parameter values. However, the global optimum is more difficult to see since the
difference between the good performance level (in blue) and its level is very thin. From
these observations, we can conclude that the evaluation profiles are not always convex hulls
and their granularity can depend on the image. Since the Simplex algorithm does not
guarantee to obtain a global optimum, we divide each parameter space into three sub-spaces
and run an optimization on each sub-space. This means that 3N optimization loops are run
for a segmentation algorithm with N free-parameters. Table 2 present the optimization
results of the five segmentation algorithms in terms of segmentation performance. Globally,
all the algorithms reach a good level except the EGBIS algorithm, as shown in Figure 18.
This result is due to the fact that this algorithm is sensitive to small gradient variations. As
expected, the EGBIS has a big standard deviation (due to the presence of many local optima)
whereas the thresholding one is low (due to its straightforward behaviour). We have also
compared the performances of the optimization algorithms (the Simplex and the GA) with a
systematic search method (third part of Table 2). By systematic, we mean an iterative search
throughout the whole parameter space with a fixed sampling rate. The sampling rate
depends on the dimensionality of the parameter space. The global performances of the three
methods are similar with a very little advantage to the Simplex.

Algorithm Free Parameter Range Default
Value

CSC (Priese et al., 2002)
Color Structure Code t: region merging threshold 5.0-255.0 20.0

SRM (Nock & Nielsen, 2004)
Statistical Region Merging Q: coarse-to-fine scale control 1.0-255.0 32.0

EGBIS (Felzenszwalb &
Huttenlocher, 2004)
Efficient Graph-Based Image
Segmentation

σ: smooth control on input image
k: colour space threshold

0.0-1.0
0.0-

2000.0

0.50
500.0

Hysteresis thresholding Tlow: low threshold
Thigh: high threshold

0.0-1.0
0.0-1.0

-
-

CWAGM (Alvarado Moya, 2004)
Color Watershed-Adjacency Graph
Merge

m: region merging threshold
n: min. region number
p: min. probability for watershed
threshold

0.0-200.0
1.0-100.0
0.0-1.0

100.0
10.0
0.45

Table. 1. Components of the segmentation algorithm bank, their names, and parameters to
tune with range and author’s default values.
To decide between the three different methods, we have compared them by considering
their computational cost as described in Table 3. The systematic search is obviously the most
costly method. The Simplex is the fastest method to converge apart from the CWAGM
algorithm. According to the previous performance score tables, the simplex is definitively
the best algorithm to optimize low dimensional parameter spaces in a few numbers of
iterations. For segmentation algorithms with more than two free-parameters, the Genetic
Algorithm should be preferred, requiring less iteration for the same level of performance.
Note that we have limited the number of iterations — mainly for computational cost

 Tools in Artificial Intelligence

286

reasons—for the systematic search method to 2550 for the EGBIS algorithm and to 1250 for
the CWAGM algorithm, respectively. These two algorithms are relatively slow compared to
the others and the parameter space to explore is really huge, particularly for the CWAGM.

(a) img001 (b) img009 (c) img026 (d) img077

(e) gt001 (f) gt009 (g) gt026 (h) gt077

Fig. 13. Four representative training images and associated ground truth segmentations
used in figure 14 to figure 17.

Fig. 14. Evaluation profiles of the CSC
algorithm applied on the four training
images presented in Figure 13.

Fig. 15. Evaluation profiles of the SRM
algorithm applied on the four training
images presented in Figure 13.

Fig. 16. Different evaluation profiles of the EGBIS algorithm applied on the four training
images presented in Figure 13. t and σ are the two free parameters.

A Cognitive Vision Approach to Image Segmentation

287

Fig. 17. Different evaluation profiles of the Hysteresis thresholding algorithm applied on the
four training images presented in Figure 13. Tlow and Thigh are the two free parameters.

Algorithm 0=A
IE using Simplex / GA / Iterative search

 min max mean std

CSC 0.00 / 0.00 / 0.00 0.50 / 0.46 / 0.46 0.14 / 0.13 / 0.13 0.11 / 0.10 / 0.10
SRM 0.00 / 0.00 / 0.00 0.52 / 0.48 / 0.48 0.13 / 0.12 / 0.12 0.11 / 0.10 / 0.10

THRESH 0.00 / 0.00 / 0.00 0.35 / 0.35 / 0.35 0.11 / 0.11 / 0.11 0.09 / 0.09 / 0.09
EGBIS 0.06 / 0.12 / 0.13 0.73 / 0.71 / 0.71 0.37 / 0.37 / 0.39 0.14 / 0.14 / 0.14

CWAGM 0.00 / 0.00 / 0.00 0.44 / 0.44 / 0.46 0.12 / 0.12 / 0.19 0.09 / 0.09 / 0.08

Table 2. Statistics on the optimization performances for the training image set using the
Simplex algorithm, the genetic algorithm and the systematic search.

Algorithm Mean number of iterations
 Systematic search Genetic algorithm Simplex algorithm

CSC 1000 733 83
SRM 1000 734 82

THRESH 10000 840 404
EGBIS 2550 840 497

CWAGM 1250 840 1821

Table 3. Computational cost of each optimization method.

The number of iterations is also dependent of the parameterisation of the optimization
algorithm. For the Simplex algorithm, it mainly depends on the maxCalls parameter which
specifies the maximum allowed number of calls of the fitness function in an optimization
loop. Figure 18 (left) shows the influence of this parameter on the convergence accuracy. We
start the test on the img001 with maxCalls set to 3 (minimum allowed by the algorithm) and
increase it up to 80. For a one-dimensional parameter space, this means that the total
number of iterations will be between 9 (3 × 3) and 240 (3 × 80), for a two dimensional space
between 27 (32 × 3) and 720 (32 × 80), and so on. The study of the graph brings us to several
conclusions. The dimensionality of the parameter space to explore has to be taken into
account for the setting of maxCalls but excessive values are useless. The study also reveals
that the parameter space is not explored in the same way, depending on the segmentation
algorithm. Indeed, some algorithms have parameter subspaces which induce flat evaluation
profiles, as for instance the thresholding algorithm. In these sub-spaces, the Simplex

 Tools in Artificial Intelligence

288

converges in a few numbers of iterations. The same study is done for the GA and the results
are graphically reported in Figure 18 (right). We decide to assess the GA sensitivity to the
initial population size. The number of initial points is here independent of the segmentation
algorithm and varies between 20 and 840. The same conclusions can be drawn. We just can
add that the EGBIS algorithm brings some problem to the GA which falls in many local
optima (peaks of the EGBIS curve in Figure 18 (right)).

Fig. 18. Convergence accuracy of the Simplex algorithm by varying the maxCalls parameter
and convergence accuracy of the GA by varying the initial population size.

5.3 Algorithm selection
We applied the DBScan (Ester et al., 1996) algorithm to cluster the 20 training images as
described in section 3.2. We obtain two clusters of 10 images (see Figure 19 for two
examples). Visually, the first cluster corresponds to the back side images of the scanned rose
leaves and the second cluster to the front side images. For each cluster, mean parameter sets
of the five segmentation algorithms are computed w.r.t. their performance scores. The
segmentation performances of the tuned algorithms are evaluated on each training image
sub set. The tuned algorithm which gets the best mean performance score for each cluster is
elected. Before the last ranking step, the best algorithm for the first cluster was the
Hysteresis thresholding algorithm and the best for the second cluster was the CSC
algorithm. After the last ranking step, the CSC algorithm was found as the best one for the
two clusters but with different parameter sets. This means that even if the thresholding
algorithm performs better in individual cases, the CSC algorithm is more robust than the
thresholding algorithm when tuned with a mean parameter set.

Fig. 19. Examples of images for the two identified clusters. Left = cluster 1 (front side of the
leaves), right = cluster 2 (back side of the leaves).

A Cognitive Vision Approach to Image Segmentation

289

5.4 Semantic segmentation performance assessment
For each identified image cluster, region labels of annotated manual segmentations are
mapped into regions of the segmented image following the method described in section
3.5.1. Then, for each region class, a region classifier is trained with region features as input.
We used our wrapper scheme detailed in section 3.5.2 to optimize the classifier
performances. Three colour spaces are used in this experiment: RGB, HSV, and XYZ. The
optimization of the SVM parameters increases the classifier performances of 5-10%. The best
cross-validation rates are reached with q (quantization level) values superior to 50. We have
also tested texture features but their performances are 10% inferior in mean than with the
colour features as shown in Figure 20. Finally, the classifiers are trained a last time with the
configurations giving the best cross-validation rates. The final set up of the different
algorithms is then as follows (see Table 4):

Context Seg. Algorithm Class Feature extractor param. SVM param.

 (param.) Colour space q C γ
Context 1

(light green leaves)
CSC
(41.9)

rose leaf
white fly

HSV
HSV

112
112

4
1

1
4

Context 2
(dark green leaves)

CSC
(48.7)

rose leaf
white fly

XYZ
XYZ

21
21

64
256

4
0.25

Table 4. Set up of the segmentation, the feature extractors, and the classifiers.

5.5 Final segmentation quality assessment
In this section, we present the segmentation results on the test set. We compare six different
methods, comprising (parts of) our approach and a pure top-down segmentation.
• method 1: ad hoc segmentation, with the Hysteresis thresholding algorithm tuned with

Tlow = 0.45 and Thigh = 1.0,
• method 2: algorithm selection and tuning based on the learnt parameters from the

whole training set (CSC is the best algorithm),
• method 3: method 2 + semantic segmentation (region labelling),
• method 4: algorithm selection and tuning based on image content analysis (one

algorithm with learnt parameters per context),
• method 5: method 4 + semantic segmentation,
• method 6: over-segmentation + semantic segmentation.
The over-segmentation used in method 6 is performed with the CWAGM algorithm
manually tuned with a very low region merging threshold (see Figure 20).
Performance scores of the test set are summarized in Table 5. Methods 3 and 5 give the best
results. This outcome is predictable since the segmentation algorithm used for the method 5
is the same (CSC) and the parameter setting for the context 1 is close to the one for the
context 2. The white fly region classifier for the context 2 has been trained on few samples
since there are not many white flies on the front side of rose leaves. Consequently, the
classification errors for the white fly class are higher for the method 5 context 2 than for the
method 3. In a biological point of view, insects prefer to live hided on the back side of the
leaves, where they are better camouflaged (low contrast, not visible, etc.). Method 6 does not
perform better results even if its initial over-segmentation is more precise (i.e. less missed
boundary pixels) than with the CSC algorithm in methods 2 to 5.

 Tools in Artificial Intelligence

290

Fig. 20 Example of an initial over-segmented image used in method 6.

5.6 Evaluation on a public image database
In this section, we present evaluation results of the parameter optimization step on a public
image database. The goal of the Berkeley Segmentation Dataset and Benchmark (BSDB)
image database (Fowlkes & Martin, 2007) is to provide an empirical basis for research on
image segmentation and boundary detection. To this end, the authors have collected 6000
hand-labelled segmentations of 300 Corel dataset colour images from 30 human subjects.
The images depict natural scenes with at least one foreground object (e.g., an animal, a
plant, a person, etc.). The ground truth are not labelled and the possible semantic classes are
too numerous. Consequently, we do not assess the semantic segmentation part of our
framework on this image database.

Method Performance scores of segmentation of the test images
 min max mean std

1 0.00 0.35 0.09 0.08
2 0.00 0.78 0.21 0.16
3 0.00 0.65 0.12 0.14
4 0.06 0.83 0.23 0.17
5 0.06 0.62 0.12 0.14
6 0.00 0.67 0.15 0.14

Table 5. Statistics on the segmentation performances for the test set using different
segmentation strategies.

The evaluation metric proposed in this image database for the benchmarking cannot be used
with region-based segmentation algorithms since it relies on soft boundary maps of edge-
based segmentation results (e.g. maps of gradient magnitude). We thus prefer our
segmentation performance metric. For each image, several human segmentations exist (from
three to eight) with different levels of refinements. We have decided to select the finest ones.
Then, for each segmentation algorithm of our algorithm bank and for each image, algorithm
parameters are optimized thanks to the selected manual segmentation. As previously done
in section 5.2, we have compared the optimized segmentation achieved with the three
optimization algorithm based on: the Simplex algorithm, the Genetic Algorithm, and a
systematic search (see Table 6). Globally the three optimization algorithms perform in mean
comparable results. This confirms the reliability of our parameter tuning approach for this
image database.

A Cognitive Vision Approach to Image Segmentation

291

Algorithm 0=A
IE using Simplex / GA / Iterative search

 min max mean std

CSC 0.29 / 0.37 / 0.25 0.50 / 0.46 / 0.46 0.14 / 0.13 / 0.13 0.11 / 0.10 / 0.10
SRM 0.25 / 0.23 / 0.23 0.52 / 0.48 / 0.48 0.13 / 0.12 / 0.12 0.11 / 0.10 / 0.10

THRESH 0.19 / 0.19 / 0.38 0.35 / 0.35 / 0.35 0.11 / 0.11 / 0.11 0.09 / 0.09 / 0.09
EGBIS 0.21 / 0.20 / 0.34 0.73 / 0.71 / 0.71 0.37 / 0.37 / 0.39 0.14 / 0.14 / 0.14

CWAGM 0.22 / 0.22 / 0.50 0.44 / 0.44 / 0.46 0.12 / 0.12 / 0.19 0.09 / 0.09 / 0.08

Table 6. Statistics on the optimization performances for the training image set using the
Simplex algorithm, the genetic algorithm and the systematic search.

7. Conclusion and future work
In this chapter, we address the problem of image segmentation with a cognitive vision
approach. More precisely, we study three major issues of the segmentation task in vision
systems: context adaptation, selection of an algorithm and tuning of its free parameters,
according to the image content and to the application needs. Most of the time, this tedious
and time-consuming task is achieved by an expert in image processing using a manual trial-
and-error process. Recently, some attempts at automating the extraction of optimal
parameters of segmentation have been made but they are still too application-dependent.
The re-usability of such methods is still an open problem. We have chosen to handle this
issue with a cognitive vision approach. Cognitive vision is a recent research field which
proposes to enrich computer vision systems with cognitive capabilities, e.g., to reason from a
priori knowledge, to learn from perceptual information, or to adapt its strategy to different
problems.
We propose a supervised learning-based methodology for off-line configuration and on-line
adaptation of the segmentation task in vision systems. The off-line configuration stage
requires minimal knowledge to learn the optimal selection and tuning of segmentation
algorithms. In an on-line stage, the learnt segmentation knowledge is used to perform an
adaptive segmentation of images. This cognitive vision approach to image segmentation is
thus a contribution for the research in cognitive vision. Indeed, it enables robustness,
adaptation, and re-usability faculties to be fulfilled.
Finally, by addressing the problem of adaptive image segmentation, we have also addressed
underlying problems, such as feature extraction and selection, and segmentation evaluation
and mapping between low-level and high-level knowledge. Each of these well-known
challenging problems is not easily tractable and still demands to be intensively considered.
We have designed our approach (and our software) to be modular and upgradeable so as to
take advantage of new progresses in these topics.
The brittleness of our approach to unknown situations is currently its major drawback. This
concerns the context analysis level as well as the segmentation level. The concerned
algorithms are the DBScan algorithm for image-content clustering and the SVMs for the
semantic segmentation. Currently, neither the clustering algorithm nor the SVMs are able to
adapt dynamically to new training data: the learning process must be run again on the
whole training data set. The use of incremental machine learning techniques should be
useful to fulfil the property of continuous learning. The main idea of incremental learning

 Tools in Artificial Intelligence

292

for unforeseen situations is to dynamically adapt the clustering/classification method w.r.t.
to the classification error of new input data. In our problem, unexpected situations can be
identified thanks to the estimates of the context probability and the estimates of the SVM
classification probabilities. The use of an adaptive classification algorithm using robust
incremental clustering as proposed in (Prehn & Sommer, 2006) will then allow a dynamic
update of the cluster and create new ones if necessary.

8. References
Abdul-Karim, M.-A.; Roysam, B.; Dowell-Mesfin, N. M.; Jeromin, A.; Yuksel, M. &

Kalyanaraman, S. (2005). Automatic selection of parameters for vessel/neurite
segmentation algorithms, Transactions on Image Processings, Vol. 14(9), pp. 1338–
1350

Alvarado Moya, J. P. (2004). Segmentation of color images for interactive 3d object retrieval,
Ph.D. thesis, Technical University of Aachen

Bahnu, B.; Lee, S. & Das, S. (1995). Adaptive image segmentation using genetic and hybrid
search methods, Trans. on Aerospace and Electronic Systems, Vol. 31(4), pp. 1268–1291

Blum, A. L. & Langley, P. (1997). Selection of relevant features and examples in machine
learning, Artif. Intell., Vol. 97(1-2), pp. 245–271

Borenstein, E. & Malik, J. (2006). Shape guided object segmentation, in: Proc. of the Int. Conf.
on Computer Vision and Pattern Recognition, Vol. 1, pp. 969–976

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition, Data
Mining and Knowledge Discovery, Vol. 2(2), pp. 121–167

Chen, Y. & Wang, J. Z. (2004). Image categorization by learning and reasoning with regions,
Journal of Machine Learning Research, Vol. 5, pp. 913–939

Cinque, L.; Corzani, F.; Levialdi, S.; Cucchiara, R. & Pignalberi, G. (2002). Improvement in
range segmentation parameters tuning, in: Proc. of the Int. Conf. on Pattern
Recognition, Vol. 1, pp. 10176

ECVISION (2005). A research roadmap of cognitive vision, Technical report, Project IST-2001-
35454

Ester, M.; Kriegel, H.-P.; Sander, J. & Xu, X. (1996). A density-based algorithm for
discovering clusters in large spatial databases with noise, in: Proc. of the Int. Conf. on
Knowledge Discovery and Data Mining, Portland, pp. 226–231

Everingham, M.; Muller, H. & Thomas, B. (2002). Evaluating image segmentation algorithms
using the pareto front, in: Proc. of the Eur. Conf. Computer Vision, Vol. 2353(4), pp.
34–38

Felzenszwalb, P. F. & Huttenlocher, D. P. (2004). Efficient graph-based image segmentation,
Int. Journal on Computer Vision, Vol. 59(2), pp. 167-181

Fowlkes, C. & Martin, D. (2007). The berkeley segmentation dataset and benchmark,
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbenc
h/

Gelasca, E.; Salvador, E. & Ebrahimi, T. (2003). Intuitive strategy for parameter setting in
video segmentation, in: Visual Communications and Image Processing, Vol. 5150, pp.
998–1008

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning,
Addison-Wesley Longman Publishing Co., Boston, MA, USA

A Cognitive Vision Approach to Image Segmentation

293

Guyon, I. & Elisseeff, A. (2003). An introduction to variable and feature selection, J. Mach.
Learn. Res., Vol. 3, pp. 1157–1182

Haralick, R. (1979). Statistical and structural approaches to texture, in: Proc. of the IEEE, Vol.
67

Huang, F. J. & LeCun, Y. (2006). Large-scale learning with svm and convolutional nets for
generic object categorization, in: Proc. of the Int. Conf. on Computer Vision and Pattern
Recognition, pp. 284–291

Jain, A. K. & Farrokhnia, F. (1991). Unsupervised texture segmentation using gabor filters,
Pattern Recognition, Vol. 24(12), pp. 1167–1186

Kohavi, R. & John, G. H. (1997). Wrappers for feature subset selection, Artificial Intelligence,
Vol. 97(1-2), pp. 273–324

Laws, K. (1980). Textured image segmentation, Ph.D. thesis, Univ. Southern California
Lucchese, L. & Mitra, S. (2001). Color image segmentation : A state-of-the-art survey, Vol. 67,

Indian National Science Academy, New Dehli, pp. 207–221
Mao, S. & Kanungo, T. (2000). Automatic training of page segmentation algorithms : An

optimizatin approach, in: Proc. of the Int. Conf. on Pattern Recognition, Barcelona,
Spain, pp. 531–534

Maurer, C. R. J.; Qi, R. & Raghavan, V. (2003). A linear time algorithm for computing exact
euclidean distance transforms of binary images in arbitrary dimensions, Trans. on
Pattern Anlasys and Machine Intelligence., Vol. 25(2), pp. 265–270

Mezaris, V.; Kompatsiaris, I. & Strintzis, M. (2003). Still image objective segmentation
evaluation using ground truth, in:Proc. of the Workshop on Information and Knowledge
Management for Integrated Media Communication, Prague, Czech Republic, pp. 9–14

Molina, L. C.; Belanche, L. & Nebot, A. (2002). Feature selection algorithms : A survey and
experimental evaluation, in: Proc. of the Int. Conf. on Data Mining, Japan, pp. 306–313

Nelder, J. & Mead, R. (1965). A simplex method for function minimization, Computer Journal,
Vol. 15, pp. 1162–1173

Nock, R. & Nielsen, F. (2004). Statistical region merging, Pattern Analysis and Machine
Intelligence, Vol. 26(11), pp. 1452–1458

Pal, N. R. & Pal, S. K. (1993). A review on image segmentation techniques, Pattern
Recognition, Vol. 26(9), pp. 1277–1294

Peng, J. & Bahnu, B. (1998). Delayed reinforcement learning for adaptive image
segmentation and feature extraction, Systems, Man, and Cybernetics, Vol. 28(3), pp.
482-488

Pignalberi, G.; Cucchiara, R.; Cinque, L. & Levialdi, S. (2003). Tuning range image
segmentation by genetic algorithm, EURASIP Journal on Applied Signal Processing,
Vol. (8), pp. 780–790

Prehn, H. & Sommer, G. (2006). An adaptive classification algorithm using robust
incremental clustering, in: Proc. of the Int. Conf. on Pattern Recognition, pp. 896–899

Priese, V.; Rehrmann, L. & Sturm, P. (2002). Color structure code. URL http://www.uni-
koblenz.de/

Reed, T. R. & du Buf, J. M. H. (1993), A review of recent texture segmentation and feature
extraction techniques, CVGIP: Image Underst., Vol. 57(3), pp. 359–372

Rosenberger, C.; Chabrier, S.; Laurent, H. & Emile, B. (2005). Unsupervised and Supervised
Segmentation evaluation, in book: Advances in Image and Video Segmentation, Yu-Jin
Zhang editor, Tsinghua University, Beijing, China, chapter XVIII

 Tools in Artificial Intelligence

294

Schnitman, Y.; Caspi, Y.; Cohen-Or, D. & Lischinski, D. (2006). Inducing semantic
segmentation from an example, in: ACCV, Vol. 3852, Springer-Verlag, pp. 393–384

Skarbek, W. & Koschan, A. (1994). Colour image sementation - a survey, Technical report,
Technical University of Berlin

Wu, T.; Lin, C. & Weng, R. (2004). Probability estimates for multi-class classification by
pairwise coupling, The Journal of Machine Learning Research, Vol. 5, pp. 975–1005

Xia, Y.; Feng, D.; Rongchun, Z. & Petrou, M. (2005). Learning-based algorithm selection for
image segmentation, Pattern Recognition Letters, Vol. 26(8), pp. 1059–1068

Yasnoff, W.; Mui, J. & Bacus, J. (1977). Error measures for scene segmentation, Pattern
Recognition, Vol. 9, pp. 217–231

Zhang, Y. (1996). A survey on evaluation methods for image segmentation, Pattern
Recognition, Vol. 29(8), pp. 1335–1346

Zhang, Y. & Luo, H. (2000). Optimal selection of segmentation algorithms based on
performance evaluation, Optical Engineering, Vol. 39, pp. 1450–1456

Zhang, H.; Fritts, J. E. & Goldman, S. A. (2008). Image segmentation evaluation: A survey of
unsupervised methods, Computer Vision and Image Understanding, Vol. 110(2), pp.
260-280

17

An Introduction to the Problem of Mapping in
Dynamic Environments

Nikos C. Mitsou and Costas S. Tzafestas
National Technical University of Athens, School of Electrical and

Computer Engineering, Division of Signals Control and Robotics,Zografou Athens,
Greece

1. Introduction
Robotic mapping comprises one of the most important problems in the field of robotics.
During the past two decades, a large number of algorithms have been proposed in order to
solve the problem of constructing valid models of the robot environment. As a result, highly
accurate maps of large-scale indoor and outdoor environments have been constructed thus
far. There are still, though, much to be done in order to achieve fully autonomous mobile
robots capable of mapping any kind of environment (structured or unstructured, static or
dynamic).
In this chapter, we discuss the problem of mapping dynamic environments, an issue that
remains open and is extremely active nowadays. Dynamic environments are real world
environments where moving objects (e.g. humans, robots, chairs and doors) change their
positions over time. Widespread mapping algorithms developed in the past are based on the
assumption that the environment remains static during the robot exploration phase. Thus,
these algorithms provide imprecise results when applied in non-stationary environments.
The need to map these environments has led in the development of new algorithms that are
designed to exploit the dynamics of the environments towards efficient mapping. These
algorithms have given so far promising results.
Through this chapter, we examine the problem of dynamic environments through the
mapping point of view. Two issues that are strongly connected to mapping are
(a) localization, the process of estimating the position and the orientation of the robot and
(b) navigation, the generation of valid paths for the robot. They are both of great
importance and remain open fields of research especially when applied on dynamic
environments. However, in this chapter we concentrate on the mapping problem and refer
to the other two problems only when necessary. Our effort is towards providing the ideas
behind the algorithms discussed in this chapter and avoid the mathematical details and
formulas. We urge the interested readers to consult the referenced papers in order to gain a
better insight on the techniques discussed in this chapter.
The outline of the chapter is as follows: In Section 2, we present the mapping problem for
static environments, so as to make the reader familiar with the concepts of the mapping
problem. Next, in Section 3 we move to the problem of mapping in dynamic environments.
More specifically, we discuss the main difficulties of the problem and present a number of

 Tools in Artificial Intelligence

296

methodologies that are common cases for dealing with it. In Section 4, a number of solutions
are presented. We explain how artificial intelligence ideas are applied in some state of the
art dynamic environment mapping algorithms. We discuss some recently published
algorithms that apply statistical methodologies to identify the static and different aspects of
the dynamic areas of the environment. Finally, in Section 6, we discuss the open issues and
challenges of mapping in dynamic environments.

2. The problem of mapping in static environments
Robotic mapping is the problem of creating a valid model of the robot’s environment. The
robot explores the unknown environment, collects a number of sensor measurements and
creates a spatial representation of its world. This representation might contain three
different types of areas:
a. the static areas, which are the areas that remained occupied during the robot exploration

process (e.g. walls, heavy furniture),
b. the unoccupied areas, which are the areas that do not contain any object (e.g. passages)

and
c. the unexplored areas, which are the areas that we obtain no information about their

occupancy.
There exist a number of different sensor types that are used during the mapping procedure
and can be divided into two categories: the sensors that are used to identify the internal
state of the robot and those that provide information about the robot’s environment. In the
first category, common examples are encoders, accelerometers, gyroscopes and GPS
receivers (for outdoor navigation only) that provide information about the robot’s motion
and position. Ultrasonic sensors, laser range finders, bumpers, acoustic sensors and cameras
are some examples of the second category which are used to detect and identify objects that
lay in their field of view.
The main difficulty in mapping lies in the fact that none of the above sensors can be
precisely accurate. Also, the reliability of the sensors might depend on external parameters
that change over time (e.g. motor encoders accuracy depends on the slippery of the ground
which is different on grass and on marble and the ultrasonic measurements will be different
when the detected objects are made of glass and of wood). Thus, there will always be errors
in the sensor measurements. Unfortunately, small uncertainties in some measurements can
yield in huge errors in the estimation of the robot position which will lead in inaccurate
maps.
In order to deal with these uncertainties, most algorithms use probabilities to describe both
the robot position and the robot‘s environment. A number of different probabilistic
approaches for the preservation of the uncertainties on the robot position and a number of
world-modelling techniques can be found in the literature (more on localization and
mapping can be found in (Thrun, 2002)). Some common mapping techniques are the
occupancy grid (examples in (Gutmann & Konolige, 1999), (Birk & Carpin, 2006)), the
geometric maps (examples in (Latecki & Lakaemper, 2006), (Zhang & Ghosh, 2000)) and the
landmark representation (examples in (Larionova et al., 2006), (Suau, 2005)). They all have
given successful results under specific assumptions on static environments.
Next, we describe in detail the occupancy grid technique, since it is the most common and
widely used technique for modelling the robot environment. Moreover, the occupancy grid
technique is the most important among the few proposed techniques that can be applied in

An Introduction to the Problem of Mapping in Dynamic Environments

297

both static and dynamic environments (there also exist a few works where the static areas of
the dynamic environment are modelled using landmarks like in (Wang et al., 2007),
(Andrade-Cetto & Sanfeliu, 2002) or using line segments like in (Angelov et al., 2004)).

2.1 The occupancy grid technique for modelling static environments
The occupancy grid algorithm (Moravec & Elfes, 1985) (Moravec, 1988), introduced in 1985,
is the first robotic mapping technique. The basic idea of the occupancy grid is to split the
environment into a finite number of cells. This way, the difficult problem of estimating the
model of the environment is decomposed into a number of easier problems, those of
estimating the occupancy state of every cell. So, instead of searching in the space of all
possible maps (a difficult task as there exist an arbitrary number of different maps), we
search in the space of the occupancy probability for the estimation of the state of every cell
(a fairly easier task).
An example of an occupancy grid is depicted in Fig. 1 below, where the color denotes the
probability of occupancy (black cells are occupied, white cells are free whereas in case of the
grey areas we do not possess any knowledge about their occupancy).

Fig. 1. Example of an occupancy grid map

In mathematical point of view, the occupancy grid algorithm can be formulated as finding
the map m of the environment that maximizes the probability:

 1:t 1:tp(m|u ,z) (1)

where u refers to the control motion commands of the robot and z comprises the sensor
measurements received during the interval [1, t].
By following the assumption that the occupancy of a cell is independent of the occupancy of
its neighboring cells, the previous probability can be transformed into the product of the
probabilities of the occupancy of every cell:

 1:t 1:t i 1: 1:p(m|u ,z) p(m | ,)t tu z= ∏ (2)

where mi is the i-th cell of the grid.

 Tools in Artificial Intelligence

298

The assumption of the independency of the values of neighboring cells, though wrong, can
be used in order to simplify the required calculations (in (Thrun, 2003), however, the
authors overcome this assumption by using forward sensor models).
In order to update the occupancy probability of a cell, we can use the log-likelihood sensor
model as in (Arbuckle et al, 2002):

)|(
)|(

logR ti, empszp
occszp

it

it

=
=

= (3)

where)|(stateszp it = denotes the probability of the observation zt given that the state of
the cell i equals to state. So, the update of the occupancy value Ri of the i-th cell of the grid
can be calculated as in the following formula:

 ∑= ti,i RR (4)

In practice, it has been shown that by using the occupancy grid modeling of the
environment, high quality maps of static environments can be generated.

3. The problem of mapping in dynamic environments
In the previous section, we presented a short introduction to the problem of mapping in
static environments. However, as already stated, real world environments are dynamic
rather than static. For example, people might be walking, robots might be moving, doors
might be opened or closed and chairs might be repositioned. Tackling the mapping problem
in dynamic environments is a more difficult and challenging task. We do not only have to
determine the position of the robot and the map of the environment, but also to identify
possible dynamic objects in the environment. Additionally, we should take advantage of
this knowledge in order to enhance our perception of the environment and create a better
model of the world.
Applying traditional algorithms from the static environments domain like the occupancy
grid technique presented above will not create a precise representation of the environment.
The reason is that most mapping algorithms continuously update their grids in order to
adapt to the current state of the environment, so the dynamic areas will most probably be
misclassified either as occupied or as free areas. The place where a chair existed, for
example, might be identified as a static area even though the chair had its position changed
during the mapping phase and it might be repositioned in a currently unoccupied place in
the future. Even worse, there might be cases where the last observed part of an object might
be assumed as static while the rest of the object might be assumed as free. A failure example
for the occupancy grid technique is shown in Fig.2 below where two doors are partially
identified. Their state changed while the robot was partially observing them, so some cells
of the grid adapted to the new state while the others remained in the previous state of the
door.
So far, we have seen that dynamic areas can lead in the creation of spurious objects in the
under construction model of the environment. The existence of dynamic areas will also
cause problems in the localization procedure, since matching these areas with the current
sensor measurements during a scan match phase will give indeterminable results. The
localisation procedure will most probably fail if, for example, the robot tries to match a
range scan with the area of a door observed earlier to be closed while now is open.

An Introduction to the Problem of Mapping in Dynamic Environments

299

Fig. 2. Failure on mapping two doors. The doors (pointed in circles) are partially drawn.

These problems occur due to the fact that the occupancy grid algorithm does not have the
ability to remember the past states of the environment. Every cell stores only one occupancy
value which converges to the current observed state of the cell. If this state changes, the
occupancy value will adapt to the new state, “forgetting” any past value. Moreover, the false
assumption that the cells evolve independently to each other should not be used in this case
as the assumption of the independency on the evolution of the cells’ occupancies can lead to
the problem of a partially modelled object discussed earlier (c.f. Fig. 2.).
In order to deal with these problems, several approaches have been proposed which are
based on the occupancy grid structure and either make use of this structure as is or extend it
and make use of the modified occupancy grid structure. By using these techniques, one can
store more information about the robot’s environment (including information about the past
as well), which can then be processed in order to extract additional knowledge about the
dynamics of the environment.
There exist three basic categories of approaches:
i. Occupancy grids with different timescales, which uses a number of occupancy grids where

each grid is updated at a different rate.
ii. Temporal occupancy grid mapping, which extends the occupancy grid to efficiently

preserve the history of the evolution across the time axis.
iii. The static-dynamic grids mapping approach which uses two grids to differentiate the

static from the dynamic areas of the map.
Below we present each category in detail.

3.1 Occupancy grids with different timescales
In this approach, we use more than one occupancy grids (Arbuckle et al, 2002) (Biber &
Duckett, 2005). Every occupancy grid has a particular timescale, which indicates how often
it is refreshed (e.g. every 20 seconds). We can store all the grids generated so far in a list or
just preserve the grids that are updated in the current step of the algorithm. By examining
the occupancy values of the cells at the different occupancy grids (meaning at different
timescales) we can conclude on the nature of the cell. For example, we can identify that a cell
is static if it is occupied in all timescales or that it is free if it is not occupied at all the
timescales. We can also conclude that a cell was occupied by a moving object if it was
occupied only at one occupancy grid while on the others it remained unoccupied.

 Tools in Artificial Intelligence

300

One approach that makes use of this technique is the so-called temporal occupancy grid
(TOG) (Arbuckle et al, 2002). It was introduced as a way to classify cells based on their time
properties of occupancy. The TOG is an extension to the common occupancy grid through
the time dimension. It can be modeled as a matrix with two spatial dimensions, one time
dimension and a number of additional dimensions equal to the number of different
timescales being considered. So, instead of preserving only one probability value for every
cell of the grid, a number of different values are preserved, where each value represents the
occupancy of the cell at a specific time period and at a specific timescale. The update of the
occupancy value at time t and at timescale Δt is performed using the following formula:

 ∑
≤<Δ−

Δ =
tttt

tiR
'

',tt,i,R (5)

By examining the occupancy value of a cell at the different timescales we can identify the
nature of the cell. If it is occupied at every occupancy grid, then it refers to a static object. If it
is not occupied in any of the occupancy grids, then it refers to a free area of the environment.
If it is found to be occupied at some of the occupancy grids, then it was occupied by a
moving object. It can be modeled as a occupancy grids under specific timescales, we can also
extract the path of that moving object.
The main problem of this approach lies in the fact that the optimal number of different
timescales, an important parameter of the algorithm, cannot be computed in a formal way
but must be intuitively selected by the user.

3.2 Extended temporal occupancy grid
With the structure explained earlier, we do not make efficient use of the available memory,
as we preserve more occupancy values than needed. For a particular occupied cell, we store
the occupied probability for that cell as many times as the number of the occupancy grids in
the TOG structure. In order to make a more efficient use of the occupancy values, an
extended temporal occupancy grid (eTOG) has been proposed in (Mitsou & Tzafestas, 2007).
Although they share the same name, the two structures are different in their nature. Instead
of preserving more than one occupancy grids as in TOG, in eTOG we use only one grid.
Every cell of the grid, however, contains an index structure, the so-called time index
(Elmasri et al., 1990) that keeps track of the occupancy probability of the specific cell. In this
way the complete history of the occupancy probability of every cell is stored in this
structure. By using a grid of n x n time indexes to form a forest of time indexes, we can
preserve the complete history of the changes of the environment.
Time index is a special case of B+ tree index (a widely used index structure in the database
domain) (Ooi & Tan, 2002) that is used for storage and retrieval of values that are valid
during specific time periods. The time index was specifically designed for indexing of
temporal data. The time dimension is represented using the concept of time intervals. A
time interval [ti, tj] is a set of consecutive (equidistant or not) time points, where ti is the first
point and tj is the last point of the interval. A single time point t can be represented as [t, t],
i.e. both start and end points are the same. An example of a time index structure appears in
Fig.3.
The time index differentiates from the B+ tree index in the fact that due to the monotonic
nature of time, deletions never occur while updates occur in an append mode. So, new
entries will always be inserted in the rightmost node of the tree and the complexity of the

An Introduction to the Problem of Mapping in Dynamic Environments

301

insertion will always be O(1). When the rightmost node is full, a new node is created and the
changes propagate upwards, just as in a B+ tree index structure (an extensive comparison of
available time indexes can be found in (Salzberg & Tsotras, 1999)).

Fig. 3. A time index structure storing probabilities of occupancy

We have to keep in mind that instead of time indexes, we could use simple linked lists if we
are not interested in efficiently traversing the occupancy history and we want to avoid the
rebalancing cost of the tree.
When a new sensor measurement arrives, the affected cells are extracted and for every cell,
the new occupancy value is calculated and inserted into the underlying time index of the
cell. The insertion of a new value v (assuming that the current time point is tc) follows
specific rules:
• If the time interval is the rightmost node finishes at time point tj and tc-tj> thres then a

new node is added to the tree, that stores a time interval with starting and ending
points at tc and with value v.

• Else if the value v equals to the value stored on the rightmost node then update the end
point of the time interval to tc.

• Else if the value v is not equal to the value stored on the rightmost node then a new
node is added to the tree which points to a time interval with starting and ending points
at tc and with value v.

In this way, we can preserve the complete history of the evolution of the occupancy of the
cells of the environment. In order to identify the nature of a cell, we traverse the lead nodes
of the underlying time index. If the stored probabilities are all equal to the occupied or to the
free state, then the cell belongs to a static object or to a free area respectively. On the other
hand, if the probabilities are mixed then the cell has been occupied at some time periods by
a dynamic object.
The main drawback of this approach is the fact that although in static environment, the
memory needed is almost equal to the memory needed by the common occupancy grid, in
dynamic environments, the required memory might be extremely large. Indeed, the
memory increases with the size of the dynamic effects.

3.3 The static-dynamic grids approach
The most common approach in mapping dynamic environments is the preservation of (at
least) two occupancy grids (Tanaka & Kondo, 2006), (Wolf & Sukhatme, 2004), (Wang et al,
2003). In the first grid, only the static areas of the environment are stored while in the second
grid, the dynamic objects are preserved. In the first grid, the occupancy probability of a cell

 Tools in Artificial Intelligence

302

represents the probability of a static entity being present at that cell. In the same manner, a
cell in the second grid has an occupancy probability that indicates the probability of a
moving object’s existence in that cell.
Such a structure is employed in (Wolf & Sukhatme, 2004). In order to specify which areas
are static and which dynamic, the authors use a simple differentiation technique. The static
parts of the environment never change their position so they can be used as a reference to
determine which sensor readings are generated by static and dynamic objects. Two
recursive formulas based on the Bayes rule for updating the probabilities of the cells of the
two grids are presented. Also, two fuzzified inverse sensor models are introduced. The first
models the probability of a cell being static given the current observation and the previous
probability of occupancy and the second the probability of a cell being dynamic given the
current observation and the previous probability of occupancy. No historical information is
preserved about the occupancy of the dynamic map. This means that only the current
position of the dynamic objects can be available. In (Wolf & Sukhatme, 2005), a third grid
was also maintained, that contained the positions of landmarks and was used during the
localization process.

4. Algorithmic implementation of mapping techniques for dynamic
environments
In order to develop successful maps for dynamic environments, we should first understand
the notion of a dynamic environment map and how it differentiates from the traditional
map produced in stationary environments. We categorize the objects in the robot
environment into the following three groups:
• Static objects, these are the objects that do not change their position over time (e.g. walls,

beds or locked doors)
• Low dynamic objects, these are the objects that appear in a specific number of places (e.g.

chairs or doors).
• High dynamic objects, these are the objects that move arbitrarily in the environment and

can be found in many different positions (e.g. humans).
Ideally, to successfully map a dynamic environment, we should create different maps for
every category of the objects presented above (or one map with three different layers).
Firstly, we must create a map of the static objects of the robot environment. This map could
be an occupancy grid map of the environment where every cell that is detected to remain
occupied during the robot exploration phase is marked as static. There should also be a
second map for storing the low dynamic objects of the environment. This map should
contain the current state of these objects and also their other possible configurations as they
are detected during the sensor acquisition phase (e.g. the chair is positioned in area A and
can be found in the areas B and C). Finally, a third map can be created that will show the
current state of all the high-dynamic objects of the environment. In this map, we could also
mark the path of the moving objects as observed and identified by the robot. The
combination of these three maps will create the current state of the environment and will
also contain all the knowledge extracted by the sensor measurements.
During the last few years, three lines of research have emerged towards mapping in
dynamic environments:
• algorithms that aim in the preservation of an up-to-date map of the environment using

aging techniques

An Introduction to the Problem of Mapping in Dynamic Environments

303

• algorithms that focus on the creation of the possible different configurations of the
environment

• algorithms that map populated environments
The algorithms proposed so far are partial solutions to the problem as they deal with the
problem of mapping focusing only on some of the aspects described above. In the following
subsections we are going to discuss the most common approaches for every line of research.

4.1 Mapping using aging techniques
In this category, several approaches have been proposed that utilize aging techniques in
order to create valid maps of the current state of the environment. Previous sensor
measurements are slowly forgotten in order to preserve at any time point a valid map of the
current state of the robot’s environment. The goal of these algorithms is to create a number
of up-to-date models of the world, rather than to differentiate between static and dynamic
areas. These methods are adaptive, by means that they adapt the map of the environment so
as always to reflect the current understanding of the robot about the environment.
The main difficulty of this category lies in the fact that the under construction map model
must be able to adapt to changes of the environment. When a door closes, for example, the
map should change the state of the particular cells that refer to the closed door configuration
in a fairly short period of time. However, these algorithms should also be able to detect
possible sensor errors or the existence of a high dynamic object in the environment (e.g. a
human that passes by the door). This means that a false sensor measurement or a
measurement of a human passing by a door should not change the state of the
corresponding cells. The algorithm must be able to identify the error and ignore the
measurement. So, in other words, the generated map must contain the static and the low-
dynamic areas of the world but ignore the high dynamic objects.
In (Zimmer, 1995), a system that can dynamically learn and update the topology of a map is
presented. The system preserves a model that is able to adapt to changes of the
environment. In (Yamauchi and Beer, 1996), an adaptive place network is used to model the
robot’s environment. The network is able to change the confidence for every link and links
with low confidence can be removed from the map. In (Andrade-Cetto & Senafeliu, 2002),
landmarks are used to model the map of the environment whose positions are preserved
with the use of Kalman Filters. Landmarks can disappear from the map if they are removed
from the environment.
The most representative approach in this category of mapping algorithms can be found in
(Biber & Duckett, 2005). The basic representation of a map mti at time point ti is considered
to consist of a set S(ti) of n measurements. The new map S(ti+1) at time point ti+1 is calculated
by an update rule that depends on the update rate u of the map: Remove u*n randomly
chosen measurements from S(ti+1) and replace them with u*n randomly chosen
measurements received during the time interval [ti, ti+1].
The environment is split into sub-maps and a number of different timescale Occupancy grid
maps for every sub-map are used. Short-term maps, meaning maps that are updated
frequently, react quickly to changes and only a few sensor measurements are required to
forget an old estimation. On the other hand, long-term maps, meaning maps that have a low
update ratio, are updated less frequently and do not react to temporary changes. They only
adapt to consistent changes of the environment. These map models have increased accuracy

 Tools in Artificial Intelligence

304

towards the static parts of the environment as sensor errors are in a way ignored since a
large number of samples are required to update an already learned feature of the world.
This algorithm belongs to the same category with the TOG algorithm described earlier. It
uses multiple grids of different timescales (although the number of Occupancy grids
preserved by TOG is greater) with different however update schema from the TOG update
schema. Also, it encounters the same problem with the TOG algorithm, which is the
selection of the number of the different timescales that are needed to successfully map the
robot’s environment. Unfortunately, there is no clear answer to that problem. The more
maps we preserve, the better we model the environment as we obtain more models of it
(short-term and long-term maps). However, with the increasing number of maps, more
memory is needed to store those maps.

4.2 Detecting possible environment configurations
In this section, we will present three algorithms that are used to identify all possible
configurations of the environment. These approaches are motivated by the fact that many
dynamic objects appear only in a limited number of different positions. Consider for
example, the doors in an office environment, which are usually either open or closed. The
knowledge of the possible positions of a low dynamic object can be used to enhance the
localization process. If the robot identifies a door to be closed then it will expect that this
door will not be found also open. A formalistic framework for localization and environment
configuration selection can be found in (Stachniss & Burgard, 2005).
The three algorithms presented bellow follow the common occupancy grid assumption, that
the occupancy of a cell evolves independently of the occupancy of its neighbouring cells but
try to overcome this assumption by post processing the sensor measurements and searching
for associations among cells. The first algorithm, ROMA uses an Expectation Maximization
technique (Dempster et al., 1977) to identify different occurrences of the same objects in the
robot environment. The second algorithm, (Stachniss & Burgard, 2005) uses a fuzzy
clustering algorithm to identify common areas in a number of different occupancy grid
maps. The third algorithm, (Mitsou and Tzafestas, 2007) uses an extended Temporal
Occupancy grid and exploits the temporal behaviour of the cells to create group of cells that
behave in the same manner. An extended survey on clustering can be found in (Jain et al.,
1999).
The first two algorithms use the shape similarity to detect low dynamic objects while the
third one makes use of the temporal similarity. The last two algorithms use clustering to
extract knowledge from the environment. The former one uses the collected occupancy
grids as instances of the clustering algorithm while the last one uses the occupancy
evolutions of the cells for the same reason.
Apart from these three algorithms, other algorithms also exist that deal with the same
problem. For example, in (Schulz & Burgard, 2001), a probabilistic algorithm is presented to
identify the state of dynamic objects in the environment. In (Avots et al, 2002), the authors
use particle filters and conditional binary Bayes filters to estimate the state of doors in the
environment. In both these works, the environment is assumed to be predefined. Also, in
(Anguelov et al, 2004), an Expectation Maximization algorithm is used to detect and model
doors. Additionally to the laser range device used in the previous algorithms, images from a
camera mounted on the robot are used. Every object in the world has a specific shape and
color. The advantage of this algorithm is that an object can be identified to be a door even if
it did not move during the experiment (assuming that all doors bare the same color).

An Introduction to the Problem of Mapping in Dynamic Environments

305

4.2.1 The ROMA algorithm
The Robot Object Mapping Algorithm (ROMA), also found as Dynamic Occupancy Grid
Mapping Algorithm (DOGMA), (Biswas et al., 2002) aims at the identification of moving
objects and the extraction of their models, at learning in other words, the models of the low
dynamic objects of the environment. To learn these models, we assume that the robot maps
the environment at different points in time, between which the configuration of the
environment may have changed. Each map is represented as a static occupancy grid map.
By using a simple map differencing technique, we can detect the dynamic areas of the
environment. The result is a list of “snapshots” of low dynamic objects, each represented by
a local occupancy grid map. Two such snapshots of the same low dynamic object (e.g. a
chair) might be completely different from each other. The object might be translated and
rotated in a different way in the two snapshots. In order to group the snapshots that
correspond to the same object, a modified Expectation Maximization (EM) algorithm is
applied.
The algorithm uses the following two steps:
a. Step 0: The robot observes the dynamic environment and generates snapshots of the

low dynamic objects.
b. Step 1: The EM algorithm is applied:

a) E step: Create correspondences between the different snapshots based on the
estimated models of the objects.

b) M step: Create the models of the objects based on the correspondences.
The analysis of these steps follows below.
Step 0. Create initial snapshots
The robot explores the environment (which is assumed to remain static or to change slowly)
and acquires sensor values. Based on these measurements, the areas of the environment that
contain dynamic objects are identified with the use of a simple differencing technique. The
areas that are occupied in some maps and free in other indicate low dynamic objects. From
these areas, snapshots of these objects are extracted.
Step 1. Apply the EM algorithm
The EM algorithm is applied in order to associate snapshots on different occupancy maps
with specific objects.
In the E step of the EM algorithm, correspondences between different snapshots at different
points in time are established. Based on the models found on the M step, we associate
snapshots at different time points and we estimate the best rotational and translational
parameters so that the snapshot will match with the estimated model of the moving object.
In the M step, these probabilistic correspondences are used to regenerate new estimates for
the object models. We combine the snapshots that correspond to the same object and we
create the most probable model of the object.
By iterating between the E and the M step, we will finally converge to the correct models of
the low dynamic objects and their correspondences in the occupancy grid maps. However,
as we do not know in advance the number of moving objects in the robot environment, we
have to run EM in a number of times with different number of possible moving objects,
starting from the lower bound of the number of objects (the maximum number of objects
identified in a single map). The number of objects that maximizes the probability of the
detected snapshots given the models of the moving objects while minimizes a penalty factor

 Tools in Artificial Intelligence

306

(large numbers of objects are assumed to be less possible) is selected as the best choice. An
advantage of the ROMA is the fact that it can identify objects that can take any arbitrary
position in the environment (assuming that they move slowly). It does not require the
objects to be positioned in specific areas, since it is based on the shape similarity of the
moving objects. However, the fact that it identifies an object’s occurrences based on its shape
can lead to incomplete results. Objects that are partially observed (if for example placed next
to walls or to other objects) might not be successfully correlated to their other occurrences in
the environment.
The Hierarchical Object Mapping algorithm
An extension of the ROMA algorithm was presented in (Anguelov et al., 2002). The basic
purpose of this work were to extract not only the model of the moving objects but also
possible object templates. This approach is able to generalize across different object
templates, as long as they model objects of the same type. It uses again an extension of the
EM algorithm. It has been shown that this approach performs better than ROMA.

4.2.2 Stachniss & Burgard approach
In this approach (Stachniss & Burgard, 2005), the information about changes in the
environment during robot exploration was used to estimate possible spatial configurations
(examples in Fig. 4). A number of snapshots of the environment at different time intervals
were collected and clustering was used to create groups of common snapshots.

Fig. 4. Different configurations of an environment with three doors.

With this approach, low dynamic objects that lay in the robot environment can be identified.
This algorithm assumes that the environment remains static during every time interval of
exploration.
The algorithm uses the following two steps:
a. Step 0: The robot observes the dynamic environment at different time intervals and

creates a number of sub-areas.
b. Step 1: For each sub-area, we apply a clustering technique to create similar

configurations into groups.
The analysis of these steps follows below.
Step 0. Data Acquisition – Sub-areas creation
The robot explores the environment (which is assumed to remain static or to change slowly)
and acquires sensor values. Based on these measurements, the areas of the environment that
contain dynamic objects are identified. The environment is then segmented into local areas,
called sub-maps, so that each sub-map contains a small number of dynamic areas.

An Introduction to the Problem of Mapping in Dynamic Environments

307

Step 1. Clustering occupancy grids
For every sub-map created in the previous step, the occupancy grids are generated from the
sensor values collected earlier. Each occupancy grid captures the state of the sub-map at a
given time period. By clustering the occupancy grids for every sub-map separately, we can
create groups of similar occupancy grids. Each such group denotes a different configuration
of the sub-map.
It is a necessity to create sub-maps of the environment. If we did not, we would have to
store a number of maps that would be exponential in the number of dynamic objects. This
means that we would need a huge number of occupancy maps of the whole environment to
successfully cluster them into groups. Instead, by splitting the environment into sub-areas,
we need a smaller number of smaller occupancy grid maps.
In order to cluster the occupancy grids, we transform the grids into a vector of probability
values from 0 to 1 with the additional value of ξ. The ξ value represents an unobserved cell.
When comparing two such vectors a and b, the following similarity measure has been
shown to give good results:

(),
d(,) 0,

,

i i i i

i i
i

a b a b
b a b

e otherwise

ξ ξ
α ξ ξ

− ≠ ∧ ≠⎧
⎪= = ∧ =⎨
⎪
⎩

∑ (6)

where e is a number close to zero.
 Then, a fuzzy k-means algorithm is used (Duda et al, 2001). In order to estimate the correct
number of clusters (not known in advance), we iterate over the number of clusters and
compute in each step a model using the fuzzy k-means algorithm. In each iteration, we
create a new cluster initialized using the input vector which has the lowest likelihood under
the current model. We then evaluate every model with the Bayesian Information Criterion
(BIC) (Schwarz, 1978). The model with the biggest BIC is selected as the best representation
of the environment.

4.2.3 Extended temporal occupancy grid algorithm
The key idea of this approach is to use an extended Temporal Occupancy Grid to preserve
the occupancy history of the environment. The values stored in the grid are processed to
extract information about the possible configurations of the environment.
With this approach, low dynamic objects can be detected without any prior knowledge of
the object shape or motion. This algorithm does not assume that the environment remains
static during the robot exploration. On the contrary, in order to correctly detect the dynamic
objects, it demands that these objects move fairly enough in order to be distinguished from
the static or the high dynamic objects.
The algorithm uses three steps:
a. Step 0: The robot explores the dynamic environment and fills the extended Temporal

Occupancy grid with occupancy values.
b. Step 1: Find possible object configurations by grouping neighbouring cells that follow

the same pattern of occupancy evolution
c. Step 2: Identify which configurations found in the previous step belong to the same

object.
The analysis of these steps follows.

 Tools in Artificial Intelligence

308

Step 0. Data Acquisition
The robot explores the environment and acquires sensor values. These values are stored in
the eTOG. The environment is assumed to be active during the exploration, meaning that
low dynamic objects must change their positions thus different configurations of the
environment are observed. One single pass of the environment is sufficient to identify all the
low dynamic objects that were observed to move.
Step 1. Find possible configurations
In order to identify different configurations of the environment, we safely assume that a low
dynamic object covers more than one cell in the environment (a door, for example, might
cover three or more cells). Such an object falls into different configurations/ states (in the
previous example, the states could be open and closed). In order to detect these
configurations, we search through the history of all cells to find neighbouring cells that
change with the same motif. These cells correspond to one of the possible configurations of
the object. For example, in the case of a door, all cells of the closed door configuration would
have the same values, regardless of the door’s state (occupied if the door is closed, free if it is
opened). To find cells that change with the same motif, we treat the values in the leaf nodes
of the cells as Time Series (collections of observations made sequentially in time) that
describe the cells occupancy. A single time series describes the evolution of the occupancy of
the corresponding cell over time. Similar time series indicate similar cell occupancies. Thus,
in order to find a single configuration of a moving object, we aim in finding neighbouring
cells with similar time series. To do so, a clustering algorithm is applied.
To cluster time series, we need to define an appropriate distance function. There exist
various similarity measures in the data mining community. A simple yet effective function
is the Minkowski distance:

 p
n

i

p
ii ttTT ∑

=

−=
1

,2,121Mink ||),(D (7)

Any other distance measure can be applicable.
At first, an agglomerative hierarchical clustering algorithm (Jain et al., 1999) is applied. In
hierarchical clustering the data is not partitioned into a particular cluster in a single step.
Instead, a series of partitions takes place. In each partition, two clusters are combined
according to their distance to create a new cluster. The number of clusters is not given as an
input. The algorithm keeps merging clusters until a given threshold (in the distance of two
just merged clusters) is reached. The choice of an appropriate threshold is intuitive and
depends on the data to be clustered.
The agglomerative clustering will generate a clustering where every cluster contains similar
time series. Most probably each cluster will contain only one moving object. However, in the
extreme case that two dynamic objects have similar change rate, the cluster will contain time
series of more than one dynamic object. To avoid this case, we post process the generated
clusters in order to create sub-clusters of both similar and neighbouring time series. To do
so, we apply a second clustering algorithm, a DBSCAN algorithm (Ester et al., 1996) in order
to group neighbouring time series. DBSCAN is a density based clustering that creates
groups of data objects. Each of the objects in a group has at least one other object with
distance less than a given threshold. DBSCAN does not require the number of clusters as an
input to the algorithm and can create groups of arbitrary shapes. So, the DBSCAN algorithm

An Introduction to the Problem of Mapping in Dynamic Environments

309

gets as input the cell coordinates of the time series of every agglomerative cluster extracted
by the first clustering and groups them into dense clusters. Eventually, after the two
clustering algorithms, the low-dynamic object configurations will have been found.
Step 2. Associate Configurations
In this step, we search for correlations among the configurations found in the previous step,
for patterns that represent different configurations of the same object. The simpler case is the
case of two-state objects, i.e. objects that can appear in two different positions. In such
objects, their configurations are complementary; when the one is occupied the other one is
free. Thus, in order for two different patterns to belong to the same object, their combined
Time Series must contain the occupied value at any time.
Following the same rationale, we can search for objects with three, four, five etc different
configurations. The difference is that we have to combine and evaluate more than two Time
Series. In order for the algorithm to correctly associate the different patterns, the moving
objects must change their positions with different time rates. If, for example, two doors
follow the same motion pattern, the algorithm will be confused in the pattern association
step. We have to keep in mind that the quality of the associations drops with the increase of
the number of the states of the objects.
Experimental results can be found in Fig.5.

Fig. 5. The environment (yellow line indicates the robot path) and the experimental results
of the eTOG algorithm. Associations between different configurations are indicated with a
line that connects them.

4.3 Mapping in populated environments
Populated environments are highly dynamic environments where a lot of people move
within them, e.g. crowded museums, metro stations at rush hour, supermarkets. The main
difficulty in mapping those environments is the fact that many sensor measurements
correspond to dynamic objects rather than static areas of the environment. So, the extraction
of the model of the environment might contain spurious objects that reduce the quality of
the generated maps.
There exist two categories of methods for dealing with populated environments both aiming
at discovering the high dynamic objects and omitting them during the mapping phase. Their
difference lies in the fact that the algorithms in the first category apply filters in order to
track the moving objects while those in the second category apply statistical methods to
identify the measurements that correspond to dynamic objects. There exist a variety of

 Tools in Artificial Intelligence

310

tracking techniques in the literature. In this section, we present a short introduction on
techniques that have been applied successfully in the problem of mapping populated
environments.
Regarding the tracking category, a number of filtering techniques have been used. When a
single object is being tracked, its state can be estimated using algorithms such as the Kalman
Filter, Extended Kalman Filter and Particles Filter (Bellotto & Hu, 2007).
Multiple objects tracking can be seen as the same problem with higher complexity. With
multiple objects there is the additional difficulty of distinguishing one target from the other
(data association). The complexity of solving the data association problem grows
exponentially with the number of targets. Moreover, the number of different objects in the
environment is also unknown and has to be derived from the observations. Once the
number of objects is known, the data association allows the evolution of the filter associated
to each object.
A common approach consists of using one Kalman Filter per target and solves data
association independently for each track. This method is simple but as it examines each
moving object separately it can lead to multiple associations of the single measurement with
different moving objects. To deal with this problem, several approaches have been
proposed, including Joint Probabilistic Data Association Filters (JPDAFs) (Hähnel et al.,
2003a), Multi Hypothesis Tracking (MHT) (Mucientes & Burgard, 2006) and Particle
Filtering. Also, combinations of these methods have been proposed such as the SJPDAFs
that combine particle filters with JPDAF. Further information can be found in (Hähnel et al.,
2003a), (Hähnel, 2004).
A framework for the solution of the detection and tracking of moving objects (DTMO)
problem is presented in (Wang & Thorpe, 2002). The authors use the static-dynamic grids
approach (c.f. Section 3.3) in order to detect the moving objects in the robot’s environment.
In order to track the objects, they apply a matching technique between the current state of
the environment and the previous one stored in the grid. When the best match between the
two states is found, information about the moving object can be extracted. In their next work
(Wang et al., 2003), they present a Bayesian formulation of the Simultaneous Localization
and Mapping problem (SLAM) with the DTMO problem. In order to track moving objects, a
motion based detector is used. Then a Multiple Hypothesis Tracking method is applied to
find the associations between current and previously found dynamic objects. When the
associations are found, we can conclude on the motion of this moving object and predict its
future position.
Regarding the second category of solutions, filtering techniques are used in (Fox et al., 98) to
detect humans in the vicinity of the robot (on a known environment). A distance filter is
applied to filter out all measurements that are found to be shorter than expected. Also, an
entropy filter is implemented to measure the uncertainty of the measurements. Those
measurements that are found to increase the uncertainty of the system are ignored.
In (Hähnel et al., 2003c), an EM algorithm was used to learn which measurements
correspond to static objects. In the expectation step, an estimation is made on which
measurements might correspond to static parts of the environment while in the
maximization step, the position of the robot is calculated with respect to the considered
static areas of the estimation step. By iterating between the two steps we can generate high
quality maps with significantly less dynamic objects that if we used a common algorithm for
static environments. This technique can be also applied in dynamic environments with the
same results.

An Introduction to the Problem of Mapping in Dynamic Environments

311

5. Conclusions and outlook
In this chapter, we have presented, in short, the major algorithms in the field of mapping
dynamic environments. We categorize the objects in the robot environments into three
categories (static, low dynamic and high dynamic objects) and for each category, we present
a number of solutions proposed so far in the literature. Special attention is paid on the
occupancy grid structure and its variations that have been applied on dynamic
environments giving promising results. Of course, it was not possible to cover all the
available techniques or examine relative to mapping issues, such as localization and
navigation.
Summarizing, we can state that there exist a number of promising algorithms for mapping
in dynamic environments. These algorithms are able to create valid maps of the static areas
of the world and detect and model (low or high) dynamic objects in the robot environment.
Nevertheless, a large number of challenging issues still remains to be solved. First of all,
many algorithms that are presented in this work are not real-time. They make use of iterative
techniques (e.g. EM, clustering) with execution times that depend on the size of the data.
The necessity for real-time algorithms is obvious. A robot must be able to identify its
environment rapidly in order to react on time. This need is more urgent while navigating
outdoors. Outdoor mapping is an issue that remains open. Streets, parks and garages are
some examples of places where a mobile robot can be of extreme usefulness. However, these
environments pose new challenging issues. Their rate of change, complexity and size make
many existing algorithms inapplicable and impose the need for new algorithms suitable for
the special characteristics of such environments (some examples can be found in (Nuchter et
al., 2007) and (Yoon et al., 2007)).
In order to deal with these problems, an interesting direction that has to be investigated is
the combination of computer vision with laser data. So far, only a few algorithms have
applied techniques borrowed from the computer vision field e.g. (Anguelov et al., 2004),
(Yoon et al., 2007). Vision, however, can provide a wealth of information about the state of
the environment (such as humans walking by the robot or chairs in the middle of a room)
and it can be really helpful in the task of object identification. The combination of vision and
laser data can provide important information about the robot environment.
Another way to gain more information about the objects that surround the robot is to
acquire 3D laser range data of them e.g. (Hahnel et al., 2003b), (Ryde & Hu, 2006), (Harati &
Siegwart, 2007). Humans possess a complete prior knowledge of the model of the objects in
the environment and can easily distinguish two different objects even when they are
partially observed in contrast to modern robots. To bridge the gap between human
perception and robot perception of the environment, we can utilize 3D laser data that
provide more information including information about the objects’ shapes.
To conclude, the problem of mapping in dynamic environments is a really challenging and
extremely active research field in robotics. In the future, we will be able to design robots that
will be capable of moving among humans in their own environments without interrupting
human activities. In order to do that, a milestone that has to be reached is a complete
solution to the problem of mapping dynamic environment.

6. Acknowledgments
This work was supported by the European Commission and the Hellenic General Secretariat
for Research and Technology, under Measure 3.3 of the Operational Programme

 Tools in Artificial Intelligence

312

”Information Society” in the 3rd Community Support Framework (Project name:
DIANOEMA, ID:35).

7. References
Andrade-Cetto, J. & Sanfeliu, A., (2002), Concurrent Map Building and Localization on

Indoor Dynamic Environments, International Journal on Pattern Recognition and
Artificial Intelligence, Vol 16, pages 361-374

Anguelov, D.; Biswas, R.; Koller, D. Limketkai, B. & Sebastian Thrun (2002), Learning
Hierarchical Object Maps Of Non-Stationary Environments With Mobile Robots,
Eighteenth Conference on Uncertainty in Artificial Intelligence (pp. 10-17)

Anguelov, D.; Koller, D.; Parker, E. & Thrun, S. (2004), Detecting and modeling doors with
mobile robots, In Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA)

Arbuckle, D.; Howard, A. & Mataric. M. J. (2002). Temporal occupancy grids: a method for
classifying spatio-temporal properties of the environment, IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 409–414, Lausanne,
Switzerland

Avots, D.; Lim, E.; Thibaux, R. & Thrun. S.(2002) A probabilistic technique for simultaneous
localization and door state estimation with mobile robots in dynamic
environments, Proceedings of the Conference on Intelligent Robots and Systems
(IROS), Lausanne, Switzerland

Bellotto, N. & Hu, H. (2007), People Tracking with a Mobile Robot: a Comparison of Kalman
and Particle Filters, 13th IASTED International Conference on Robotics and
Applications (RA 2007), Germany

Biber, P. and Duckett, T. (2005) Dynamic maps for long-term operation of mobile service
robots, In Robotics Science and Systems

Birk, A., Carpin, S., (2006) Merging Occupancy Grid Maps From Multiple Robots, PIEEE(94),
No. 7, pp. 1384-1397

Biswas, R.; Limketkai, B.; Sanner, S. & Thrun, S. (2002) Towards Object Mapping in Dynamic
Environments With Mobile Robots, Conference on Intelligent Robots and Systems
(IROS), Lausanne, Switzerland

Dempster, A.P.; Laird, N.M. & Rubin. D.B., (1977), Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society, Series B, pages
1–38

Duda, R.; Hart, P.; & Stork, D. , (2001), Pattern Classification. Wiley-Interscience
Elmasri, R.; Wuu, G. T. & Kim. Y. J. (1990). The time index: An access structure for temporal

data, 16th VLDB, pages 1–12
Ester, M.; Kriegel, H.-P.; Sander, J. & X. Xu, (1996), A density-based algorithm for

discovering clusters in large spatial databases with noise. In Second International
Conference on Knowledge Discovery and Data Mining, pages 226– 231, Portland,
Oregon

Fox, D.; Burgard, W.; Thrun, S. & Cremers, A.B, (1998), Position estimation for mobile robots
in dynamic environments, Proceedings of the AAAI Fifteenth National Conference
on Artificial Intelligence

An Introduction to the Problem of Mapping in Dynamic Environments

313

Gutmann, J. & Konolige, K., (1999), Incremental mapping of large cyclic environments, the
IEEE International Symposium on Computational Intelligence in Robotics and
Automation (CIRA), pages 318–325, Monterey, California

Hähnel, D. (2004), Mapping with Mobile Robots. PhD thesis, Fakultät für Angewandte
Wissenschaften, Universität Freiburg

Hähnel, D.; Schulz, D. & Burgard, W., (2003a) Mobile robot mapping in populate
environments, Advanced Robotics, Volume 17, pages 579-597(19)

Hähnel, D.; Thrun, S. & Burgard, W. (2003b), An Extension of the {ICP} Algorithm for
Modeling Nonrigid Objects with Mobile Robots, Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI), Mexico

Hähnel, D., Triebel, R., Burgard, W. & Thrun, S., (2003c), Map Building with Mobile Robots
in Dynamic Environments, In Proceedings of the International Conference on
Robotics and Automation (ICRA), pages 1557-1563

Harati, A. and Siegwart, R. (2007), Orthogonal 3D-SLAM for Indoor Environments Using
Right Angle Corners, The 3rd European Conference on Mobile Robotics (ECMR)
2007, Freiburg, Germany

Jain, A. K.; Murty, M. N. & P. J. Flynn, (1999), Data clustering: a review, ACM Computer
Surveys, pages 264–323

Larionova, S.; Marques, L. & de Almeida, T. , (2006) Detection of Natural Landmarks for
Mapping by a Demining Robot, IEEE International Conference on Intelligent
Robots and Systems (IROS), pages 4959-4964

Latecki, L. J. & Lakaemper, R. (2006), Polygonal Approximation of Laser Range Data Based
on Perceptual Grouping and EM, IEEE International Conference on Robotics and
Automation (ICRA), Orlando, Florida

Mitsou, N. & Tzafestas, C. (2007), Temporal Occupancy Grid for mobile robot dynamic
environment mapping, in the 15th IEEE Mediterranean Conference on Control and
Automation, MED'07, Athens, Greece

Moravec, H. P. (1988). Sensor Fusion in Certainty Grids for Mobile Robots, AI Magazine,
Vol. 9, No. 2, pp. 61-74

Moravec, H. P. & Elfes, A. E. (1985), High Resolution Maps from Wide angle Sonar,
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA’85), pp. 116-121, St. Louis, Missouri

Mucientes M. & Burgard W., (2006), Multiple Hypothesis Tracking of Clusters of People,
2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing,
China

Nuchter, A.; Lingemann, K.; Hertzberg J. & Surmann, H., (2007), 6D SLAM—3D mapping
outdoor environments, Journal of Field Robotics

Ooi, B. C. & Tan. K. L. (2002). B-trees: Bearing fruits of all kinds, Thirteenth Australasian
Database Conference (ADC2002), Melbourne, Australia

Ryde, J. & Hu, H. (2006), Mutual localisation and 3D mapping of cooperative mobile robots,
The 9th International Conference on Intelligent Autonomous Systems (IAS-9),
Tokyo, Japan, pages 217-224

Salzberg, B. & Tsotras, V. (1999), Comparison of access methods for time-evolving data,
ACM Computing Surveys (CSUR)

Schulz, D. & Burgard, W., (2001), Probabilistic state estimation of dynamic objects with a
moving mobile robot, Robotics and Autonomous Systems, pages 107–115

 Tools in Artificial Intelligence

314

Schwarz, G., (1978), Estimating the dimension of a model, The Annals of Statistics 6(2)
Stachniss, C. & Burgard, W. (2005). Mobile robot mapping and localization in non-static

environments, Proceedings of the National Conference on Artificial Intelligence,
Pittsburgh, USA

Suau, P., (2005), Robust Artificial Landmark Recognition Using Polar Histograms, Intelligent
Robotics (IROBOT 2005) Chapter 7 - pages 455-461

Tanaka, K. & Kondo, E., (2006) Towards Real-Time Global Localization in Dynamic
Unstructured Environments, Special Issue on Advanced Technology of Vibration
and Sound pp.905-911

Thrun, S. (2002), Robotic Mapping: A Survey, Exploring Artificial Intelligence in the New
Millenium, Morgan Kaufmann

Thrun, S. (2003), Learning Occupancy Grid Maps with Forward Sensor Models, Journal of
Autonomous Robots, vol. 15, pages 111-127

Wang, C.-C. & Thorpe. C, (2002), Simultaneous Localization and Mapping with Detection
and Tracking of Moving Objects. In IEEE International Conference on Robotics and
Automation (ICRA'02)

Wang, C.-C.; Thorpe. C, & Thrun. S, (2003), Online Simultaneous Localization and Mapping
with Detection and Tracking of Moving Objects: Theory and Results from a Ground
Vehicle in Crowded Urban Areas. In IEEE International Conference on Robotics
and Automation (ICRA'03)

Wang, H.; Hou, Z & Tan, M., (2007), Mapping Dynamic Environment Using Gaussian
Mixture Model, 6th IEEE International Conference on Cognitive Informatics
(ICCI'07)

Wolf, D. & Sukhatme, G. (2004), Online simultaneous localization and mapping in dynamic
environments, IEEE International Conference on Robotics and Automation, pages
1301–1306

Wolf, D. & Sukhatme, G. (2005), Mobile Robot Simultaneous Localization and Mapping in
Dynamic Environments, Journal of Autonomous Robotics, Volume 19, pages = 53-
65

Yamauchi, B. & Beer, R. (1996), Spatial learning for navigation in dynamic environments.
IEEE Transactions on Systems, Man and Cybernetics, Special Issue of Learning
Autonomous Robots, pages 496– 505

Yoon, S.; Sung-Kee, P.; Choi, H. D.; Kim, S. & Kwak, Y. K. (2007), ViSion-Based Outdoor
Simultaneous Localization and Map Building Using Compressed Extended Kalman
Filter, European Control Conference (ECC07), Kos, Greece

Zhang, L. & Ghosh, B.K., (2000), Line segment based map building and localization using
2D laserrangefinder, IEEE International Conference on Robotics and Automation,
ICRA '00, pages 2538-2543

Zimmer, U. (1995), Adaptive Approaches to Basic Mobile Robot Tasks. PhD thesis,
University of Kaiserslautern

18

Inductive Conformal Prediction:
Theory and Application to Neural Networks

Harris Papadopoulos
Frederick University

Cyprus

1. Introduction
Traditional machine learning algorithms for pattern recognition just output simple
predictions, without any associated confidence values. Confidence values are an indication of
how likely each prediction is of being correct. In the ideal case, a confidence of 99% or
higher for all examples in a set, means that the percentage of erroneous predictions in that
set will not exceed 1%.
Knowing the likelihood of each prediction enables us to assess the extent to which we can
rely on it. For this reason, predictions that are associated with some kind of confidence
values are highly desirable in many risk-sensitive applications, such as those used for
medical diagnosis or financial analysis. In fact, such information can benefit any application
that requires human-computer interaction, as confidence values can be used to determine
the way in which each prediction will be treated. For instance, a filtering mechanism can be
employed so that only predictions which satisfy a certain level of confidence will be taken
into account, while the rest can be discarded or passed on to a human for judgement.
There are two main areas in mainstream machine learning that can be used in order to
obtain some kind of confidence values; the Bayesian framework and the theory of Probably
Approximately Correct learning (PAC theory). Quite often the Bayesian framework is used
for producing algorithms that complement individual predictions with probabilistic
measures of their quality. On the other hand, PAC theory can be used for producing upper
bounds on the probability of error for a given algorithm with respect to some confidence
level 1 − δ. Both of these approaches however, have their drawbacks.
In order to apply the Bayesian framework one is required to have some prior knowledge
about the distribution that generates the data. When the correct prior is known, Bayesian
methods provide optimal decisions. For real world data sets though, as the required
knowledge is not available, one has to assume the existence of an arbitrarily chosen prior. In
this case, if the assumed prior is incorrect, the resulting confidence levels may also be
“incorrect”; for example the predictive regions output for the 95% confidence level may
contain the true label in much less than 95% of the cases. This signifies a major failure, as we
would expect confidence levels to bound the percentage of expected errors. An experimental
demonstration of how misleading Bayesian methods can become when their assumptions
are violated can be found in (Melluish et al., 2001).

 Tools in Artificial Intelligence

316

PAC theory on the contrary, only assumes that the data are generated by some completely
unknown i.i.d. distribution. There are some PAC methods that are capable of establishing
non-trivial bounds that might be interesting in practice. In order for them to do so though,
the data set should be particularly clean. If this is not the case, which is not for the majority
of data sets, the bounds obtained from these methods are very loose and as such they are
not very useful in practice. A demonstration of the crudeness of PAC bounds can be found
in (Nouretdinov et al., 2001a), where there is an example of Littlestone and Warmuth’s
bound (found in (Cristianini & Shawe-Taylor, 2000), Theorems 4.25 and 6.8) applied to the
USPS data set. In addition, PAC theory has two other drawbacks: (a) the majority of relevant
results either involve large explicit constants or do not specify the relevant constants at all;
(b) the bounds obtained by PAC theory are for the overall error and not for individual test
examples.
A new approach to obtaining confidence values was suggested in (Saunders et al., 1999) and
(Vovk et al., 1999), where what we call in this chapter “Conformal Prediction” (CP) was
proposed. Conformal Predictors are built on top of traditional algorithms, called underlying
algorithms, but unlike the latter they complement each of their predictions with a measure
of confidence; they also produce a measure of “credibility”, which serves as an indicator of
how suitable the training data are for classifying the example.
In contrast to Bayesian methods, CPs give probabilistically valid results, as they are only
based on the general i.i.d. assumption; a comparison between Bayesian methods and CPs
can be found in (Melluish et al., 2001). Furthermore, unlike PAC theory, they produce
confidence measures that are useful in practice and are associated with individual test
examples. Different variants of CPs are described in the papers (Saunders et al., 1999;
Nouretdinov et al., 2001b; Proedrou et al., 2002; Papadopoulos et al., 2008). The results
reported in these papers show that not only the confidence values output by CPs are useful
in practice, but also that their accuracy is comparable to, and sometimes even better than,
that of traditional machine learning algorithms.
The only disadvantage of CPs is their relative computational inefficiency. This is due to the
use of transductive inference, since all computations have to start from scratch for every test
example. Unfortunately, this computational inefficiency problem renders the application CP
highly unsuitable for any approach that requires long training times such as Neural
Networks. For this reason, a modification of the original CP approach called “Inductive
Conformal Prediction” (ICP) was proposed in (Papadopoulos et al., 2002a) for regression
and in (Papadopoulos et al., 2002b) for pattern recognition. As suggested by its name, ICP
replaces the transductive inference used in the original approach with inductive inference.
As a result, ICPs are almost as computationally efficient as their underlying algorithms.
This chapter gives a detailed study of ICP and describes its application to Neural Networks,
which is one of the most widely used approaches for solving machine learning problems.
The next Section summarises the general idea of Conformal Prediction, while Section 3
details the way CPs and ICPs work and analyses the impact that the choice between
trunsductive and inductive inference has on the performance of Conformal Prediction. Note
that in order to differentiate clearly between the original CP and ICP approaches, the former
will be mostly called Transductive Conformal Prediction (TCP). Section 4 explains the
application of ICP to Neural Networks, first presented in (Papadopoulos et al., 2007), and
Section 5 lists some experimental results obtained by testing the Neural Networks ICP on
benchmark data sets. Finally, Section 6 presents the conclusions of the chapter.

Inductive Conformal Prediction: Theory and Application to Neural Networks

317

2. Conformal prediction
This Section gives an outline of the main idea behind conformal prediction; for more details
see (Vovk et al., 2005). We are given a training set (z1, …, zl) of examples, where each Z∈iz

is a pair (xi, yi); ∈ d
ix is the vector of attributes for example i and yi is the classification for

that example. We are also given a new unclassified example xl+1 and our task is to predict
the classification yl+1 of this example. We know a priori the set of all possible labels Y1, …, Yc
and our only assumption, as with all the problems we are interested in, is the general i.i.d.
model (z1, z2,… are independent and identically distributed). Now suppose we can measure
how likely it is that a given sequence of classified examples were drawn independently from
the same probability distribution; in other words how typical the sequence is wrt the i.i.d.
model. Then by measuring the typicalness of the extended sequence

 1 1 1((,),...,(,),(,))l l l jx y x y x Y+ (1)

we would in effect be measuring the likelihood of the label Yj being the true label of our new
example xl+1, since this is the only component of our sequence that was not given to us. In
the spirit of (Martin-Löf, 1966), a function p: Z* → [0,1] is a test for randomness wrt the i.i.d.
model if
• δ∀ ∈ ∀ ∈ , [0,1]n and for all probability distributions P on Z,

 { : () } ;n nP z Z p z δ δ∈ ≤ ≤ (2)

• p is semi-computable from above.
We will use the term p-value function to refer to such a function, since this definition is
practically equivalent to the notion of p-values used in traditional statistics. In effect, the
second requirement, that p is semi-computable from above, is completely irrelevant from the
practical point of view, since the p-value functions of any interest in applications of statistics
are always computable.
Therefore, we can obtain the typicalness of a sequence of examples by using a computable
function p: Z* → [0,1] which satisfies (2). We will call the output of this function for the
sequence

 1 1 1((,),...,(,),(,))l l l jx y x y x Y+ (3)

(where Yj is one of the c possible labels of our new example) the p-value of Yj and denote it
by p(Yj). If the p-value of a given label is under some very low threshold, say 0.05, this
would mean that this label is highly unlikely, since such sequences will only be generated at
most 5% of the time by any i.i.d. process.
A p-value function can be constructed by considering how different each example in our
sequence is from all other examples. In order to formalize the fact that the order in which
examples appear should not matter we use the concept of a bag (also called a multiset); we
write 1 ,..., nz z to denote the bag consisting of the elements 1 ,..., nz z . We use a family of

functions (1): ,n
nA Z Z− × → n = 1, 2, …, which assign a numerical score

 1 1 1(,..., , ,..., ,),i n i i n iA z z z z zα − += (4)

 Tools in Artificial Intelligence

318

to each example zi, indicating how different it is from the examples in the bag
1 1 1,..., , ,...,i i nz z z z− + ; such families of functions are called nonconformity measures. The

nonconformity scores of all examples can now be used for computing the p-value of our
sequence with the function

 1
#{ 1,..., : }(,...,) .i n

n
i np z z

n
α α= ≥

= (5)

This function satisfies (2); a proof can be found in (Nouretdinov et al., 2001a).

2.1 Measuring nonconformity
We can measure the nonconformity iα of each example zi in a bag 1 ,..., nz z with the aid of
some traditional machine learning method, which we call the underlying algorithm of the CP.
Given a bag of examples 1 ,..., nz z as training set, each such method creates a prediction

rule
1 ,..., nz zD , which maps any unclassified example x to a label ŷ . As this prediction rule is

based on the examples in the bag, the deviation of the predicted label

1 ,...,

ˆ ()
ni iz zy D x= (6)

from the actual label yi of the example zi tells us how different zi is from the rest of the
examples in the bag. Therefore, this deviation gives us a measure of the nonconformity of
example zi.
Alternatively, we can create the prediction rule

1 1 1,..., , ,...,i i nz z z zD
− +

 using all the examples in the
bag except zi, and measure the deviation of

1 1 1,..., , ,...,

ˆ ()
i i ni iz z z zy D x
− +

= (7)

from yi.

3. Transductive and inductive conformal predictors
This Section gives a general description of the way Transductive and Inductive Conformal
Predictors work and analyses their differences. Before focusing on Conformal Predictors, it
first looks at the main concepts of Transductive and Inductive inference. It then details the
steps that the two approaches follow and explains the meaning of the confidence and
credibility measures they produce. This is followed by the presentation of an alternative
mode in which CPs can be used and a discussion about the difference between the validity
and the usefulness of their results. Finally, it compares the two approaches both in terms of
computational efficiency and accuracy.

3.1 Transductive and inductive inference
The difference between transductive and inductive inference is very informal and far from
being clear-cut. In this subsection we describe the main idea behind each one, so that the
difference between Transductive and Inductive Conformal Prediction becomes clearer.
In inductive inference, we use our training set to generate a more or less general “rule” (or
“model”, or “theory”) about the data, which we then apply to each test pattern to obtain our

Inductive Conformal Prediction: Theory and Application to Neural Networks

319

predictions. Hence all the information we need from the training set are incorporated into
our general “rule” and we do not make any direct use of the training examples in order to
produce each prediction. In Transductive inference on the other hand, the first step,
generating a general “rule”, is skipped. Thus no processing is applied to the training set
beforehand and all our computations are based on each individual test example, using the
actual training set for deriving our prediction.

3.2 Transductive conformal prediction
The general steps the Transductive Conformal Prediction approach follows for a given input
vector xl+g are:
• Consider all possible classifications Y1, . . . , Yc and apply the underlying algorithm to

every one of the possible completions

1 1 1

1 1

(,),...,(,),(,)
:

(,),...,(,),(,)

l l l g

l l l g c

x y x y x Y

x y x y x Y

+

+

 (8)

• For every possible completion Yj, assign a nonconformity score to each training
example (x1, y1), . . . , (xl, yl) and to the pair (xl+g, Yj). This process will result in the
sequences

1 1 1() () ()
1

() () ()
1

,..., ,
:

,..., ,c c c

Y Y Y
l l g

Y Y Y
l l g

α α α

α α α

+

+

 (9)

• Compute the p-value for xl+g being classified as each possible label Yj by applying (5) to
the corresponding sequence

 () () ()
1 ,..., , .j j jY Y Y

l l gα α α + (10)

So that

() ()#{ 1,..., , : }

() .
1

j jY Y
i l g

j

i l l g
p Y

l
α α += + ≥

=
+

 (11)

• Predict the classification with the largest p-value.
• Output as confidence to this prediction one minus the second largest p-value, and as

credibility the p-value of the output prediction, i.e. the largest p-value.
Note that this process, which includes the application of the CPs underlying algorithm c
times, is repeated for each input vector xl+1,…, xl+r. This is the cause of the computational
inefficiency of the original CP approach.

3.3 Inductive conformal prediction
Inductive Conformal Prediction splits the training set into two parts, the proper training set
and the calibration set. It then applies the underlying algorithm to the proper training set and
uses the examples in the calibration set together with the new example to compute the

 Tools in Artificial Intelligence

320

p-value for each possible classification. As a result, it only needs to apply the underlying
algorithm once. The general steps inductive conformal prediction follows are:
• Split the training set into two smaller sets, the proper training set with m := l − q

examples and the calibration set with q examples; where q is a parameter of the
algorithm.

• Use the proper training set (z1,…,zm) to generate a general rule
1 ,..., mz zD for classifying

new examples; this general rule is created by the underlying algorithm.
• Assign a nonconformity score to each one of the examples in the calibration set. This

will result in the sequence 1 ,..., .m m qα α+ +
• For each input vector : 1,..., ,l gx g r+ =

• consider each possible classification Yj : j = 1,…,c and compute the nonconformity
score ()jY

l gα + of each pair (xl+g, Yj).
• Compute the p-value for xl+g being classified as each possible label Yj by applying

(5) to the nonconformity scores of the calibration examples together with ()jY
l gα + :

 ()
1 ,..., , .jY

m m q l gα α α+ + + (12)

So that

()#{ 1,..., , : }

() .
1

jY
i l g

j

i m m q l g
p Y

q
α α += + + + ≥

=
+

 (13)

• Predict the classification with the largest p-value.
• Output as confidence to this prediction one minus the second largest p-value, and

as credibility the p-value of the output prediction, i.e. the largest p-value.
The parameter q in the above scheme determines the number of training examples that will
be allocated to the calibration set and the nonconformity scores of which will be used by the
ICP to calculate its p-values. These examples should only take up a small portion of the
training set, so that their removal will not dramatically reduce the predictive ability of the
underlying algorithm. As we are mainly interested in the confidence levels of 99% and 95%,
the calibration sizes we use are of the form q = 100n − 1, where n∈ ; according to (13), in
order for a prediction to have a confidence level of 99%, the new example should be among

the 1
100
q +⎢ ⎥
⎢ ⎥⎣ ⎦

 strangest examples when assigned all other possible classifications (so that the

p-value of these classifications will be 0.01).

3.4 Confidence and credibility measures
Confidence gives us a measure of how likely our prediction is compared to all other possible
classifications, according to the training set. To give a more detailed explanation of the
confidence measure we need to recall the basic property of valid p-values; for any i.i.d.
distribution P and for every significance level δ,

 δ δ≤ ≤{ () } .jP p Y (14)

Inductive Conformal Prediction: Theory and Application to Neural Networks

321

This means that if the p-value of a label Yj is smaller than or equal to a significance level δ,
then either Yj is not the true label or an event of at most δ probability occurred. Now
suppose that δ is equal to the second largest p-value for a given input vector xl+g with a set of
possible labels {Y1, . . . , Yc}. This would mean that the probability of any label other than Yj,
where p(Yj) is the largest p-value, being the true label is at most δ. Consequently, our
confidence value for each prediction is one minus the probability of any one of the other
labels being the true label; the higher the confidence value for a prediction the less likely for
it not being the true label. Note that this is an informal argument, as it uses a δ dependent on
the observed examples.
The credibility measure is equal to the highest p-value of any one of the possible
classifications being the true label according to the training set. As such it gives us an
indication of how good the training set is for classifying the current example i.e. if the
credibility of a prediction is very low this means that either the training set is not random or
the new example is not representative of the training set.

3.5 The two modes of conformal prediction
The p-values obtained by (11) and (13) for each possible classification, can be used in two
different modes:
• For each test example output the predicted classification together with a confidence and

credibility measure for that classification.
• Given a confidence level 1 – δ, where δ > 0 is the significance level (typically a small

constant), output the appropriate set of classifications such that one can be 1 – δ
confident that the true label will be included in that set.

The first case corresponds to the algorithms detailed in Sections 3.2 and 3.3. In the second
case the CP outputs the set

 δ>{ : () },j jY p Y (15)

where j = 1, . . . , c (c is the number of possible classifications). In other words, it outputs the
set consisting of all the classifications that have a greater than δ p-value of being the true
label.

3.6 Validity and usefulness
The p-values computed by the functions (11) and (13) are valid in the sense of satisfying (2),
provided that the data in question are drawn independently from the same probability
distribution. Thus, the particular nonconformity measure definition and underlying
algorithm used by a given conformal predictor do not influence the validity of its p-values
in any way; i.e. if the model generating the data is i.i.d., the results produced by any ICP or
TCP will be valid. In fact, any function can be used as a nonconformity measure definition,
even if its output has nothing to do with how nonconforming the input example is. The use
of such a measure will not have an impact on the validity of the results produced by the CP,
but it will, on the other hand, affect their usefulness.
To demonstrate the influence of an inadequate nonconformity measure definition on the
results of a CP, let us consider the case of a trivial definition that always returns the value of
1 for any given example. This will make the p-values of all possible labels equal to 1 and will
result in a randomly chosen prediction with a confidence of 0%, which although is valid,
does not provide us with any information. Therefore, if the nonconformity measure

 Tools in Artificial Intelligence

322

definition or the underlying algorithm of a CP are not suitable for the data in question, this
will be reflected in the usefulness of the resulting confidence measures.

3.7 Comparison
Although the main motivation behind the introduction of transductive inference, by Vapnik
(Vapnik, 1998), was the creation of more computationally efficient versions of learning
algorithms, this does not seem to be the case in the theory of conformal prediction. The
Transductive CP starts all computations from scratch each time a new unclassified example
arrives. This turns out to be very computationally inefficient, since it means that for every
test example it has to apply the underlying algorithm and compute all the nonconformity
scores of the examples c times, one for each possible classification. On the other hand, the
Inductive CP carries out all these computations in advance, which makes it much faster. It
only needs to calculate the nonconformity scores of the new example being assigned each
one of the possible classifications, using the already generated general rule.
In order to analyse further the computational efficiency difference between ICP and TCP, let
us consider the computational complexity of each method with respect to the complexity of
its underlying algorithm U. The complexity of U when applied to a data set with l training
examples and r test examples will be

 Θ +train apply(()),U l rU (16)

where Utrain(l) is the time required by U to generate its general rule and Uapply is the time
needed to apply this general rule to a new example. Note that although the complexity of
any algorithm also depends on the number of attributes d that describe each example, this
was not included in our notation for simplicity reasons. The corresponding complexity of
the TCP will be

 train apply(((1) (1))),rc U l l UΘ + + + (17)

where c is the number of possible labels of the task; we assume that the computation of the
nonconformity scores and p-values for each possible label is relatively fast compared to the
time it takes to train and apply the underlying algorithm. Analogously, the complexity of
the ICP will be

 train apply(() ()),U l q q r UΘ − + + (18)

where q is the size of the calibration set. Notice that the ICP takes less time than the original
method to generate the prediction rule, since

 train train() (),U l q U l− < (19)

while it then repeats Uapply a somewhat larger amount of times. The time needed for
applying the prediction rule of most inductive algorithms, however, is insignificant
compared to the amount of time spent for generating it. Consequently, the ICP will in most
cases be slightly faster than the original method, as it spends less time during the most
complex part of its underlying algorithm’s computations. On the contrary, the
corresponding TCP repeats a slightly bigger number of computations than the total
computations of its underlying algorithm for rc times, thing that makes it much slower than
both the original method and the ICP.

Inductive Conformal Prediction: Theory and Application to Neural Networks

323

The only drawback of the ICP is a small loss in terms of accuracy. This is due to the fact that
the TCP uses all the training examples for the training of its underlying algorithm, whereas
the ICP uses only the examples in the proper training set. Furthermore, the TCP uses a
richer set of nonconformity scores, computed from all the training examples, when
calculating the p-values for each possible classification, as opposed to the small part of
training examples, the calibration set, the ICP uses for the same purpose. As the
experimental results in Section 5 and in (Papadopoulos et al., 2002a; Papadopoulos et al.,
2002b; Papadopoulos et al., 2007) show, this loss of accuracy is negligible while the
improvement in computational efficiency is massive.

4. Neural networks ICP
In this Section we analyse the Neural Networks ICP. This method can be implemented in
conjunction with any Neural Network for pattern recognition as long as it uses the 1-of-n
output encoding, which is the typical encoding used for such networks. We first give a
detailed description of this encoding and then move on to the definition of two
nonconformity measures for Neural Networks. Finally, we detail the Neural Networks ICP
algorithm.

4.1 Output encoding
Typically the output layer of a classification Neural Network consists of c units, each
representing one of the c possible classifications of the problem at hand; thus each label is
encoded into c target outputs. To explicitly describe this encoding consider the label, i uy Y=
of a training example i, where 1{ ,..., }u cY Y Y∈ is one of the c possible classifications. The
resulting target outputs for yi will be

 1 ,...,i i
ct t (20)

where

1, if ,
0, otherwise

i
j

j u
t

=⎧
= ⎨
⎩

 (21)

for j = 1,..., c. Here we assumed that the Neural Network in question has a softmax output
layer, as this was the case for the networks used in our experiments. The values 0 and 1 can
be adjusted accordingly depending on the range of the output activation functions of the
network being used.
As a result of this encoding, the prediction ˆ gy of the network, for a test pattern g, will be the
label corresponding to its highest output value.

4.2 Nonconformity measures
According to the above encoding, for an example i with true classification Yu, the higher the
output i

uo (which corresponds to that classification) the more conforming the example, and
the higher the other outputs the less conforming the example. In fact, the most important of
all other outputs is the one with the maximum value 1,..., :max ,i

j c j u jo= ≠ since that is the one

which might be very near or even higher than .i
uo

 Tools in Artificial Intelligence

324

So a natural nonconformity measure for an example zi = (xi,yi) where i uy Y= would be
defined as

1,..., :
max ,i i

i j uj c j u
o oα

= ≠
= − (22)

or as

 1,..., :max
,

i
j c j u j

i i
u

o
o

α
γ

= ≠=
+

 (23)

where the parameter 0γ ≥ in the second definition enables us to adjust the sensitivity of our
measure to small changes of i

uo depending on the data in question. We added this parameter
in order to gain control over which category of outputs will be more important in
determining the resulting nonconformity scores; by increasing γ one reduces the importance
of i

uo and consequently increases the importance of all other outputs.

4.3 The algorithm
We can now follow the general ICP algorithm detailed in Section 3.3 together with
nonconformity measure (22) or (23) to produce the Neural Network ICP. More specifically,
the exact steps the Neural Network ICP follows are:
• Split the training set into two smaller sets, the proper training set with m := l − q

examples and the calibration set with q examples; where q is a parameter of the
algorithm.

• Use the proper training set to train the neural network.
• For each example (,) : 1,...,m t m t m tz x y t q+ + += = in the calibration set,

• supply the input pattern xm+t to the trained network to obtain the output values
1 ,...,m t m t

co o+ + and
• calculate the nonconformity score m tα + of the pair (,)m t m tx y+ + by applying (22) or

(23) to these values.
• For each test pattern : 1,..., ,l gx g r+ =

• supply the input pattern xl+g to the trained network to obtain the output values
1 ,...,l g l g

co o+ + ,
• consider each possible classification Yu : u = 1,…,c and

• compute the nonconformity score ()uY
l gα + of the pair (,)l g ux Y+ by applying (22)

or (23) to the outputs of the network,
• calculate the p-value ()up Y for xl+g being classified as Yu by applying (5) to the

nonconformity scores of the calibration examples and ()uY
l gα + :

()#{ 1,..., , : }

() ,
1

uY
i l g

u

i m m q l g
p Y

q
α α += + + + ≥

=
+

 (24)

• predict the classification with the smallest nonconformity score,
• output as confidence to this prediction one minus the second largest p-value, and

as credibility the p-value of the output prediction, i.e. the largest p-value.

Inductive Conformal Prediction: Theory and Application to Neural Networks

325

5. Experimental results of the neural networks ICP
Here we detail the experimental results of the Neural Networks ICP on the Satellite, Shuttle
and Segment data sets, which were used in the experiments of the Statlog Project (King et
al., 1995); see also (Michie et al., 1994).
The Satellite data set consists of 6435 satellite images, split into 4435 training examples and
2000 test examples, described by 36 attributes. The classification task is to distinguish among
6 different soil conditions that are represented in the images. The calibration set was formed
from 199 of the 4435 training examples.
The Shuttle data set consists of 43500 training examples and 14500 test examples with 9
attributes each, describing the conditions in a space shuttle. The classification task is to
choose which one of the 7 different sets of actions should be taken according to the
conditions. In this case we used 999 of the training examples to form the calibration set.
The Segment data set consists of 2310 outdoor images described by 18 attributes each. The
classification task is to choose between: brick-face, sky, foliage, cement, window, path, grass.
For our experiments on this data set we used 10 fold cross-validation, as this was the testing
procedure followed in the Statlog project. The set was divided into 10 equally sized parts
and our tests were repeated 10 times, each time using one of the 10 parts as the test set and
the remaining 9 as the training set. Consequently, the resulting training and test sets
consisted of 2079 and 231 examples respectively. Of the 2079 training examples 199 were
used to form the calibration set.
Our experiments on these data sets were performed using 2 layer fully connected networks,
with sigmoid hidden units and softmax output units. The number of their input and output
units were determined by the format of each data set; equal to the number of attributes and
possible classifications of the examples respectively. These networks were trained with the
backpropagation algorithm minimizing a cross-entropy loss function. The number of hidden
units and the learning and momentum rates used for each data set are reported in table 1. It
is worth to note that the same parameters were used both for the ICP and its underlying
algorithm.
Here we report the error percentages of the Neural Network ICP and compare them to the
ones of its underlying algorithm as well as to those of some other traditional methods. In
addition, we check the quality of its p-values by analysing the results obtained from its
second mode, described in Section 3.5, for the 99%, 95% and 90% confidence levels. For the
purpose of reporting the results of this mode we separate its outputs into three categories:
• A set with more than one labels
• A set with only one label
• The empty set
Our main concern here will be the number of outputs that belong to the first category; we
want this number to be relatively small, since these are the examples for which the ICP is
not certain in only one label at the required confidence level 1 – δ. In addition to the
percentage of examples in each category, we also report the number of errors made by the
ICP in this mode. This is the number of examples for which the true label was not included
in the set output by the ICP; including all cases where the set output by the ICP was empty.
Over many runs on different sets (both training and test) generated from the same i.i.d.
distribution, the percentage of these errors will be close to the corresponding significance
level δ; an experimental demonstration of this can be found in (Vovk, 2002). Finally, we

 Tools in Artificial Intelligence

326

examine the computational efficiency of the method by comparing its processing times with
those of its underlying algorithm.

 Satellite Shuttle Segment
Hidden Units 23 12 11

Hidden Learning Rate 0.002 0.002 0.002
Output Learning Rate 0.001 0.001 0.001

Momentum Rate 0.1 0 0.1
Table 1. The parameters used in our experiments for each data set.

Percentage of error (%) Learning Algorithm
Satellite Shuttle Segment

Neural Networks ICP 10.40 0.0414 3.46
Backpropagation 10.24 0.0414 3.20

k-Nearest Neighbours 9.45 0.12 3.68
C4.5 15.00 0.10 4.00

CART 13.80 0.08 4.00
Naïve Bayes 28.70 4.50 26.50

CASTLE 19.40 3.80 11.20
Linear Discriminant 17.10 4.83 11.60

Table 2. Error rate comparison of the Neural Networks ICP with traditional algorithms.

In table 2 we compare the performance of the ICP on the three statlog project data sets with
that of its underlying algorithm (we denote this as backpropagation) and that of 6 other
traditional methods. These are the k-Nearest Neighbours algorithm, two decision tree
algorithms, namely C4.5 and CART, the Naïve Bayes classifier, a Bayesian network
algorithm called CASTLE and a linear discriminant algorithm. The results of the k-Nearest
Neighbours algorithm were produced by the author, while those of all other methods were
reported in (King et al., 1995) and (Michie et al., 1994). Note that the aim of the CP is not to
outperform other algorithms but to produce more information with each prediction. So in
comparing these error percentages we want to show that the accuracy of this method is not
inferior to that of traditional algorithms.
We did not perform the same experiments with the corresponding original CP algorithm,
due to the huge amount of time that would have been needed for doing so. However, its
results in terms of error percentages would not have been significantly different from those
of its underlying algorithm (backpropagation). So the first two rows of table 2 also serve as a
performance comparison between ICP and TCP.
Table 2 clearly shows that the accuracy of the Neural Networks ICP is comparable to that of
traditional methods. Of course, our main comparison here is with the performance of its
underlying algorithm, since that is where ICPs base their predictions and since that is also
the performance of the corresponding TCP. So by comparing its results to those of the
backpropagation method, we can see that although in most cases the ICP suffers a small loss
of accuracy, this loss is negligible. Moreover, we observe that as the data set gets bigger the
difference between the error percentage of the ICP and that of its underlying algorithm

Inductive Conformal Prediction: Theory and Application to Neural Networks

327

becomes smaller. In fact, for the shuttle data set, which is the biggest, the ICP gives exactly
the same results with its underlying network.
Tables 3 to 5 detail the performance of the second mode of the ICP on each of the three data
sets. Here we can see that the percentage of examples for which it needs to output more than
one label is relatively small even for a confidence level as high as 99%, having in mind the
difficulty of each task and the performance of its underlying algorithm on each data set. This
reflects the quality of the p-values calculated by this method and consequently the
usefulness of its confidence measures.

Nonconformity
Measure

Confidence
Level

Only one
Label (%)

More than
one label (%)

No
Label (%)

Errors (%)

 99% 60.72 39.28 0.00 1.11
(4) 95% 84.42 15.58 0.00 4.67

 90% 96.16 3.02 0.82 9.59
 99% 61.69 38.31 0.00 1.10

(5) 95% 85.70 14.30 0.00 4.86
 90% 96.11 3.10 0.79 9.43

Table 3. Results of the second mode of the Neural Networks ICP for the Satellite data set.

Nonconformity
Measure

Confidence
Level

Only one
Label (%)

More than
one label (%)

No
Label (%)

Errors (%)

 99% 99.23 0.00 0.77 0.77
(4) 95% 93.52 0.00 6.48 6.48

 90% 89.08 0.00 10.92 10.92
 99% 99.30 0.00 0.70 0.70

(5) 95% 93.86 0.00 6.14 6.14
 90% 88.72 0.00 11.28 11.28

Table 4. Results of the second mode of the Neural Networks ICP for the Shuttle data set.

Nonconformity
Measure

Confidence
Level

Only one
Label (%)

More than
one label (%)

No
Label (%)

Errors (%)

 99% 90.69 9.31 0.00 0.95
(4) 95% 97.71 1.25 1.04 3.68

 90% 94.68 0.00 5.32 6.71
 99% 91.73 8.27 0.00 1.04

(5) 95% 97.79 1.21 1.00 3.55
 90% 94.76 0.00 5.24 6.67

Table 5. Results of the second mode of the Neural Networks ICP for the Segment data set.

Finally, table 6 lists the processing times of the Neural Network ICP together with those of
its underlying algorithm. In the case of the Segment data set the times listed are for the total
duration of the experiments on all 10 splits. As mentioned in the computational complexity
comparison of Section 3.7, in most cases the ICP is faster than its underlying algorithm
because it uses less training examples. In the case of Neural Networks, this reduction in
training examples reduces slightly the training time per epoch and, for more or less the

 Tools in Artificial Intelligence

328

same number of epochs, it results in a shorter total training time. This was the case for the
Satellite and Shuttle data sets. However, for the Segment data set the number of epochs
increased and this resulted in a slightly bigger total training time for the ICP.
Based on our computational complexity analysis of Section 3.7, if we were to perform the
same experiments using the original CP method coupled with Neural Networks it would
have taken approximately 183 days for the Satellite data set, 53 years for the Shuttle data set
and 93 days for the Segment data set. This shows the huge computational efficiency
improvement of ICP in the case of Neural Networks. In fact, it shows that ICP is the only
conformal prediction method that can be used with this approach.

Time (in seconds) Learning Algorithm Satellite Shuttle Segment
Neural Networks ICP 1077 11418 5322

Backpropagation 1321 16569 4982

Table 6. The processing times of the Neural Networks ICP and its underlying algorithm.

6. Conclusion
This chapter presented the Inductive Conformal Prediction (ICP) approach for producing
confidence measures with predictions and described its application to Neural Networks.
ICPs accompany each of their predictions with probabilistically valid measures of
confidence. Furthermore, they do not need the relatively large amount of processing time
spend by Transductive Conformal Predictors (TCPs) to perform their computations. In fact
their computational efficiency is virtually the same with that of their underlying algorithms.
The experimental results detailed in Section 5 and in (Papadopoulos et al., 2002a;
Papadopoulos et al., 2002b; Papadopoulos et al., 2007) show that the accuracy of ICPs is
comparable to that of traditional methods, while the confidence measures they produce are
useful in practice. Of course, as a result of removing some examples from the training set to
form the calibration set, they sometimes suffer a small, but usually negligible, loss of
accuracy from their underlying algorithm. This is not the case, however, for large data sets,
which contain enough training examples so that the removal of the calibration examples
does not make any difference to the training of the algorithm.

7. Acknowledgements
This work was supported by the Cyprus Research Promotion Foundation through research
contract PLHRO/0506/22 (“Development of New Conformal Prediction Methods with
Applications in Medical Diagnosis”).

8. References
Cristianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other

Kernel-based Methods, Cambridge University Press, Cambridge.

Inductive Conformal Prediction: Theory and Application to Neural Networks

329

King, R.; Feng, C. & Sutherland, A. (1995). Statlog: Comparison of classification algorithms
on large real-world problems, Applied Artificial Intelligence, Vol. 9, No. 3, pp. 259–
287.

Martin-Löf, P. (1966). The definition of random sequences. Information and Control, Vol. 9,
pp. 602–619.

Melluish, T.; Saunders, C.; Nouretdinov, I. & Vovk, V. (2001). Comparing the Bayes and
Typicalness frameworks, Proceedings of the 12th European Conference on Machine
Learning (ECML’01), Vol. 2167 of Lecture Notes in Computer Science, pp. 360–371,
Springer.

Michie, D.; Spiegelhalter, D. & Taylor, C. (Ed.) (1994). Machine Learning, Neural and Statistical
Classification, Ellis Horwood.

Nouretdinov, I.; Vovk, V.; Vyugin, M. & Gammerman, A. (2001a). Pattern recognition and
density estimation under the general iid assumption, Proceedings of the 14th Annual
Conference on Computational Learning Theory (COLT’01) and 5th European Conference
on Computational Learning Theory (EuroCOLT’01), Vol. 2111 of Lecture Notes in
Computer Science, pp. 337–353, Springer.

Nouretdinov, I.; Melluish, T. & Vovk. V. (2001b). Ridge regression confidence machine,
Proceedings of the 18th International Conference on Machine Learning (ICML’01),
pp. 385–392, Morgan Kaufmann, San Francisco, CA.

Papadopoulos, H.; Proedrou, K.; Vovk, V. & Gammerman, A. (2002a). Inductive confidence
machines for regression, Proceedings of the 13th European Conference on Machine
Learning (ECML’02), Vol. 2430 of Lecture Notes in Computer Science, pp. 345–356,
Springer.

Papadopoulos, H.; Vovk, V. & Gammerman, A. (2002b). Qualified predictions for large data
sets in the case of pattern recognition, Proceedings of the 2002 International Conference
on Machine Learning and Applications (ICMLA’02), pp. 159–163, CSREA Press.

Papadopoulos, H.; Vovk, V. & Gammerman, A. (2007). Conformal prediction with neural
networks, Proceedings of the 19th IEEE International Conference on Tools with Artificial
Intelligence (ICTAI’07), Vol. 2, pp. 388-395, Patras, Greece, October 2007, IEEE
Computer Society, Los Alamitos, CA.

Papadopoulos, H.; Gammerman, A. & Vovk, V. (2008). Normalized nonconformity
measures for regression conformal prediction, Proceedings of the IASTED
International Conference on Artificial Intelligence and Applications (AIA 2008),
pp. 64-69, Innsbruck, Austria, February 2008, ACTA Press.

Proedrou, K.; Nouretdinov, I.; Vovk, V. & Gammerman, A. (2002). Transductive confidence
machines for pattern recognition, Proceedings of the 13th European Conference on
Machine Learning (ECML’02), Vol. 2430 of Lecture Notes in Computer Science, pp. 381–
390. Springer.

Saunders, C.; Gammerman, A. & Vovk, V. (1999). Transduction with confidence and
credibility, Proceedings of the 16th International Joint Conference on Artificial
Intelligence, Vol. 2, pp. 722–726, Morgan Kaufmann, Los Altos, CA.

Vapnik, V. (1998). Statistical Learning Theory, Wiley, New York.

 Tools in Artificial Intelligence

330

Vovk, V.; Gammerman, A. & Saunders, C. (1999). Machine learning applications of
algorithmic randomness, Proceedings of the 16th International Conference on Machine
Learning (ICML’99), pp. 444–453, Morgan Kaufmann, San Francisco, CA.

Vovk, V. (2002). On-line confidence machines are well-calibrated, Proceedings of the 43rd
Annual Symposium on Foundations of Computer Science (FOCS’02), pp. 187–196, IEEE
Computer Society, Los Alamitos, CA.

Vovk, V.; Gammerman, A. & Shafer, G. (2005). Algorithmic Learning in a Random World,
Springer, New York.

19

Robust Classification of Texture Images using
Distributional-based Multivariate Analysis

Vasileios K. Pothos, Christos Theoharatos, George Economou
and Spiros Fotopoulos

Electronics laboratory, Dept. of Physics, University of Patras
Greece

1. Introduction
Classification of texture images has been recognized as an important task in the field of
image analysis and computer vision through the last few decades. A plethora of research
papers have appeared in the literature trying to cope with effective ways to extract faithful
distributions that accurately represent the inner content and attributes of texture images. An
issue of great importance is, also, the incorporation of a valid similarity measure that can
successfully estimate how close these distributions are with respect to some pre-classified
texture categories. The basic operations that need to be carried out in order to estimate the
similarity between texture images and thereafter assess the classification problem are (a)
choose an appropriate feature space for texture representation, (b) construct a theoretically
valid distribution in the texture feature space, i.e. the texture signature, which provide a
representation of the texture image in a multivariate feature space, (c) perform pairwise
comparisons between corresponding texture signatures that constitute the consequent
content distributions of the texture images and (d) choose an experimentally valid classifier
for the subsequent evaluation.
The scope of this chapter is the survey of a recently introduced methodology for
distributional-based classification of texture images (Pothos et al., 2007), its enhancement via
the incorporation of a self-organizing module and its adaptation so as to work in
multivariate feature spaces. The original approach is based on an efficient strategy for
analyzing texture patterns within a distributional framework and the use of a statistical
distributional measure for comparing multivariate data, also known as the multivariate
Wald-Wolfowitz test (WW-test) (Friedman & Rafsky, 1979). By combining the flexible
character of the original methodology with the learning abilities of neural networks, we
build a general-purpose platform for the efficient information management and
classification of texture patches without any restriction regarding the exact image content.
Here, we will first describe the enrollment of standard feature extraction techniques for
summarizing texture information and structuring multivariate texture spaces. These
techniques include wavelet analysis, discrete cosine transform (DCT), Gabor filters and edge
histogram descriptor. The above methods have been considered as golden standards for
extracting appropriate distributions from texture images. In the following stage, we will test
the applicability of some multivariate distributional-based measures for estimating the

 Tools in Artificial Intelligence

332

classification accuracy over widely available databases and outline the different alternative
facets under which a texture database can be accessed within the introduced platform. In
this way, the multivariate distributions representing the individual images will be
compared via the standard WW-test and the Kantorovich-Wasserstein (KWass) distance,
building a content-based texture classification scheme. The proposed distributional
measures will be revealed to handle efficiently the texture-space dimensionality and the
limited sample size drawn from a given image.
In order to further boost the classification accuracy of the entire scheme, we will finally
introduce a computational intelligent module for content representation based on a self-
organizing neural network (SONN), the Neural-Gas algorithm (Martinez et al., 1993). The
incorporated feature-extraction unit will be responsible for generating a parsimonious
description of the texture distribution of each image. The resulting performance will be used
to evaluate the four utilized approaches for texture representation. Emphasis will be given
to the study of the two above subject and not in the design of the classifier.

2. Background and related work
Besides color and shape, texture plays an important role in the human visual system to
recognize and categorize objects and properties in several kinds of images, from natural and
artificial color images, to medical, remote sensing and quality control ones. It is proven to be
an important visual property of the materials, encountered in many low-level image
analysis and computer vision tasks. The study of texture is recognized to be a difficult
subject in image science, while texture classification is a central research direction that has a
wide variety of applications. In order to build a texture-based classification system, the basic
building elements are first robust texture representation, then the design of a (dis)similarity
measure between textures and finally the choice of the classifier.
Texture representation is a difficult problem due to the high – and usually unknown – true
dimensionality of the feature space required to represent textures. Texture is defined as a
homogeneous and coherent field of an image, characterized by features like roughness,
variability, repeatability, directionality etc., which are characterized over a certain spatial
extend. The preferred approach for texture feature extraction by the majority of researchers
is based on image decomposition, by filtering with a subband or wavelet filter bank (Laine
& Fan, 1993; Randen & Husoy, 1999; Leung & Malik, 2001; Do & Vetterli, 2002). The image is
decomposed into several images for separate processing. The goal is to concentrate the
involved energy in a few features and reduce the correlation. An analogous move is to apply
a linear transformation by using Fourier or DCT. Older techniques that use direct image
domain representation or express co-occurrence properties of image pixels are not
commonly used lately. The most suitable representation for summarizing a nonparametric
estimate of texture distribution is histogram, since texture is considered to describe the
appearance of a region by the distribution of features rather than by some individual feature
vectors (Ojala et al., 1996; Rubner et al., 2001). However, histogram is bound with the well-
known binning problem which is a difficult one to solve. Regular binning of high-
dimensional feature spaces results poor performance, coarse binning affects resolving
power, while fine binning leads to large fluctuations due to the statistically insignificant
sample sizes for most bins. In the literature, adaptive binning has been proposed to tackle
the binning effect (Leow & Li, 2004), as well as binning induced by a set of prototypes.

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

333

The other important issue of a texture-based classification system is the design of an
appropriate distance measure between textures. Towards this objective, several methods
have been proposed based on histogram comparison. An alternative approach to measure
texture resemblance is by means of non-parametric statistical tests that make no a-priori
assumptions about the underlying sample distribution. This guarantees the similarities to be
assessable in terms of statistical significance, but avoids direct statistical parameter
estimation. Non-parametric and distributional based classification methods share a common
characteristic; they require the availability of a number of independent – identically
distributed – samples from the underlying distribution to operate on. These samples are
extracted from the involved data during the texture representation stage. In the core of the
proposed technique lies a non-parametric test dealing with the “Multivariate Two-Sample
Problem”, which has been adopted here for expressing texture image similarity. The specific
test is a multivariate extension of the classical Wald-Wolfowitz test (WW-test) and compares
two different vectorial samples by checking whether they form different branches in the
overall minimal-spanning-tree (MST) (Friedman & Rafsky, 1979). The output of this test can
be expressed as the probability that the two point-samples are coming from the same
distribution. Its great advantage is that no a-priori assumption about the distribution of
points in the two samples is a prerequisite. In order to enrich the evaluation results of
texture image classification, another distributional distance is also utilized in this work to
measure the dissimilarity between the extracted feature distributions, namely the
Kantorovich-Wasserstein (KWass) distance (Gibbs & Su, 2002). It should be noticed that the
KWass distance is equivalent to the well known Earth Movers Distance (EMD) (Rubner et
al., 2001), which is an optimized solution to the transportation problem, when the later is
applied on distributions with equal masses signatures.
Before examining in some detail the application of the above described methodology on a
texture classification problem, it is interesting to discuss the importance of features’
dimensions in an image classification problem. In general, individual image pixels are
characterized by the grayscale value, which overall describe the image in a low-
dimensionality feature space and can classify a set of images based on the first-order
distribution of pixels’ intensities. An image has many pixels and there are a large number of
samples available to estimate the distribution. The texture case is quite different. For
grayscale textures, instead of single pixels, a neighborhood needs to be considered as the
basic texture distribution element, so as to account for pixel intensity correlations inside it.
The size of the neighborhood is application dependent and should be large enough to
encompass significant texture variation. Correlations among pixels can be accounted by
increasing the space dimension required for sample representation, to equal the number of
included pixels. Two are the basic implications of the above discussion; the expansion in
space dimension that increases computational complexity and the limited sample size which
in turn influences the classification error.
The success of the previously described methodologies for feature extraction and
distributional similarity estimation were tested on a part of the OUTex and the Photometric
texture database. The classification problem is stated as follows; given a new texture sample,
assign it to the most similar one of a predetermined set of texture classes. Results should be
in accordance with the intuitive notion of visual similarity of the different textures. Special
effort is taken to judge all techniques under equal terms and use the available databases in
an optimal way. Regarding texture feature extraction, four different methodologies were

 Tools in Artificial Intelligence

334

incorporated in this study which are considered as golden standard in the scientific
community: wavelet transform, DCT, Gabor filters and edge histogram approach proposed
in the MPEG-7 standard. These methodologies are shortly analyzed in the following section.

3. Texture feature extraction techniques
3.1 Wavelet transform
A compact representation of image texture needs to be derived in the transform domain for
classification (Sebe & Lew, 2000). In the general case, the wavelet transform is applied to a
given image in N decomposition levels, decomposing each level in four independent and
spatially oriented channels, producing in this way the subbands LL , LH , HL and HH .
For the texture feature extraction, the image is partitioned into M non-overlapping square
blocks of specific size, and the wavelet transform is applied to each block. The subbands
LH and HL are mixed via the type:

 22
nnn HLLHLHHL += , Nn ...,,2,1= (1)

producing the LHHL subband, for each level of decomposition n. In our study, we used the
ordinary number of 3=N decomposition levels, which has prevailed as a kind of standard
practice in the literature. The block’s dimensions are relative to the size of the texture
pattern embedded in a given image and can take typical values of 88× or 1616× .

Fig. 1. Texture feature extraction using wavelet transform. Each block of the texture image is
decomposed and the mean and variance values are calculated over the nLL and nLHHL
subbands.

For each square patch, the mean],[mkμ and the variance],[mkσ of the energy distribution of

the transform coefficients are calculated, as presented in (Pothos et al., 2007). Grouping

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

335

together the mean and variance values of the same −m th block from all the subbands, a
vector of)2(2 N×× coefficients is produced that describes the local texture information of
the specific block. In general we will have a set of M such vectors that best describe the
texture information of the entire image. A representative scheme that sketches the above
procedure is illustrated in Fig. 1.

3.2 Discrete Cosine Transform (DCT)
The Discrete Cosine Transform (DCT) has been widely used in the literature for efficient
texture feature selection. It uses cosines of varying spatial frequencies as basis functions and
is commonly known for its implementation in the JPEG compression standard (Bhaskaran &
Konstantinides, 1995). The DCT coefficients are obtained covering different spectral bands.
For texture images, much of the signal energy lies at low-frequency components, which
appear in the upper left corner of the DCT. Knowing that DCT converts the spatial
information into the frequency domain, texture features can be defined as the spectrum
energies in different localizations of a local block. Since the DC coefficient represents
(almost) the average grayscale value of each NN × block, it is not considered to carry any
texture information. The remaining AC coefficients capture the details - or frequency and
directionality properties - within the pixel-block and therefore can be considered to
characterize image texture and be utilized as texture features.

Fig. 2. Texture features extraction using DCT. DCT is applied on each block of the texture
image and a feature vector is creating via summing up the square values of the coefficients
in the diagonals of the block.

In order to extract textural attributes, the images are initially partitioned into NN × pixel-
blocks, with 16=N in our case. The block size was selected in order to reduce the number
of extracted feature vectors and also try to effectively capture the texture information using

 Tools in Artificial Intelligence

336

a larger image patch. In addition, it was experimentally verified to produce enhanced
classification results compared to a smaller pixel-block (e.g., 8=N). Then, the DCT is
applied to each distinct block, as illustrated in Fig. 2. From each DCT block, texture can be
now represented by a feature vector mV , with []22 ,1 −∈ Nm , the elements of which are the
square sums of coefficients of the corresponding diagonals (i.e., zig-zag traversal lines). The
vector resulting from the zig-zag ordering contain all the AC coefficients starting from the
upper left location (i.e.,)1 ,0() to the bottom right (i.e.,)1 ,1(−− NN). Assuming that a
given image is initially divided into M blocks of 1616× pixels, then a set of M feature
vectors can be extracted that best describes the texture image content of the particular
image. The specific indexing scheme was found to be robust, when similarity-based image
rotation is considered (Theoharatos et al., 2006).

3.3 Gabor filters
The relation between the human vision system and the Gabor filters is a strong motive to
test Gabor filtering for texture feature extraction. Spatially, a Gabor function is a Gaussian
modulated sinusoid. In his work (Daugman, 1985), Daugman generalized the Gabor
function to the model of the 2-D form:

)(

)()(

00
2

2
0

2

2
0

2
1),(yvxi

yyxx

yx
eeyxG yx +⎥

⎥

⎦

⎤

⎢
⎢

⎣

⎡ −
+

−
−

= ξσσ
π

σπσ
 (2)

where ()00 , yx is the center of the field in the spatial domain and ()00 , vξ is the optimal
spatial frequency of the filter in frequency domain. xσ and yσ are the standard deviations
of the elliptical Gaussian for axis x and axis y respectively.
In order to extract texture information, we first partitioned the images into M non-
overlapping blocks. Then, the Gabor filters were applied using 4 scales and 6 orientations,
creating 24=N filtered subimages. These subimages are obtained by computing the
magnitude from the real

n
Gℜ and imaginary

n
Gℑ parts of each n subbands:

 22
nn

GGGn ℑℜ += , Nn ...,,2,1= (3)

Mean and variance are calculated by nG for each one of the −N filtered subimages. In
(Zhang et al., 2000), a DN −×2 multidimensional vector is constructed such that to be used
for similarity matching using a valid (dis)similarity measure (i.e., the sum of Euclidean
distances). In this study, a 242 × dimensional feature vector is built for the description of
the texture information, corresponding to the mean and variance values per filtered
subimages that are contained in each corresponding block. In the final stage, a total number
of M feature vectors of D−48 is constructed for the description of the texture information
of all database images. A representative scheme of the previously reported technique is
illustrated in Fig. 3, clearly sketching the overall procedure.

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

337

Fig. 3. Texture features extraction using Gabor filters. Each image is blocked into M blocks,
and from each block 48 values are extracted, after applying 24 Gabor filters.

3.4 Edge Histogram descriptor
The Edge Histogram is a useful texture descriptor that captures the spatial distribution of
edges in the image and is defined in MPEG-7 for similarity search and retrieval practices
(Manjunath et al., 2002). The local distribution of edges is considered a reliable candidate
attribute and useful for image to image matching, even when the underlying texture
structure is not homogeneous in texture properties. The extraction of textural features is
estimated as follows. In the first step, the image is divided into 44 × subimages and the
local-edge distribution for each subimage is represented by a histogram. To do this, edges in
the subimages are categorized into five types: vertical, horizontal, °45 diagonal, °135
diagonal and nondirectional (or isotropic). Therefore, each image is comprised of 16
subimages with five bins each (corresponding to the above five category-types). The overall
histogram is composed of 80516 =× bins.
Edge detection and classification in each subimage can be done by further dividing those
subimages into non-overlapping square blocks (e.g., into a number of 22 × pixel-images)
and afterwards apply appropriate oriented edge detectors (including four directional
selective detectors and one isotropic operator (Manjunath et al., 2001)) to compute the
corresponding edge strengths. If the maximum edge strength of these oriented edge
detectors is found above a given threshold, then the corresponding edge orientation is
associated with the image-block which is considered to be an edge-block. If not, then the
image-block is not classified as edge-block. Finally, the edge blocks that result contribute to
the appropriate binning procedure of the histogram descriptor, with each bin value
normalized to the total number of image-blocks in the subimage (i.e., []1 ,0). The individual
algorithmic steps of the local-edge histogram descriptor are summarized in Fig. 4, with ()ih
denoting the overall histogram comprised of 80 bins.

 Tools in Artificial Intelligence

338

Fig. 4. Construction of local-edge histogram ()ih .

However, the local-edge histogram is not sufficient enough for effective image matching.
For this reason, global-edge distributions are used in association to local-based ones
(Manjunath et al., 2002). In this way, global- and semiglobal-edge histograms are produced
respectively, computed directly from the 80 local histogram bins. Regarding the global-edge
histogram, the five types of edge distributions in all subimages are accumulated. For
semiglobal-edge histograms subsets of subimages are grouped as shown in Fig. 5. The
combination of all those distinct histograms, produce a histogram of 150 bins. For matching
the extracted features, MPEG-7 defines the −1L norm ()BAD , as the distance measure for
comparing two image histograms A and B, using the following formula:

 () ∑ ∑ ∑
= = =

++−×+−=
79

0

4

0

64

0
|)()(||)()(|5|)()(|,

i i i

S
B

S
A

g
B

g
ABA ihihihihihihBAD (4)

where)(ihA and)(ihB represent the normalized edge histogram bin values of image A and

image B respectively. In the above equation,)(ih g
A and)(ih g

B , as well as)(ihS
A and)(ihS

B
represent the normalized bin values for the global-edge and semiglobal-edge histograms
respectively, of consecutive images A and B.

Fig. 5. Construction of semi-global edge histogram)(ihS .

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

339

In order to measure the similarity of the different texture images using distributional
(dis)similarity measures, the extracted edge histogram data need to be re-arranged into a
form of multiple vectors, instead of a histogram. We perform the multivariate nature our
distributional measures, by operating in five dimensions as follows. Firstly, we calculate
separately each edge histogram (see Fig. 4) from each subimage of the local-edge histogram,
resulting in 16 vectors of five dimensions (i.e., D−5) each. Additionally, an extra one D−5
vector is computed from the global-edge histogram. Finally, we utilize the 13 parts of the
semiglobal-edge histogram, in order to create another 13 vectors of D−5 each. The
ensemble of these practises produce a total of 30 vectors in D−5 and thus the distributional
(dis)similarity measures can now straightforwardly applied for texture matching over the
selected attributes of two separate images. We note here that, each dimension of the formed
feature space corresponds to the normalized number of edges that are found to be vertical,
horizontal, diagonal, diagonal and nondirectional.

4. Distance between distributions
In order to compare the extracted spectral representations in pairs and therefore estimate
the similarity between texture images, we resorted to the field of multivariate statistics for
choosing proper distributional-based measures. There exists a rich literature on probability
distribution distance measures (Do & Vetterli, 2002; Theoharatos et al., 2006; Rubner et al.,
2001; Gibbs & Su, 2002), the choice of which is relatively influenced by a number of inherent
parameters of the data distribution. These include the amount of existing data, the
dimensionality of the resulted feature space and the distributional structure of the selected
multidimensional vectors. In applications like texture classification, face recognition,
fingerprint identification etc., intrinsic representations that constitute characteristic
manifolds coming from the corresponding high-dimensional data distributions are realized.
The adaptation of valid/proper (dis)similarity measures capable for capturing these
structures and, moreover, performing pairwise comparisons between pairs of suchlike
distributions is the key factor for successfully assessing huge data archives. Several well
known distance measures were examined towards achieving the above goal. In our analysis
that follows, we present results for the best (and simultaneously more appropriate) two
ones, i.e. the multivariate Wald-Wolfowitz test (WW-test) (Friedman & Rafsky, 1979) and
the Kantorovich-Wasserstein distance (Gibbs & Su, 2002). In their basic implementation,
both measures utilize the −2L norm for calculating the ground distance between sample
vectors. For comparison reasons, histogram-based measures are also utilized in several
experimental trials such as Histogram Intersection (HI), Kullback-Leibler Divergence (KL-D)
and Jeffrey Divergence (J-D).

4.1 The multivariate Wald-Wolfowitz test (WW-test)
As an important constituent of the introduced framework, a nonparametric test is adopted
for estimating texture content similarity in a reliable and convenient way. It is a multivariate
extension of the classical Wald-Wolfowitz test, comparing two different sets of points in pℜ
by checking whether they form different branches in the overall MST-graph (Zahn, 1971).
The output can be expressed as the probability that the two samples are coming from the
same distribution (Friedman & Rafsky, 1979).

 Tools in Artificial Intelligence

340

In the multivariate case, the graph is built over points in pℜ : a single node corresponds to
every given point and the weight associated with every possible edge is the corresponding
interpoint norm (i.e., ground distance used in its basic implementation). The edges involved
in the construction of MST are the ensemble of straight-line segments connecting all points
with minimum total length. WW-test can be used to test the hypothesis Ho, whether any two
given multidimensional point samples { } miiX :1= and { } niiY :1= come from the same
multivariate distribution. At first, the two data samples of size m and n are considered,
respectively, from distributions defined in pℜ . Then, the sample identity of each point is
not encountered and the MST of the overall sample is constructed. Based on the sample
identities of the points, a test statistic R is computed that is defined as the number of
disjoint subtrees that finally result. Rejection of Ho is for small values of R . It has been
shown that the quantity:

 []
[]CRVar

RERW
|

−
= (5)

approaches the standard normal distribution, while the mean []RE and variance []CRVar |
of R are given in closed form (Friedman & Rafsky, 1979). Its importance is that using
simple formulae, the significance level (and p-value) for the acceptance of the hypothesis Ho
can be readily estimated. WW-test, based on the MST-planning procedure, offers a unique
environment for contrasting different signal representations. Thus, it can effectively cope
with the understanding and matching of manifold-type structures, which is actually the case
of the vectorial spectral representations of the texture images under study.

4.2 Kantorovich-Wasserstein distance
The Kantorovich-Wasserstein (KWass) metric defines a “distance” between two stochastic
distributions. It is described by the formula:

 () ()[] () (){ }νμνμ === YXYXdd
jw L ,L :,inf, E (6)

where the infimum is taken over all joint distributions J with marginals μ and ν (Gibbs &
Su, 2002).
For discrete distributions X , Y with samples of the same size ()nxxxX , , , 21 …= and

()nyyyY , , , 21 …= , the minimum is taken over all permutations. It is common to use the
Hungarian algorithm in order to solve the optimal assignment problem (Levina & Bickel,
2001).

4.3 Distances between histograms
In order to provide a short description of the other methods employed here for comparison
purposes, let { }ihH = and { }ikK = be histograms from two texture images H and K to be
compared respectively, each containing n bins. A plethora of measures have been reported
in the literature for calculating the distance between histogram distributions (Rubner et al.,
2001). Here, three characteristic measures are utilized that are commonly used by other
researchers.

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

341

Histogram Intersection (HI)
It was originally proposed for color image retrieval (Swain & Ballard, 1991) in the spatial
domain and is found to be attractive due to its ability to handle partial matches (Rubner &
Tomasi, 2001). The HI-measure is given by:

 ()
()

∑

∑

=

=−= n

i
i

n

i
ii

HI

k

kh
KHd

1

1
,min

1, (7)

Kullback-Leibler Divergence (KL-D)
It measures how inefficient on average it would be to code one histogram using the other as
the code-book (Rubner et al., 2001):

 () ∑
=

=
n

i i

i
iKL k

hhKHd
1

log , (8)

Jeffrey Divergence (J-D)
This is a modification of the KL-D that is symmetric, numerical stable and robust with
respect to noise and size of histogram bins (Rubner & Tomasi, 2001), given by:

 () ∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

n

i i

i
i

i

i
iJD m

kk
m
hhKHd

1
log log , , (9)

where 2iii khm += .

5. Experimental analysis
For our experimental analysis two texture databases were utilized: the OUTex (University of
Oulu Texture database) and the Photometric texture database. The first dataset contains 24
distinct texture categories, having 180 grayscale images of similar size in each class and thus
resulting in a total number of 4320 texture images. The amount of images comprising a
single category is formed by using nine different texture orientation images. From those
4320 images, 216 were selected as queries (i.e., one texture for each orientation and
category), while the leave-one-out procedure was used in a −k NN for the classification
procedure. The incorporation of a bigger number of query-images had a very slight impact
on the classification results. The second dataset contains 34 different kinds of textures,
having 56 images each. For this database, we used an increasing number of images per
texture in the database (to train the classifier), while the rest images were utilized as query-
images to be classified. Fig. 6 presents characteristic samples from all texture categories for
both the OUTex and Photometric texture databases.
In Fig. 7, the classification results are given for the OUTex database using the leave-one-out
procedure. The horizontal axis contains the values of k of the simple −k NN classifier,
while the vertical one contains the classification error rate of each method. In all cases, the
(distributional-based) multivariate WW-test outperforms significantly all other (histogram-
based) measures. The DCT and Gabor feature extraction methods seem to produce the best
classification results, while the edge histogram one seems to provide poor outcomes.

 Tools in Artificial Intelligence

342

Fig. 6. Sample category images of the utilized texture databases. Left) OUTex database.
Right) Photometric texture database.

2 4 6 8 10 12 14 16 18 20
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

k (k-NN Classifier)

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e
(x

10
0%

)

WW-Test
KL-D
J-D
HI

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

k (k-NN Classifier)

C
la

ss
ifi

ca
tio

n
Er

ro
r R

at
e

(x
10

0%
)

WW-Test
KL-D
J-D
HI

a) b)

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

k (k-NN Classifier)

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e
(x

10
0%

)

WW-Test
KL-D
J-D
HI

2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

k (k-NN Classifier)

C
la

ss
ifi

ca
tio

n
Er

ro
r R

at
e

(x
10

0%
)

WW-Test
KL-D
J-D
HI
EHD

c) d)

Fig. 7. Classification Error Rate results for a) Wavelets, b) DCT, c) Gabor filters and d) Edge
Histogram, for the OUTex database.

The OUTex Database downloaded from: http://www.outex.oulu.fi/temp/
The Photometric Database downloaded from: http://www.taurusstudio.net/research/pmtexdb/index.htm

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

343

In Fig. 8 the classification results over the Photometric texture database are exemplified. The
horizontal axis contains the number of texture images used as database images for the
−k NN classifier. In this way, it is possible to understand how the numbers of images used

for “training” the classifier affects the results. In practice, the most important outcome
would be in the case of using only 5 training images, which is more close to real application
implementations. Wavelets and DCT seems to give best results for a few training images,
while Gabor filters and edge histogram seems to have high classification error ratio. The use
of many images for training the classifier affects the results, producing low classification
error rate for all methods, except for the edge histogram that is in accordance with the
results produced using the OUTex database. We have to notice here that, in general, the
multivariate WW-test performs slightly better than the KWass measure, when
distributional-based measures are considered. In addition, histogram-based measures do
not perform adequately when compared to distributional-based ones, in all different texture
feature extraction methodologies. This internal comparison is in accordance with the results
coming from both texture datasets, as also theoretically expected from our initial analysis
and the reports coming from the wide literature.

5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of database images

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e
(x

10
0%

)

WWTest
J-Div
KL-Div
HI
KWass

5 10 15 20 25 30 35 40 45 50 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of database images

Cl
as

si
fic

at
io

n
E

rr
or

 R
at

e
(x

10
0%

)

WW-Test
J-Div
KL-Div
HI
KWass

a) b)

5 10 15 20 25 30 35 40 45 50 55
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of database images

Cl
as

si
fic

at
io

n
Er

ro
r

R
at

e
(x

10
0%

)

WWTest
J-Div
KL-Div
HI
KWass

5 10 15 20 25 30 35 40 45 50 55

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

of database images

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e
(x

10
0%

)

WWTest
J-Div
KL-Div
HI
KWass
EHD

c) d)

Fig. 8. Classification Error Rate results for a) Wavelets, b) DCT, c) Gabor filters and d) Edge
Histogram for different number of training images, for the Photometric database.

 Tools in Artificial Intelligence

344

6. Boosting the classification performance via Vector Quantization
Vector quantization aims at representing the data with a reduced set of prototype data
vectors and thus summarizes the input information while inducing minimal distortion. In
the case of texture images, a codebook of k code vectors that summarizes the vectorial
representation of the entire spectral information is designed by applying the Neural-Gas
algorithm to the data matrix. This algorithm is an artificial neural network model, which
converges efficiently to a small, user-defined number of codebook vectors, using a stochastic
gradient descent procedure with a ‘‘soft-max’’ adaptation rule that minimizes the average
distortion error (Martinez et al., 1993).
The Neural Gas network operates by utilizing first a stochastic sequence of incoming data
vectors ()tX , which is governed by the distribution ()XP over the manifold V . Then, an
adaptation step is performed for adjusting the weights of the k neurons { }

kjjA
:1=

:

 () { }()() ()()jkiijj AtXAtXfhA −⋅=Δ = :1,λε , kj , 2, ,1 …= , max,,1 tt …=∀ (10)

The function ()yhλ in the above equation has an exponential form λye− and { }()jAXf , is

an indicator function that determines the ‘neighborhood-ranking’ of the reference vectors
according to their distance from the input vector X , while for both parameters ε and λ an
exponential decreasing schedule is followed, with maxt being the final number of adaptation
steps that can be defined from the data based on simple convergence criteria.
The asymptotic density distribution of the codebook vectors ()AP was proved,
mathematically (Martinez et al., 1993), to be proportional to the data density distribution
() () ()2+∝ ddPP XA where dd ≤ is the intrinsic dimensionality of the input data. This

theoretical evidence along with the accompanying experimental evidence (Martinez &
Schulten, 1994) motivated our conjecture that the designed codebook could serve as a
faithful representation of the vectorial distribution in color-space and therefore could be
utilized in the subsequent comparisons regarding color content. The relationships between
filter responses are encoded in the joint multivariate distribution and provide unique
information about the textural structure. To reduce the complexity of the classification
problem, texture distribution comparisons are carried out in pairwise fashion using the
distribution-distance measures presented before to test the efficiency of the sequential
algorithmic procedure.
In order to evaluate the classification accuracy of our procedure when incorporating the
Neural-Gas based vector quantization scheme, the Photometric database was utilized. In our
experiments, 4 training sets of images were used for the classifier, with each one containing
5, 20, 35 and 51 database images respectively per class, while the rest ones were used as
queries. Experiments took place for Wavelets, DCT and Gabor methods, which were proven
to produce the best classification results. Each image was first partitioned into several
overlapping blocks. For each block, all three feature extraction methods were applied, as
previously explained. Due to the block-overlapping nature of our procedure, the extracted
texture signatures are comprised of a large number of feature vectors. The Neural-Gas
algorithm is next used to select the most representative ones that best describe the texture
feature distribution, boosting in this way the classification results. In Fig. 9 the general
scheme of using Neural-Gas is presented.

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

345

Fig. 9. Overlapping blocks produce a large number of feature vectors. Neural-Gas is used to
select the most representative ones that best describe the image texture.

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

of images in database

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e
(x

10
0%

)

WWTest
KWass

5 10 15 20 25 30 35 40 45 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

of images in database

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e
(x

10
0%

)

WWTest
KWass

a) b)

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

of images in database

C
la

ss
ifi

ca
tio

n
E

rr
or

 R
at

e
(x

10
0%

)

WWTest
KWass

5 10 15 20 25 30 35 40 45 50 55
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

of database images

Cl
as

si
fic

at
io

n
Er

ro
r

Ra
te

 (x
10

0%
)

Wavelets
Wavelets+NGas
DCT
DCT+NGas
Gabor
Gabor+NGas

c) d)

Fig. 10. Experimental results using the Neural-Gas algorithm for a) Wavelets, b) DCT, c)
Gabor filters. d) Comparative results of the methods with and without Neural-Gas.

 Tools in Artificial Intelligence

346

In Fig. 10, the results obtained utilizing the Neural-Gas are presented. When the classifier is
trained with a few texture images, the Neural-Gas procedure seems to slightly increase the
classification error. In contrast, as the number of database samples is increased, the Neural-
Gas procedure boosts the accuracy of the classification quite enough.

7. Conclusion
A robust methodology is presented in this chapter that tries to tackle the texture
classification problem. The multivariate WW-test and the KWass distance are used in order
to measure how close two distributions are. Their generic character stems from the fact that,
by altering the character of texture image characteristics, we can modify the flavour of
formulated queries. To avoid problems associated with histograms as empirical estimates of
the distribution (e.g., the binning effect), particularly in high-dimensional spaces,
dissimilarity between texture distributions is computed using distributional-based
multivariate analysis. These multidimensional measures can adequately operate even with a
small number of distributional samples and is well suited for texture matching.
Individual texture samples were extracted from the images of the OUTex and the
Photometric texture databases, by partitioning the image into regions of almost
homogenous texture content. The intrinsic dimensionality of the texture regions is
computed by means of image decomposition implementing some of the well-established
techniques. Depending on the technique, the joint spectral distribution is sampled in the
form of multivariate vectors. The efficiency in textural feature extraction of the different
methods, as well as the competence of the above measures in distributional texture image
representations, was tested with quite satisfactory results, which yield future ideas for
research and application. In addition, a neural-network based vector quantizer was adopted
in order to further boost the classification accuracy of the introduced methodologies. Each
texture image distribution was summarized by a vector quantization scheme in order to
select a restricted number of prototype code vectors, thus resulting in a sampled
representation of the original spectral distribution. These code vectors played the role of a
spectral signature for each texture image, capturing its basic structure and providing a
sparse-compact representation.
As a scheduled extension of our work, the application of the introduced methodology to
color or multispectral images for texture classification can be straightforwardly
implemented, by placing other subband’s texture information to higher dimensions in the
feature space. However, special care has to be taken to the number of extracted feature
vectors in the case of multispectral images, due to the “curse of dimensionality” (Costa &
Hero, 2004). In addition, more has to be done in order to overcome the problem that arises
from the weakness to capture texture patterns that have different plain scales. This might be
accomplished by utilizing adaptive scalable blocks, by means of – each time – different sized
block patches inside the input images. In this way, the texture information can be efficiently
captured in different scales, making use of possible regions of interest. Moreover, texture
segmentation algorithms could be incorporated towards this solution, among the plethora
that is available in the literature the recent years (Jain & Farrokhnia, 1991; Manjunath &
Chellappa, 1991). Finally, the use of alternative ways to extract texture information based on
high-level features (i.e., semantic-based texture attributes), so as to correlate better with the
human perceptual inspection, is of crucial importance (Liu et al., 2007), as well as the
potential application of combining other primitives in the feature extraction methodology,
such as color and shape.

Robust Classification of Texture Images using Distributional-based Multivariate Analysis

347

8. Acknowledgements
This work was financed by the European Social Fund (ESF), Operational Program for
Educational and Vocational Training II (EPEAEK II), and particularly the Program “New
graduate programs of University of Patras”.

9. References
Bhaskaran, V. & Konstantinides, K. (1995). Image and video compression standards, algorithms

and architectures, Kluwer Academic Publishers, ISBN: 0-7923-9952-8, Norwell,
Massachusetts USA

Costa, J. & Hero, A.O. (2004). Geodesic entropic graphs for dimension and entropy
estimation in manifold learning. IEEE Trans. on Signal Processing, Vol. 52, No. 8, pp.
2210-2221

Daugman, J.G. (1985). Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters. Journal of the
Optical Society of America A, Vol. 2, No. 7, pp. 1160-1169

Do, M.N. & Vetterli, M. (2002). Wavelet-based texture retrieval using generalized Gaussian
density and Kullback-Leibler distance. IEEE Trans. on Image Processing, Vol. 11, No.
2, pp. 146-158

Friedman, J.H. & Rafsky, L.C. (1979). Multivariate generalizations of the Wald-Wolfowitz
and Smirnov two-sample tests. Annals of Statistics, Vol. 7, No. 4, pp. 697-717

Gibbs, A. & Su, F. (2002). On choosing and bounding probability metrics. International
Statistical Review, Vol. 70, No. 3, pp. 419-435

Jain, A.K. & Farrokhnia, F. (1991). Unsupervised texture segmentation using Gabor filters.
Pattern Recognition, Vol. 24, No. 12, pp. 1167–1186

Laine, A. & Fan, J. (1993). Texture classification by wavelet packet signatures. IEEE Trans. on
Pattern Analysis and Machine Intelligence, Vol. 15, No. 11, pp. 1186–1190

Leow, W.K. & Li, R. (2004). The analysis and applications of adaptive-binning color
histograms. Computer Vision and Image Understanding, Vol. 94, No. 1-3, pp. 67–91

Leung, T. & Malik, J. (2001). Representing and recognizing the visual appearance of
materials using three-dimensional textons. International Journal of Computer Vision,
Vol. 43, No. 1, pp. 29-44

Levina, E. & Bickel, P. (2001). The earth mover’s distance is the Mallows distance: some
insights from statistics. Proceedings of IEEE Int. Conf. on Computer Vision, pp. 251-
256, Vancouver, Canada, July 2001

Liu, Y.; Zhang, D.; Lu, G. & Ma, W.Y. (2007). A survey of content-based image retrieval with
high-level semantics. Pattern Recognition, Vol. 40, No. 1, pp. 262-282

Manjunath, B.S. & Chellappa, R. (1991). Unsupervised texture segmentation using Markov
random fields models. IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.
13, No. 5, pp. 478–482

Manjunath, B.S.; Ohm, J.R.; Vasudevan, V.V. & Yamada, A. (2001). Color and texture
descriptors. IEEE Trans. on Circuits and Systems for Video Technology, Vol. 11, No. 6,
pp. 703-715

Manjunath, B.S.; Salembier, P. & Sikora, T. (2002). Introduction to MPEG-7: multimedia content
description interface, Wiley, ISBN: 978-0-471-48678-7, New York

 Tools in Artificial Intelligence

348

Martinez, T.M. & Schulten, K.J. (1994). Topology representing networks. Neural Networks,
Vol. 7, No. 3, pp. 507-522

Martinez, T.M.; Berkovich, S.G. & Schulten, K.J. (1993). “Neural-gas” network for vector
quantization and its application to time-series prediction. IEEE Trans. on Neural
Networks, Vol. 4, No. 4, pp. 558-569.

Ojala, T.; Pietikainen, M. & Harwood, D. (1996). A comparative study of texture measures
with classification based feature distributions. Pattern Recognition, Vol. 29, No. 1,
pp. 51–59

Pothos, V.K.; Theoharatos, C.; Zygouris, E. & Economou, G. (2007). Distributional-based
texture classification using non-parametric statistics. Pattern Analysis and
Applications, Special Issue on Non-parametric Distance-based Classification Techniques
and its Applications, DOI 10.1007/s10044-007-0083-9

Randen, T. & Husoy, J.H. (1999). Filtering for texture classification: a comparative study.
IEEE Trans on Pattern Analysis and Machine Intelligence, Vol. 21, No. 4, pp. 291-310

Rubner, Y. & Tomasi, C. (2001). Perceptual metrics for image database navigation, Kluwer
Academic Publishers, ISBN: 0-7923-7219-0, Norwell, Massachusetts, USA

Rubner, Y.; Puzicha, J.; Tomasi, C. & Buhmann, J.M. (2001). Empirical evaluation of
dissimilarity measures for color and texture. Computer Vision and Image
Understanding, Vol. 84, No. 1, pp. 25–43

Sebe, N. & Lew, M.S. (2000). Wavelet based texture classification. Proceedings of IEEE Int.
Conference on Pattern Recognition, pp. 947-950, Barcelona, Spain, September 2000,
IEEE Computer Society Washington, DC

Swain, M.J. & Ballard, D.H. (1991). Color indexing. International Journal of Computer Vision,
Vol. 7, No. 1, pp. 11-32

Theoharatos, C.; Pothos, V.K.; Laskaris, N.A.; Economou, G. & Fotopoulos, S. (2006).
Multivariate image similarity in the compressed domain using statistical graph
matching. Pattern Recognition, Vol. 39, No. 10, pp. 1892-1904

Zhang, D.S.; Wong, A.W.; Indrawan, M. & Lu, G. (2000). Content-based image retrieval
using Gabor texture features, Proceedings of IEEE Pacifin-Rim Int. Conference on
Multimedia, pp. 392-395, University of Sydney, Australia, December 2000

20

Recent Developments in Bit-Parallel Algorithms
Pablo San Segundo, Diego Rodríguez-Losada and Claudio Rossi

Universidad Politécnica de Madrid
Spain

1. Introduction
A bit array (or bit vector, bitboard, bitmap etc. depending on its application) is a data
structure which stores individual bits in a compact form and is effective at exploiting bit-
level parallelism in hardware to perform operations quickly as well as reducing memory
requirements. Working at bit level is nothing new: i.e. STL1 for C++ has a bitset container as
data type, and mapping pixels to bits or processes to priority queues in some operative
systems are but two examples of an interminable list of applications where space
requirements are critical.
However, to improve overall efficiency by bit-masking operations is hard in any scenario.
One obvious reason for this is that bit vectors are compact data structures difficult to
manipulate, all the more so since extracting information relative to a single bit of the array
has an overhead which does not exist in a classical implementation. From a theoretical
perspective there have been some important complexity results concerning bit-paralellism,
where modern CPUs are seen as non deterministic Touring Machines with power limited to
the size of its registers (denoted as wsize). In practice, bit-parallelism has become an
important tool for domains such as string matching as in (Baeza-Yates R. and Gonnet G. H
1992), where the complexity of a linear algorithm is reduced by a factor wsize. It is important
to note that these successes have not extended to more complex NP combinatorial problems
in the general case, a key issue and a topic which has been a line of research of the authors in
recent years.
A classical search domain for bit vectors has been board games, the origin of the term
bitboard. In chess-playing programs, the bits in a 64-bit bitboard map to a particular Boolean
property concerning the 64 squares of the chessboard (cf. Heinz E.A. 1997). One of the first
systems to employ bitboards as the basic modelling unit is the KAISSA chess programming
team in the Soviet Union during the late 1960s. Today almost all relevant chess programs
employ this form of encoding and reason, at least partly, over a bit vector space.
This chapter covers the use of bit-parallelism as an AI tool to implement efficient search
procedures. It focuses on fully bit encoded search domains, where declarative frame
knowledge is mapped to bit vectors and procedural frame knowledge (i.e. basic transition
operators etc.) is mapped to simple bitwise operations over a bit vector search space.

1 STL: Standard Template Libraries

 Tools in Artificial Intelligence

350

The material presented is structured in three parts. Section 2 covers exact (optimal) search. It
focuses on a depth-first search algorithm to show the advantages and disadvantages of
search in a bit vector space w.r.t. to a classical encoding, including experiments. Based on
these experiments and recent work of the authors on the maximum clique problem (San
Segundo P. et al. 2007) the section highlights the strength of simple graph models as a tool
for implementing efficient bit parallel search procedures in general, and NP-hard problems
in particular. At the end of the section the Boolean satisfiability problem and the N-Queens
problem are suggested as new candidates for bit-parallel search.
Section 3 covers bit-parallel search in non-exact scenarios. In particular an efficient genetic
algorithm for SAT is compared with an equivalent bit parallel version. The section also
includes computational experiments. Section 4 describes two real life applications where bit-
parallelism has been applied with success, taken from the vision and robotics domain.
Conclusions as well as a brief discussion of future work are stated in Section 5.

2. Exact search in a bit vector space
This section covers exact (optimal) bit-parallel efficient search procedures. It is assumed that
the search domain can be fully bit encoded and that a reasonable bit encoding has already
been found. The subject of how to find one such bit representation for a particular domain
is out of the scope of this Section (and of the Chapter itself). Rather, the Section focuses on
implementation and complexity issues related to systematic bit-parallel search. As case
study the maximum clique problem has been selected for a number of reasons that will be
explained throughout the section.

2.1 Basic bit operators
A typical fully bit encoded search space maps bits to domain entities and states to a number
of bit vectors which represent Boolean properties of these entities. Without loss of
generality, it can be assumed that non Boolean properties which describe a particular state
can be reduced to a collection of Boolean ones. In this scenario, a bit vector is a {0,1}
collection of cardinality the number of domain entities. A possible declaration of this data
structure in C language can be found in figure 1.

Figure 1. Declaration of a bit vector in C language

Since bit vectors map to sets, bitwise operations are needed to compute the fundamental
operators related to set theory. Table 1 shows basic bitwise operations for sets using C style
syntax (i.e., &, |, ^ and ~ map onto AND, OR, XOR and NOT respectively). Note that the
last operator in Table 1 is not an assignment over sets A and B, but a truth assertion.
A fully encoded bit-parallel algorithm employs a bit vector (possibly more than one) to
guide search in the bit space. In any systematic bit-parallel search procedure two classical

typedef unsigned long long BITARRAY;

/*bit vector declaration*/
BITARRAY bitvector [Cardinality];

Recent Developments in Bit-Parallel Algorithms

351

bitwise operators stand out over the rest: A) operator LSB2 (alias Bit Scan Forward or simply
Bit Scan) which finds the first 1-bit in a bit vector, and B) operator PC (Population Count)
which returns the number of 1-bits in a given bit vector. The former (or its counterpart
MSB3) is typically used in node selection strategies whilst the latter is necessary for leaf node
detection (typically the empty bitboard, () 0PC BB =). Notation throughout this paper
includes an additional subindex to LSB or BB to make cardinality explicit (e.g. LSB64 refers to
a bit scan over a 64 bit array).

& BB BBA B A B∩ ≡ () (^) &BB BB BBA A B A B A− ∩ ≡

~ BBA A≡ () (^) &BB BB BBB A B A B B− ∩ ≡

|BB BBA B A B∪ ≡ & (~)BB BBA B A B− ≡

() () ^BB BBA B A B A B∪ − ∩ ≡ & (~)BB BBA B B A φ⊇ ⇔ ==

Table 1. Correspondence from set theory operators to bitwise operations written in C
language.

Depending on the processor HW architecture and compiler used, both operators might be
available as built-in functions or intrinsics, but their use is always restricted to the size of the
CPU registers (wsize). The extension to bit vectors of cardinality higher than wsize is
conceptually trivial but needs to be done carefully because the impact in overall efficiency is
high. SW implementations of wsize LSB and PC are needed when they are not available as
intrinsics and there are a large number of solutions available in literature (cf. Warren H.S. Jr
2002). For PC we recommend precomputation of a lookup table for all 16 bit possible
combinations. For LSB a nice hashing solution for a 64 bit register CPU can be found in (1).
MN is one magic number from a De Bruijn sequence such as 0x07EDD5E59A4E28C2.
Computation BB&(-BB) isolates a single 1-bit and the *, >> operations constitute a perfect
hash function for the isolani to a 6 bit index. For a more detailed explanation we refer the
reader to (Leiserson, C. t al. 1998).

 64 () [(& ())] 58LSB BB BB BB MN= − ⋅ >> (1)

A common assumption in bit encoded exact search models is that the benefits of parallelism
at bit level have a counterpart in the overhead needed to extract information relative to a
single bit in the compact bit array. This is, in fact, quite true in a general sense and is
probably the reason why bit-parallelism has not attracted so much attention in AI real life
applications as yet. This key issue is covered in the following subsection.

2.2 Complexity of bit scanning in bit-parallel systematic search
Finding a 1-bit in a compact bit array is an important overhead to be taken into account for
efficient bit encoded exact search models. Worst case complexity for a naïve nLSB
computation is ()O n . A more efficient 16 bit direct lookup table implementation computes

2 LSB stands for Least Significant Bit
3 MSB stands for Most Significant Bit

 Tools in Artificial Intelligence

352

nLSB in 4()
size

nO
w

. For non bit-encoded models (e.g. an array indexed by the position of the

element) the cost of a single LSB operation is in ()O n , clearly worse w.r.t. the bit model.
However, the situation changes when the problem is extended to finding the first k-bits in a
bit set (alternatively the first k elements in a list). In this case, worst case complexity for lists
is still in O(n) whereas, although it is possible to index the wsize blocks of bits, there is no
getting over the

sixewLSB complexity of finding a 1-bit in a particular block. Worst case
computation, assuming sizek w<= and a 16-bit direct lookup table implementation of

sizewLSB is:

 4(1)()
size

N kO Bit Scan for k bits
W

−
= (2)

which grows linearly with the number of bits to find. Figure 2 illustrates this inherent
complexity showing time results for finding the first 100 1-bits in a random generated
population of size 5000 with varying densities.

Bit-Scan Complexity

0

10000

20000

30000

.1 .2 .3 .4 .5 .6 .7 .8 .9

Bit density

Ti
m

e
(µ

s)

NBB

BB

Figure 2. Different computing times for finding the first 100 elements in a randomly
generated population of size 5000 after 1000 runs in a P-4 2.7GHz CPU. BB implements a
compact bit array and NBB a list.

In the figure, BB stands for the compact bit array implementation, as opposed to a list or
array made up of {0,1} integers. For the experiments the abovementioned 16 bit direct
lookup table for LSB was employed. As expected, times for NBB remain reasonably linear
with density whilst BB turns out to be more than 3 times slower in the general case. In (2),
k=100, Wsize=64, gives a 6 ratio difference in favour of NBB in the worst case, but average
case for NBB is twice as fast since LSB will normally take two cycles and not four. As bit
arrays become more and more sparse, average case for LSB decreases by another two factor

since it takes one cycle to bit scan an empty block, so for d=0.1 the new ratio is 4 100 1.5
64 4
⋅

≅
⋅

.

Consider a bit vector space of states where a single bit vector BBg guides some form of
systematic search. This requires that every element of the set is expanded, so operator

NLSB must be called for every element of the set. Thus, the overall inherent complexity of
the bit encoding is similar to finding the first k-bits in BBg where k averages 1-bits for all
states visited:

Recent Developments in Bit-Parallel Algorithms

353

 gPC(BB)
k

Number of subproblems solved
= ∑ (3)

It is not clear that the benefits of computing transitions using bit-parallelism can outweigh
this inherent bit scan complexity (e.g. in a brute force algorithm). In fact, the intuition is that
additional bit encoded knowledge will be needed for efficient bit-parallel systematic search
to improve a standard implementation. For some years now the authors have been
interested in proving this statement for instances in the NP-complete class. Recent work in
this line of research has led us to one such problem for the graph domain: the maximum
clique problem. As a result, we have implemented a new complete bit-parallel general
purpose algorithm which is one of the fastest general purpose algorithms at the moment
(San Segundo P. et al, 2007). This result is important since it shows that bit-parallelism can
be used as a tool to improve general purpose search algorithms for problems in NP. The
following subsection focuses on this topic.

2.3 Bit encoded knowledge
The subsection is concerned with simple graphs. Simple graphs have a finite set of vertices
V and a set E of pairs of vertices (x,y) called edges. Two vertices are said to be adjacent if
they are connected by an edge. A subset of vertices such that every edge in W belongs to V
is called a subgraph over G induced by W, and is written (/)G E W or simply ()G W . A clique
in G is an induced subgraph where every pair of vertices are bitwise adjacent. The k-clique
problem consists in determining whether a clique of size k exists for a given graph and is
well known to be NP-complete (Karp R.M. 1972). The corresponding optimization problem
is the maximum clique problem (MCP), which looks for the largest possible clique in a given
graph. MCP is NP-hard.
A typical efficient exact MCP algorithm uses a depth-first strategy to implement systematic
search in a branch and bound scheme. Search takes place in a graph space starting with a
small clique which gradually gets bigger and bigger as search advances. Recent examples of
branch and bound algorithms for exact MCP are (Pardalos P.M. and Xue J. 1994) and more
recent (Tomita E. and Kameda, T. 2006) amongst others. Figure 3 shows a primitive branch
and bound MCP algorithm. It receives as input a simple graph G and returns the size of the
largest possible clique in variable max_size. G iN (v) is the neighbour set of vertex vi in G and
contains all vertices in G adjacent to vi.

Figure 3. A primitive exact branch and bound algorithm for MCP.

 Tools in Artificial Intelligence

354

Simple graphs have {0,1} adjacency matrices where element ijA is 1 if there is a
corresponding edge between vertex i and vertex j in the graph and 0 otherwise. As a
consequence, binary matrices map nicely to bit arrays of size the number of nodes of the
graph (e.g. one bit array per row).
For a full encoding of the MCP search space, an additional bit array BBguide is needed to
guide the search, mapping the set of vertices of the graph at the current node. Initially
BBguide starts with all bits to 1 corresponding with the initial input graph. An empty BBguide
is a leaf node whilst vertices expanded in any path from root to leaf form a clique in G (see
figure 4).

Figure 4. An example of MCP search in a bit encoded graph space. A single bit array guides
the search. The bit encryption maps the i-th vertex of a graph to the i-th bit in the bit array.
Every path from root to leaf node is a clique.

At every node bit scanning is needed during vertex selection for expansion, an overhead
which has an important overall impact w.r.t. a non bit_parallel implementation. To validate
this statement a number of tests have been carried out with a naïve brute force MCP
algorithm denoted BBN-MCP (labelled BB in figure 5), and an equivalent non bit-parallel
implementation N-MCP (labelled as list in figure 5). Both implementations use depth first
systematic search to explore the full space without any pruning strategy and vertices are
selected lexicographically.
Figure 5 shows time results for a number of randomly generated graph instances of different
sizes and densities. In this systematic lexicographic brute force scenario, results indicate that
the complexity of bit scanning at every node far outweighs the advantage of computing
graph transitions efficiently using bitwise operations.
Things change when knowledge gathered during early exploration in depth-first search is
bit encoded to prune the space later on. In MCP, strong efficient upper bounds on the size of
the maximum clique for any graph can be computed through coloring of the graph vertices.

Recent Developments in Bit-Parallel Algorithms

355

Classical vertex coloring of a graph (,)G V E= is just a way to partition set V into disjoint
subsets Ci of same color vertices. The restriction behind coloring is that only non adjacent
vertices can be painted with the same color. Let Ci be the i-th color set of a possible k-coloring
for G (see 4).

1 1

, , ()
k k

i i
i i

C V C V kφ ω
= =

= = ≤∪ ∩ (4)

where ()Vω is common notation for the size of the largest possible clique in G. The best
upper bound by vertex coloring for ()Vω is the graph chromatic number i.e., the minimum
number of colors needed to paint the graph.

Figure 5. Time results for a bit-parallel (BB) and a classical (List) naïve brute force MCP
algorithm.

Since optimal coloring is also in NP, efficient MCP complete algorithms use some form of
greedy coloring strategy to prune the search space. There are many possible such strategies
and an adequate survey is out of the scope of this article.
Of interest in this paper is the fact that previous naïve BBN-MCP implementation turns out
clearly superior to N-MCP when a typical coloring scheme is added. The coloring
implemented is a standard technique commonly used which is in O(n2), and runs wsize
times faster in BBN-MCP than the non bit-parallel implementation. The impact of the
pruning strategy for MCP is so big in the majority of cases that its computation becomes
critical for overall efficiency. Figure 6 shows times for N-MCP and BBN-MCP when the
coloring scheme is included. The situation is now reversed; bit scanning overhead is clearly
surpassed by the benefits of bitwise coloring.

BB vs. List (d=0.1)

0
0.1
0.2
0.3
0.4
0.5
0.6

800 1000 1200 1400 1600 1800

Number of vertices

Ti
m

e
(s

)

BB
List

BB vs. List (d=0.3)

0

200

400

600

800

600 800 1000 1200 1400 1600 1800

Number of vertices

Ti
m

e
(s

)

BB
List

BB vs. List (d = 0.8)

0
20
40
60
80

30 50 70 90

Number of Vertices

Ti
m

es
 (s

)

BB
List

BB vs. List (d = 0.6)

0

0.02

0.04

0.06

30 50 70 90

Number of Vertices

Ti
m

es
 (s

)

BB
List

 Tools in Artificial Intelligence

356

Figure 6. Time results for a bit-parallel (BB) and a classical (list) implementation of a naïve
MCP algorithm with a classical vertex coloring strategy to establish bounds.

2.4 Graph models for bit-parallel search
The interest of this article is focused in efficient bit-parallel NP algorithms. In the authors’
view, two very promising lines of research can be undertaken. In the first place, results
presented in the previous subsection make MCP a promising tool for implementing bit-
parallelism in other NP problems. A survey on our very efficient bit-parallel MCP algorithm
can be found in our recent work (San Segundo P. et al. 2007). As has been said, k-clique, the
corresponding non optimization version of MCP, is an NP-complete problem so it is
certainly conceivable that problems with a reasonably benevolent reduction to k-clique can
be efficiently solved using some form of bit-parallelism.
A second and more general line of research can be found in the intrinsic binary nature of
simple graphs, which make them a very important tool by themselves to exploit bit-
parallelism in search. The reason behind this is that the binary adjacency matrix of such
graphs allows for a simple and clear mapping of relations to bits. Moreover it also facilitates
the bit encoding of additional domain dependent knowledge, which can then be computed
by efficient bitwise operations.
Following this second line of research, our attention has recently shifted to bit-parallelism in
the Boolean satisfiability problem (commonly known as SAT). At the moment we have
implemented a number of graph models to represent clause information with, as yet,
modest but highly encouraging results. We note that today’s fastest general purpose SAT
algorithms do not employ reduction to a graph space; it is actually a more common practice
to reduce other problems to SAT (e.g. (Kautz, H. and Selman, B. 1998) is a very efficient
planner which solves a graph plan in a SAT space). Some NP-hard problems taken from
board games have also an interesting reduction to simple graphs which might need
reviewing from a bit-parallel perspective. One such example is N-Queens which aims to
place N queens in an empty NxN square board such that they do not attack each other.
More complicated scenarios include an initial non empty board (e.g. with a pawn on a
particular square). A possible graph model for such scenarios maps vertices to squares in
the board and places an edge between two squares if a queen placed on any one of them
attacks the other.
Besides optimal search procedures we have also done some recent research on bit-
parallelism in evolutionary algorithms. In this case the aforementioned intrinsic complexity
of bit scanning is not necessarily a key issue because candidate solutions can be generated
using other means (e.g. a permutation index). The issue of bit-parallelism in suboptimal
search procedures is the focus of the next section.

BB vs. List (d=0.3)

0
50

100
150
200
250
300

600 800 1000 1200 1400 1600

Number of Vertices

Ti
m

es
 (s

)

List

BB
BB vs. List (d=0.1)

0
0.2
0.4
0.6
0.8

1

600 800 1000 1200 1400 1600

Number of Vertices

Ti
m

es
 (s

)

List

BB

Recent Developments in Bit-Parallel Algorithms

357

3. Evolutionary algorithms
The term Evolutionary Computation denotes a class of population-based heuristic search
techniques inspired by Darwin’s principle of evolution in nature. Starting from a set of
candidate solutions, called population, an evolutionary algorithm (EA) generates a new
population of candidate solutions by means of operations called selection, recombination4 and
mutation, applied to the existing population. This step is called a generation. Generation after
generation the population of candidate solutions evolves toward good solutions of the
problems at hand. In analogy with natural environments, candidate solutions are also called
individuals. Each individual is represented by a chromosome, which is an encoding of a
candidate solution. Every individual has associated a fitness that is a measure of its quality,
i.e., how good the individual is in solving the given problem. The term Evolutionary
Computation denotes a whole family of techniques, which differ on some aspects from the
evolutionary loop. Evolutionary Strategies, Genetic Algorithms, Genetic Programming, and
many other evolutionary based search techniques apply the same basic concepts, but differ
on how the selection, recombination, mutation, encoding of individuals and survivor
selection operations are implemented. A detailed description of all the aspects of the
evolutionary computation galaxy goes beyond the purpose of this work. For a good survey
we refer the reader to (Eiben A.E. and Smith J.E., 2002).
Because of the natural representation of candidate solutions as string of bits, where each bit
represents the truth value of the corresponding variable, SAT is the typical problem that can
be approached using standard genetic algorithms (GAs), i.e. evolutionary algorithms based
on bit-string representation of chromosomes. However, it was observed that since EAs do
not use domain dependent knowledge, they may not outperform well tuned problem
specific algorithms. This observation has been experimentally confirmed, and justifies the
fact that all evolutionary algorithms for SAT proposed in the recent years have incorporated
heuristic information. EAs for SAT can be roughly divided into three main classes
depending on the way they use knowledge: EAs that encode knowledge into the fitness
function, in the genetic operators and those that use the MAX-SAT fitness function (see
below) and add local search to improve the quality of individuals. Usually EAs for SAT
adopt the bit representation, since this is the most natural representation for this problem.
However, EAs based on other representations have been used, like clausal representation,
floating point, and path representation.
Several different evolutionary algorithms have been proposed for the SAT problem, varying
in the representation and/or fitness function. For an exhaustive survey we refer to (Gottlieb
et al., 2002). In the following, we will analyze the ASAP algorithm (Adaptive evolutionary
algorithm for the Satisfiability Problem), which is one of the best evolutionary algorithms for
the Sat problem, and proved to be competitive with the best non-evolutionary algorithms
(Rossi, C. Et al., 2000).
The ASAP algorithm is a (1+1)-evolutionary strategy enhanced with a local search step and a
memory of past states that is used to escape from local minima and to dynamically adapt
the mutation parameter. In a (µ+λ)-strategy the population consists of µ individuals. At each
generation, λ new individuals are generated, and the new population is formed by the best µ
among the (µ + λ) individuals. In ASAP, since the population is formed by only one
candidate solution, there is no recombination operator, and only mutation is used to

4 Recombination is also known as crossover.

 Tools in Artificial Intelligence

358

generate the offspring (see Fig. 7, left). Mutation consists in changing the value of a bit of the
chromosomes chosen at random with a certain probability, called mutation rate.

3.1 Description of the ASAP algorithm
In ASAP, to each new individual a local search procedure called Flip Heuristic is applied.
The technique of using local search operators in combination with evolutionary algorithms
is called Evolutionary Local Search or Memetic search.

Figure 7. ASAP pseudo-code

Roughly, it consists in the application of genetic operators to a population of local optima
produced by a local search procedure. The Flip Heuristic consists in repeatedly flipping one
bit in a randomly generated sequence, and keeping the change if this leads to an increment
of the fitness function (i.e., more clauses becomes satisfied then becomes unsatisfied). When
no increment has been obtained, the procedure terminates.
The choice of an appropriate fitness function is very important in the design of an
evolutionary algorithm. ASAP adopts the most used fitness function for the Sat problem in
EAs, called MAXSAT. The MAXSAT formulation assumes that the Sat problem is expressed
in conjunctive normal form, i.e. it is a conjunction of m clauses ci, i=1..m, each of which is a
disjunction of literals (a variable or its negation).

f(x) = c1(x) ^ ... ^ cm(x), ci = (li1 v…v lik)

where x is the array of the Boolean variables. In the MAXSAT formulation, the fitness value
is equivalent to the number of satisfied clauses, i.e.,

fMAXSAT(x) = val(c1(x)) + . . . + val(cm(x)),

where val (ci (x)) maps the truth value of the i-th clause into an integer value 1 when the
clause is true and 0 when it is false. In this way, the range of the function changes from
{true,false} to {0..m}. Note that in this formulation the optimum value is known in advance,
since the formula is satisfied when all its m clauses evaluates to 1.
ASAP is provided with a memory of past states. This is used to escape from local minima in
a twofold way. Observe that at each generation the algorithm produces a local optimum.

PROCEDURE ASAP
 randomly generate chromosome C
 apply Flip Heuristic to C
 WHILE (not termination condition) DO
 BEGIN
 C0=C /* store parent C */
 apply adaptive mutation to C
 apply adaptive Flip Heuristic to C
 compute fitness of C
 ID(fitness C < fitness C0)
 C=C0 /* discard new C */
 ELSE
 UPDATE_TABLE(C)
 END
END PROCEDURE

PROCEDURE UPDATE_TABLE
 BEGIN
 IF (fitness C > fitness CO)
 BEGIN
 empty table T
 add C to table T
 unfreeze all genes
 END
 ELSE /* fitness CO=fitness C*/

 BEGIN
 add C to table T
 IF (table T full)
 BEGIN
 compute frozen genes
 adapt mutation rate
 empty table T
 END
 END
END PROCEDURE

Recent Developments in Bit-Parallel Algorithms

359

Suppose the local search procedure directs the search towards similar (that is, having small
Hamming distance) local optima having equal fitness function values. Then we can try to
escape from these local optima by prohibiting the flipping of some genes and by adapting
the probability of mutation of the genes that are allowed to be modified. To this aim, ASAP
uses the following technique inspired on TABU search (see Fig. 7, right). At each step, a
table T of size k is filled with chromosomes having best fitness. If the best fitness increases
then the table is emptied. When the table is full, the chromosomes are compared gene-wise.
Those genes that do not have the same value in all the chromosomes are labelled as “frozen”.
The information contained in T is used for adapting the search strategy during the execution
as follows. Each time T is full, the mutation rate is recomputed setting it to the value
mutation_rate = ½ · (nº. of frozen variables)/n (thus, 0 < mutation_rate < 0.5), and the
flipping of frozen genes is prohibited. The rationale behind these two actions is the
following. If table T becomes full it means that the search strategy has found for k times best
chromosomes with equal fitness. A non-frozen gene has the same value in all these
chromosomes. This indicates that the search directs often to local optima containing the
same values of such genes. Therefore in the next iteration we allow to flip only not frozen
genes in order to reach search points far enough from the attraction basin of those local
optima. The mutation rate is chosen in such a way that the lower the number of not frozen
genes is, the higher the probability will be to flip them, since a strong basin of attraction,
requires a higher probability of generating individuals that are very different (“far”) from its
parent. The term 1/2 is used to keep the mutation rate smaller than or equal to 0.5.
Although the most obvious way to represent a solution candidate for SAT is a bit string of
length n, where every variable is associated to one bit, in the original implementations of
ASAP this was for simplicity encoded as an array of integer values, taking the value 0 or 1.
A new version of ASAP has been implemented adopting the bit board representation, in
order to exploit the benefits of bit-parallelism. We will refer to the new version as ASAP-BB.
In order to analyze the benefits of adopting the new representation let us analyze in detail
the computational cost of producing a new solution ASAP.

Figure 8. Clause representation: (a) array of indexes; (b) bit arrays.

 Tools in Artificial Intelligence

360

Let m be the number of clauses, n the number of variables and L the average clause length
(number of literals) of a given SAT instance. As mentioned before, each time an offspring
candidate solution is generated, it is repeatedly improved by a series of bit flips. Each time a
bit is flipped the fitness function must be recomputed in order to check whether the change
leads to an improvement. This is the most expensive operation and is repeated several
times. Computing the fitness function implies looping through the clauses and re-
computing them by assigning to its literals the value of the corresponding variable of the
solution. In ASAP, a solution is represented as an array of n integers, and a clause is
represented as an array of integer values, containing the indexes of the variables contained
in the clause (see Fig. 8 (a)). Thus, on average, each clause computation involves L integer
operations. The cost of a fitness function evaluation is m·L.
In ASAP-BB, a solution is encoded as a bit vector of length 2n, containing the values of the
variables in the first half, and their negation in the second half. A clause is encoded as a bit
vector of 2n bits, called clause mask. The first n bits have their value set to ‘1’ if its position
corresponds to the index of a non-negated variable of the clause, and ‘0’ otherwise. The
second n bits are set in the opposite way: bits are set to ‘1’ in correspondence of negated
variables (see Fig. 8 (b)). Thus, the evaluation of a clause is performed as a bit-wise AND
operation between a solution and the clause mask which allows exploiting bit parallelism.
The cost W of such operation depends on the word length and the number of variables of
the problem at hand:

 2_
_

nW N WORDS
WORD LENGTH

⎡ ⎤
= = ⎢ ⎥

⎢ ⎥
 (5)

and the total cost of evaluating the fitness function will be m·W.
Thus, considering that the fitness calculations are the core of the algorithm, and everything
else is kept unchanged, the expected speedup of ASAP-BB w.r.t ASAP is

 /mLFSpeedup L W
mWF

= = (6)

where F is the total number of fitness evaluations. The expected speedup depends on the
average clause length and on the number of variables, the latter determining the size of the
bit array.
As far as space is concerned, a similar analysis can be performed. The total storage space for
a clause in ASAP is L m⋅ integers while in ASAP-BB it is 2 n m⋅ ⋅ bits. Assuming an integer
has a size of four bytes, the space occupation ratio is

2

8
4 16

mn nSpace
mL L

= = (7)

3.2 Experiments
In order to validate the previous analysis of time and space complexity, we have performed
a series of tests on a set of standard benchmark instances, all satisfiable. Instance family

Recent Developments in Bit-Parallel Algorithms

361

3SAT was the first used to test different EA-based algorithms for SAT (cf. Bäck T. et al.,
1998). These instances are random 3-SAT benchmark instances with m/n = 4.35 generated
using the mkcnf6 generator using the forced option to ensure that they are satisfiable. Instance
families II, Aim, Jnh, Par are taken from the 2nd DIMACS challenge on cliques, coloring and
satisfiability (Johnson D. and M. Trick, 1996). The Aim family contains artificially generated
3-SAT instances and are constructed to have exactly one solution. Family Par instances arise
from a problem in learning the parity function. The Jnh instances are randomly generated
and have a varying clause length. Instances II arise from the "Boolean function synthesis"
problem and are used in inductive inference.
Table 2 reports the results of the tests performed. In order to compute the real speedup,
times for ASAP and ASP-BB are averaged after 10 runs on every instance7. The speedup
values have been computed averaging all the results of instances with similar properties (i.e.
m and L values).
The table shows that the measured speedup is in accordance with the analysis performed,
with small differences that are, in general, smaller than the standard deviation , and thus
are not statistically significant. Note that the Par and II instances have a clauses/variables
ratio that is disadvantageous for the bit array representation.
As far as the space ratio is concerned, the bit vector representation saves space w.r.t. the
plain integer array representation only when the number of literals remains low. Worst case
space ratio occurs for II instances, with a 70% increment approx.

4.The geometric correspondence problem
In this final section we present a survey on recent work done by the authors where bit-
parallelism has been applied to a real life problem with success. More specifically, an exact
bit parallel algorithm for the maximum clique problem has been conveniently applied to
solve the correspondence problem between two sets of geometric entities, also known as
relational structure search (Bomze et al., 1999) in the vision domain or the data association
problem (Siegwart & Nourkbash, 2004) in mobile robotics. The section starts with a
description of an adequate representation of the problem for reduction to MCP and ends
with some experiments with real data.

4.1 Description
Given two sets of geometric features (i.e. points, segments etc.) the aim is to find the best
correspondence between both sets. If a weighted graph of geometric relationships is built in
each set, with a relationship (e.g. a metric) established between every two features, the
problem becomes that of finding the Maximum Common Subgraph (MCS) between them.
MCS is known to be NP-hard, and its solution becomes even more difficult in the case of
noisy scenarios, when simplifying hypothesis or approximations cannot be applied. This

5 The 4.3 clause/literal ratio is such that instances generated with lower ratio (the
underconstrained region) almost always have solutions. Those generated with higher ratio
(the overconstrained region), almost always have no solutions. Recent works have identifed
that hard random k-SAT instances lie in such backbone, also know as phase transition region.
6 See ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC/instances
7 ASAP is non-determinist, hence multiple runs must be performed in order to obtain an
average behaviour.

 Tools in Artificial Intelligence

362

setting occurs very often in many applications, as comparing fingerprints, mobile robot
global localization, computer vision, pattern matching, etc.

Family Instance
No. of

variables
(n)

No. of
clauses

(m)

Average
clause

length (L)

BB
length
(W)

Expected
speedup

Average
speedup σ

Space
ratio

1 30 129 3.00 1 3.00
2 30 129 3.00 1 3.00
3 30 129 3.00 1 3.00

2.959 0.092 0.63

4 40 172 3.00 2 1.50
5 40 172 3.00 2 1.50
6 40 172 3.00 2 1.50

1.551 0.178 0.83

7 50 215 3.00 2 1.50
8 50 215 3.00 2 1.50

3SAT

9 50 215 3.00 2 1.50
1.446 0.145 1.04

50-3_4-1 50 170 3.00 2 1.50
50-3_4-2 50 170 3.00 2 1.50
50-3_4-3 50 170 3.00 2 1.50
50-3_4-4 50 170 2.99 2 1.49
50-6_0-1 50 300 3.00 2 1.50
50-6_0-2 50 300 2.99 2 1.50
50-6_0-3 50 300 2.99 2 1.50

Aim

50-6_0-4 50 300 3.00 2 1.50

1.497 0.022 1.04

II 8a1 66 186 2.42 3 0.81 0.870 - 1.70
1 100 850 5.17 4 1.29

201 100 800 5.19 4 1.30
1.311 0.014 1.21

12 100 850 4.91 4 1.23
204 100 800 4.89 4 1.22
205 100 800 4.89 4 1.22
210 100 800 4.89 4 1.22
213 100 800 4.88 4 1.22
218 100 800 4.88 4 1.22

Jnh

7 100 850 4.89 4 1.22

1.438 0.015 1.27

8-1-c 64 254 2.88 2 1.44 1.410 - 1.39
8-2-c 68 270 2.89 3 0.96 1.47
8-3-c 75 298 2.90 3 0.97 1.62
8-4-c 67 266 2.89 3 0.96 1.45

Par

8-5-c 75 298 2.90 3 0.97

0.930 0.033

1.62

Table 2. Results for SAT tests using ASAP and ASAP-BB. Times are averaged after 10 runs.

Recent Developments in Bit-Parallel Algorithms

363

The relationships between geometric features, also called constraints, are pose invariant
relationships that relate both features. If the sets are composed by 2D features, the
constraints could be:
• Distance: Euclidean distance between two points.
• Angle: Angle between two non parallel segments.
• Distance: Shortest (perpendicular) distance from point to segment.
• Distance: (Shortest) distance between two parallel segments.
A weighted graph reduction to MC capturing such relationships in each set would map
vertices to the elements of the set and weighted edges to the constraints.
This geometric correspondence problem allows a more convenient formulation (Bailey 2002)
under the MCP paradigm. Figure X illustrates this idea employing two sets L and O. The
former contains N features called landmarks (L1,…, Ln), and the latter is the observation set
containing M features called observations (O1,…, Om). Instead of searching the MCS
between those two sets, a new graph called the association graph is defined, in which the
nodes represent each possible landmark-observation pairing. Thus, the number of vertices
of the correspondence graph is a priori NxM.

L1O1
L1O2

L1O3

L1O4

L2O1

L2O2

L2O3

L2O4 L3O1
L3O3

L3O4

L4O1

L4O2

L4O3

O3O1

O2

C’12

C’13
L1

L2

L3

L4

L5
C12

C23

Figure 9. The geometric correspondence problem as an MCP search in an associations graph
The edges of the association graph are defined by checking pairs of constraints between the
landmark and the observation initial graphs. If a constraint that relates two landmarks in the
landmark set (e.g. constraint C12 relates landmarks L1 and L2) is compatible with a constraint
that connects two observations in the observation set (in the example C13’ that connects O1
and O3), then L1O3 and L2O1 vertices in the association graph are connected. In this new
association graph, the correspondence problem is reduced to finding the maximum clique,
equivalent to maximizing joint compatibility. Once the problem has been reduced to MCP
we have applied bit-parallelism in a similar way as described in section 2.

 Tools in Artificial Intelligence

364

4.2 Experiments
Two different sets of experiments with the proposed solution to the geometric
correspondence problem have been carried out: image matching and mobile robot global
localization. In both scenarios, the required processing time has been the main output.
Solutions obtained in all cases are optimal. The results have been compared with a finely
tuned version of the MCS algorithm, running in the same computer.

4.2.1 Image matching
In this experiment, a large aerial image of our city, Madrid has been selected because its
repetitive structure. The total image size is 1806x1323 pixels, and each pixel represents
approximately 0,4m, so the area covered is about 792x580m. Figure X shows one ninth of
such image and it can clearly be observed that its “texture” is quite repetitive making the
recognition of a partial image hard for the human eye. Given a partial subimage with
unknown position and orientation, the problem studied is to find the correspondence in the
full image. Pre-processing includes corner detection as in (Rosten & Drummond, 2005,
Rosten & Drummond, 2006) applied to both images to extract relevant points that can be
used as features. It has to be noted that due to different lighting conditions, noise, dynamic
objects, not necessarily the same corners are detected in both images (see figure X). In such a
noisy scenario, the exact solution could be the only way to guarantee robustness.

Figure 10. Computer vision pattern matching

Partial image
(observation) Reference base

image (one ninth)

Recent Developments in Bit-Parallel Algorithms

365

The table shows that processing time quickly increases with the number of landmarks and
observations for the MCS algorithm, but BE-MCP remains reasonably low. Furthermore, the
variance of BE-MCP is quite small w.r.t. MCS, which increases rapidly with the size of the
problem.
Table 3 shows processing times for both algorithms in different settings of landmark-
observation pairs, depending on the corner detection threshold chosen. Each setting is
repeated 10 times with different random observation subimages, and the average, best and
worse times are shown in the table. The algorithms were implemented in C++ and tests
were run on a P4 2,6GHz laptop.

Algorithm
Number of
landmarks

8,83 31,75 0,09 0,20
0,55 4,67 0,06 0,17

23,28 87,45 0,17 0,36
4,17 14,66 0,14 0,33

59,70 207,25 0,39 0,95
6,81 28,64 0,36 0,740,37 0,79

1023 1464
7 0,09 0,18

MCS BE-MCP

Number of
observations

Time (s)

10 0,16 0,35

15

1023 1464
16,243,22

10,89 41,44

32,83 86,04

Table 3. Comparison of processing times for different settings between a bit-parallel MCP
search algorithm and an MCS solver

4.2.2 Mobile robot global localization
Finding a robot position in a given map with only observations on local features is called
mobile robot global localization. If the map contains a set of geometric entities such as
segments (e.g. the environment walls), the observations of the robot will also be modelled as
such, but due to noise, dynamic objects (ie.g. people) and sensor limitations, these
observations can be also noisy and incomplete.
Using the MCP approach we have solved the global localization problem using real data
from our interactive tour-guide robot called Urbano (see figure 11). The reference maps
were built in real time with an EKF based SLAM algorithm (Rodriguez-Losada et al. 2006).
This time comparisons between BE-MCP and MCS were carried out under different levels of
noise, in a map composed by approximately 350 features, with observation sets made up of
between 25 and 30 observations. In the observation sets, a variable number of spurious
observations were allowed ranging from 5 to 14 (the latter being almost 50% of the total).
In this case the average time required for MCS increased with the number of noisy
observations, but the time required for BE-MCP remained constant. Furthermore, the
variance in the BE-MCP also remained constant, while the variance in MCS increased
degrading the worst case performance.

5. Conclusions and future work
Using bit-parallelism to implement efficient search algorithms raises a number of
fundamental questions which the authors have tried to cover to some extent in this chapter.
In the first place it has been shown that scanning for 1-bits in a compact bit arrays is an
intrinsic overhead which must be taken seriously into account, especially in systematic

 Tools in Artificial Intelligence

366

search procedures. In the second place emphasis has been laid on the importance of simple
graph models because of their inherent binary adjacency matrix-bit array mapping. This fact
ensures a natural bit encoding of frame knowledge as well as facilitates bit encoding of
additional domain dependent knowledge. Following this line of research, recent work done
by the authors on the maximum clique problem has revealed that its particular nature
makes it a very good tool to implement efficient bit parallel algorithms for problems in NP.

Figure 11. Mobile robot global localization

Attention has also been paid to bit-parallelism in suboptimal search. The analysis and
experiments with the ASAP genetic algorithm have shown that bit parallelism can be
beneficial for the SAT problem depending on the problem instance and of the specific data
structures used to manage the bits. An optimized bit array structure would allow achieving
even better performances than the ones obtained in the experiments performed here.
Finally the authors present a brief survey on two real life applications where bit-parallelism
has proved successful.

6. Acknowledgements
This work is funded by the Spanish Ministry of Science and Technology (Robonauta:
DPI2007-66846-C02-01) and supervised by CACSA whose kindness we gratefully
acknowledge.

Observations Map of the
environment

Urbano robot

Recent Developments in Bit-Parallel Algorithms

367

7. References
Rosten E. and Drummond T., 2005. Fusing points and lines for high performance tracking.

IEEE International Conference on Computer Vision. Oct 2005. Vol 2. pp 1508-1511.
Rosten E. and Drummond T., 2006. Machine learning for high-speed corner detection.

European Conference on Computer Vision.
Rodriguez-Losada D., Matia F., Galan R. Building geometric feature based maps for indoor

service robots. Elsevier: Robotics and Autonomous Systems. Volume 54, Issue 7 , 31
July 2006, Pages 546-558

Bomze I.M., Budinich M., Pardalos P.M., Pelillo M., 1999. HandBook of Combinatorial
Optimization, Supplement Vol A. Kluwer Academic Publishers, Dordrecht, 1999
pp.1-74.

Bailey T. 2002, Mobile Robot Localisation and Mapping in Extensive Outdoor Environments.
PhD thesis. Australian Centre for Field Robotics, University of Sydney.

Siegwart R., Nourkbash. I. An Introduction to Autonomous Mobile Robots, MIT press, 2004.
Eiben A.E. and Smith J.E., 2002. Introduction to Evolutionary Computing, Springer, 2002.
Gottlieb J., Marchiori E. and C. Rossi 2002, Evolutionary algorithms for the satisfiability

problem. Evolutionary Computation Vol. 10, Nr. 1, pp. 35-50, 2002.
Rossi C., Marchiori E. and Kok J.N. 2000, An adaptive evolutionary algorithm for the

satisfiability problem. In Proceedings of ACM Symposiumn Applied Computing,
pages 463–469, 2000.

Bäck T., Eiben A.E. and M. Vink 1998 A superior evolutionary algorithm for 3-SAT. In
Saravanan, N., Waagen, D., and Eiben, A., editors, Proceedings of the Seventh
Annual Conference on Evolutionary Programming. Lecture Notes in Computer
Science, Volume1477, pages125–136, Springer, Berlin, Germany, 1998.

Johnson D. and M. Trick editors 1996, Cliques, Coloring and Satisfiability. AMS, DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, vol 26, 1996.

Baeza-Yates R. and Gonnet G. H 1992, A new approach to text searching. Commun. ACM,
35(10), pp:74–82, (1992).

Heinz E.A. 1997, How DarkThought plays chess, ICCA Journal, 20(3): pages 166-176, 1997.
San Segundo P., Rodriguez-Losada D., Galán R., Matía F. and Jiménez A. 2007, Exploiting

CPU bit parallel operations to improve efficiency in search. International
Conference on Tools for Atificial Intelligence (ICTAI 07). Patrás, Grecia, Octubre 29-
31, 2007.

Leiserson, C., Prokop, H., and Randall, K. (1998). Using de Bruijn sequences to index a 1 in a
computer word. See: http://supertech.csail.mit.edu/papers/debruijn.pdf.

Karp R.M. 1972. Reducibility among Combinatorial Problems. Editors: R.E. Miller, J. W.
Thatcher, New York, Plenum, pp: 85-103 (1972).

Pardalos P.M. and Xue J. 1994, The maximum clique problem. Global Optimization. 4: pp.
301-328, (1994).

Tomita E. and Kameda, T. 2006. An efficient branch-and-bound algorithm for finding a
maximum clique with computational experiments. Journal of Global Optimization
(37), Springer, pp: 37:95-111 (2006)

 Tools in Artificial Intelligence

368

Kautz, H. and Selman, B. 1998. BlackBox: A new approach to the application of theorem
proving to problem solving. En AIPS98 Workshop on Planning as Combinatorial
Search, pag. 58-60, Junio 1998.

Warren H.S. Jr 2002, Hacker´s Delight. Addison-Welsey 2002.

21

Multi-Sensor Fusion for Mono and Multi-Vehicle
Localization using Bayesian Network

C. Smaili1, M. E. El Najjar2, F. Charpillet1 and C. Rose1

1LORIA-INRIA Lorraine- MAIA Team Campus Scientifique,
2LAGIS-CNRS UMR 8146 Polytech’Lille,

France

1. Introduction
Outdoor mobile robotised vehicles currently hold the attention of many researchers because
they can bring solutions to many applications related to transport of passengers in urban
environments. An example of robotised vehicle is the CyCab (Bom et al., 2005). Transport
applications which can combine mono or multi vehicle operating mode are most efficient.
For autonomous navigation application, the vehicle needs to know its position accurately
(Dissanayake et al. 2001); (Thrun et al. 2001) and if possible on the road network. In this
work, we propose to use the digital road map database for the geo-localization of the
vehicle. The localization of a vehicle using or in respect to or on a road map is treated by
several ways in the last ten years. This relatively recent research theme is known also as the
map-matching or road-matching problem. It can be interesting to localize a vehicle using a
road map because it can useful to recover the attributes associated with these data bases.
Examples of attributes are the width of the road, the presence of landmarks for accurate
localization, authorized maximum speed for advanced driver assistance system application
etc. Unfortunately, the use of the road map to improve the localization is not a simple task.
There are always errors on the estimate of the position and because the map can represents a
deformed sight of the world.
Outdoor positioning systems often rely on GPS, because of its affordability and
convenience. However, GPS suffers from satellite masks occurring in urban environments,
under bridges, tunnels or in forests. GPS appears then as an intermittently-available
positioning system that needs to be backed up by a dead-reckoning system (Zhao, 1997);
(Abbott & Powell, 1999); (EL Najjar & Bonnifait, 2003). In this work, the proposed method of
multi-sensors fusion for mono-vehicle localization is based on the use of encoders
positioned at the rear wheel of the vehicle. We use these sensors to measure elementary
rotations of the wheels and to estimate the displacement of the vehicle. Thus, a dead-
reckoned estimated pose is obtained by integrating the elementary rotations of the wheels
using a differential odometric model. The multisensor fusion of GPS and odometry is
performed by a Bayesian Network (BN).
Afterwards, we extend the multi-sensor fusion method proposed in this work for mono-
vehicle localization to be used for the localization of several vehicles moving in the same
environment. We suppose in this extension that the vehicles evolve in a train configuration.
In the literature, we found two ways to make moving a train of vehicles. The first one

 Tools in Artificial Intelligence

370

proposes to use an inter-vehicles communication (Bom et al., 2005). The second approach
proposes to not use any communication support and to make moving vehicles near-by-near
(Daviet & Parent). In our approach, we assume that the leader vehicle is equipped by
accurate positioning sensors (GPS LRK, gyroscope LASER and road map database) and
multi-sensors fusion approach in order to have continuous and accurate geo-position
information. Followers’ vehicles are equipped by relatively low cost proprioceptifs and
exterioceptifs sensors (odometer, Lidar1, DGPS) for localization task. The path of the leader
vehicle is assumed to be propagated to followers using an inter-vehicle communication
device.
The paper is organized as follows: section 2 describes the architecture of vehicle localization.
In Section 3, we propose an overview of Bayesian networks formalism. Then, we describe a
BN model for the localization of mono-vehicle and the extension of the method in same
formalism for the localization for multi-vehicle in section 4. Finally, real data results and
simulation are presented and analyzed.

2. Architecture of vehicle localization method
The vehicle localization method described in this section relies on Bayesian networks. The
proposed approach can be described by Fig.1. Firstly, the algorithm combines the Anti-lock
Braking System (ABS) measurements with a GPS position, if it is available. Then, using this
estimate, segments around the estimation are selected in a radius of 30 meters by using a
Geographical Information System (GIS-2D). Using these segments, map observations are
built and merged with other data sensors using a method based on Bayesian network.

 DGPS

GIS

Vehicle estimation
pose

Multi-sensor
Fusion BN

Multi-estimates with probability of each one

ABS wheel
Sensors

Road
 Extraction

Odometry

Fig.1. Synoptic of the Mono-vehicle localization method

2.1 Localization and heading estimation by combining odometry and GPS
Let us consider a car-like vehicle with front-wheel drive. The mobile frame is chosen with its
origin M attached to the centre of the rear axle. The x-axis is aligned with the longitudinal

1 Lidar is a SICK LASER telemeter.

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

371

axis of the car (see Fig.2). The vehicle’s position is represented by the (xk,yk) Cartesian
coordinates of M in a world frame. The heading angle is denoted θk. If the road is perfectly
planar and horizontal, and if the motion is locally circular, the motion model can be
expressed as (EL Najjar & Bonnifait, 2005):

1

.cos()1 2

.sin()1 2

1

s

k s

x x dk k k

X y y dk k k

k k

θ

θ

θ

ω
θ

ω
θ

θ θ ω

+

⎧ = + +⎪ +
⎪
⎪= = + +⎨ +⎪

= +⎪
+⎪

⎩

 (1)

Where ds is the length of the circular arc followed by M and ωθ is the elementary rotation of
the mobile frame. These values are computed using the (ABS) measurements of the rear
wheels. Let denote Xk+1 the state vector containing the pose.

 x0

 θk M yk

 xk

 y0

 M

Fig.2. The mobile frame attached to the car

2.2 Cartographical and GPS observation equation
The selection of candidate roads is the first stage of the localization on a road map problem.
Generally, this involves applying a first filter which selects all the segments close to the
estimated position of the vehicle. The goal is then to select the most likely segment(s) from
this subset. Nowadays, since the geometry of roadmaps is more and more detailed, the
number of segments representing roads is increasing. The robustness and complexity of the
localization depends mainly on the road selection module. In order to be focused on this
point, an accurate map Géoroute V2 provided by the French National Institute of
Geography (IGN) was used in this work. Our strategy is based on the fusion of several
criteria using distance direction measurements within the framework of Bayesian Network.
The pose obtained by GPS and odometry can be more accurately estimated by fusing the
selected segment. The key idea is to model the fact that the true position of the vehicle is
located around the centreline of the most likely road. This region depends mainly on the
width of the road, which is an attribute also stored in the database. We suggest using the
most likely road in order to build a new observation with its estimated associated error.
In practice, when the GPS satellites signal is blocked by buildings or tunnels, the odometric
estimation is used to select the segments all around the estimation from the cartographical
database. The cartographical observations can be obtained by projections onto the segments.
If the orthogonal projection onto line does not make part of the segment, the closer

 Tools in Artificial Intelligence

372

extremity is used. When several segments are candidates, the cartographical observation
function is a non-linear multi-modal observation. Considering a Gaussian distribution of
noise to represent the uncertainty zone all around a segment, so the multi-modal
observation is a multi-Gaussian observation one. The observation equation of the segment
segi can be written:

1 0 0
0 1 0
0 0 1

segi
carto carto

carto

x xcarto
Y y ycarto

cap

β
θ

⎡ ⎤ ⎡ ⎤ ⎛ ⎞⎢ ⎥ ⎜ ⎟⎢ ⎥= = ⋅ +⎢ ⎥ ⎜ ⎟⎢ ⎥⎢ ⎥ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎢ ⎥⎣ ⎦

 (2)

Where (xcarto, ycarto) is the projection onto each segments and capcarto is the segment heading.
To represent the error of the cartographical observation, we choose a Gaussian distribution
of the uncertainty zone all around the segment. So this error can be represented with an
ellipsoid which encloses the road. This ellipsoid has its semi-major axis in the length of the
segment and its semi-minor axis equals to the width of the road (EL Najjar & Bonnifait,
2005) (see Fig.3).

 Segment

Ν((xh,yh,θh),Qseg)

Uncertainty zone around segment

R
E
yhσ E

hθσ

E
xhσ

(xh,yh)

Fig.3. Ellipsoidal of probability construction representing zone around a segment for
horizontal segment i.e. parallel with the east axes
The third axis of the ellipsoid represents the uncertainty of the estimation of the segment.
This uncertainty is related to the relative error of the cartographical database. The
covariance matrix of the cartographical observation error can be written:

2
, ,

2
, ,

2
,

0
0

0 0

x h xy h
carto
k xy h y h

h

Q
Q Q

θ

σ
σ

σ

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3)

The GPS position measurement provides the GPS observation (xgps, ygps). The GPS
measurement error can be provided also and in real time using the Standard NMEA
sentence "GPGST" given by the Trimble AgGPS132 receiver which has been used in the
experiments. The covariance matrix of the GPS error can be expressed as:

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

373

2
, ,

2
, ,

x gps xy gpsgps
k

xy gps y gps k

Q
Q

Q
σ

σ
⎛ ⎞

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 (4)

The observation equation can be written:

 1 0 0
0 1 0GPS gps

xxgps
Y y

ygps
β

θ

⎛ ⎞⎡ ⎤
⎡ ⎤ ⎜ ⎟⎢ ⎥= = ⋅ +⎢ ⎥ ⎜ ⎟⎢ ⎥ ⎣ ⎦ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

 (5)

3. Bayesian networks
A Bayesian network can be defined as a pair G= (S, Φ), where S is a directed acyclic graph
and Φ is a parameterization of a set {P(X1|П1),…, P(Xn|Пn)} of conditional probability
distributions, one for each variable, and Пi is the set of parents of node Xi in S. Being
directional and acyclic the structure of a Bayesian network provides a direct factorization of
the joint probability distribution as (Castillo et al., 1997):

 ∏
=

Π=
n

i
iin XpXXP

1
1))|(),...,((6)

The notation used in this work is adopted from (Cowell et al., 1999), (Murphy 2002) and
(Murat 2001) where round nodes were used to denote continuous random variables and
square nodes denote discrete random variables. Throughout this paper, Xi denotes a
continuous or discrete random variable. Values of the random variable will be indicated by

lower case letters as in xi. For a discrete variable that take r values, k
ix denote a specific

assignment for 1≤ k ≤ r. A set of variables is denoted in boldface letters X={X1,…,Xn}.

3.1 Inference engine
An important issue in Bayesian networks is computation of posterior probabilities of some
variables given observation. The inference problem in general Bayesian networks is still a
hot research topic (Heckerman 1995). Several researchers have developed exact and
approximate inference algorithms for different distributions (Murphy 2002). The most
commonly used exact inference algorithm for discrete Bayesian networks is known as the
JLO algorithm (Jensen et al., 1990). The JLO algorithm is a recursive message passing
algorithm that works on the junction tree of the Bayesian network. The junction tree is
constructed from the directed acyclic graph using some graph-theoretic tools. In the
following we propose to detail an example of a discrete Bayesian network. A complete
definition using continues and hybrid Bayesian networks are given in (Cowell et al., 1999);
(Jensen, 2001) and (Murphy, 2002).

3.2 Constructing the junction tree
In order to define the junction tree we need to define the term clique. A clique is a complete
set of nodes which is not a proper subset of another complete set (Castillo et al., 1997). A set
of nodes is said to be complete if every pair of nodes in the set is linked. Fig.4 (a) contains
the following cliques: C1={A,B}, C2={B,C}, C3={C,D}, C4={D,H}, C5={D,E,G}, C6={E,F,G} and

 Tools in Artificial Intelligence

374

C7={A,E}. However, if we add some extra links to the graph, some of the previous maximal
complete sets are no longer maximal, and the graph contains different cliques. For example,
the graph in Fig.4 (b) is obtained by adding three links to the graph in Fig.4 (a). The sets C1,
C2, C3, and C7 are no longer complete. Thus, the graph in Fig.4 (b) contains five cliques:
C1={A,B,D,E}, C2={B,C,D}, C3={D,H}, C4={D,E,G}, and C5={E,F,G}.

Fig.4. Examples of cliques associated with two different graphs

A junction tree is a tree of cliques that satisfies the running intersection property (RIP). RIP
implies that if a node is contained in any two cliques, then it is contained in all the cliques in
the unique path between them (see example in 3.2.3).

3.2.1 Moralization
The moral graph of a directed acyclic graph is obtained by introducing additional
undirected edges between any two nodes with a common child and subsequently replacing
all directed edges with undirected ones (see Fig. 5 (b)). The moralization process guarantees
that a family of nodes (a node with all of its parents) will occur together in a clique (Castillo
et al., 1997).

3.2.2 Triangulation
The second step to construct a junction tree is to add sufficient edges to the moral graph to
obtain a triangulated (chordal) graph. The aim of triangulation is to obtain a decomposable
model such that the joint probability distribution can be factorized over the clique potential
function (Cowell et al., 1999). An undirected graph is triangulated if every loop of length
four or more X1—X2—…—Xn−1— X1 has at least one chord i.e. a link Xi — Xj between two
non-consecutive nodes Xi and Xj. If the required chords are not already in the set of edges,
they are added, in order to get a triangulated graph. The triangulation process is not unique.
In general it is desired to obtain a triangulation with a minimum number of additional
edges. The additional edges have a major influence on the time complexity of the inference
process (Yannakakis, 1981); (Kjaerulff, 1990). Fig.5 (c) is a trivial example for a triangulated
graph. The moral graph (Fig.5 (b)) has a loop of length six: A—B—D— E— I—A. To get a
triangulated graph, the links B—I and I—D can be added. As the triangulation process is
not unique we can add the link B—E instead of I—D.

3.2.3 Junction tree
It is now possible to identify subgraphs, where all nodes are pairwise linked. Maximal
subgraphs with this property are called cliques and are used as nodes afterwards in junction
tree. The cliques of Fig.5 (C) are : {A,B,I}, {B,I,D}, {I,D,E},{D,E,F}, {I,G,E}, and {G,H,E}. To

A

 B

C

E

D

F

G

H
(a)

A

C

E

D

 F

G

H
(b)

B

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

375

construct a junction tree the cliques are organized in a special way, so that all cliques Ci on a
path Cs—Ck—…Cn—Ce between the start clique Cs and the end clique Ce contain the nodes
of the intersection between Cs and Ce. Formally, (Cs∩Ce) ⊆ Ci,∀Ci ∈ Cs—Ck—…—Cn—Ce.
This property is known as the running intersection property (Cowell et al., 1999). According
to (Jensen, 2001), there is always a way to organize the cliques of a triangulated graph into a
junction tree. For inference purposes additional nodes containing the random variables in
the intersection of two neighboured cliques are added (Cowell et al., 1999). These additional
nodes are called separators (see Fig.5 (d)). The junction tree represented by Fig.5 (d) satisfies
the running intersection property. For example we choose two cliques Cs = {A, B, I} and Ce=
{I, G, E} with common nodes “I”: {A, B, I} ∩ {I, G, E} = {I}. According to the definition of the
running intersection property the variable “I” belong in all the cliques in the unique path
between Cs and Ce. Effectively, all cliques and separators between the clique Cs= {A, B, I}
and Ce= {I, G, E} contain the variable “I”.

Fig. 5. Transformation steps from the initial Bayesian network to a junction tree

3.3 Initializing the junction tree
The junction tree should be initialized for use it in the inference of Bayesian network
(computation of the posterior probabilities of some variables given observation). To enable
the calculation of the distributions, tables are attached to each clique and separator of the
junction tree, similar to the conditional probability tables of a Bayesian network. These
tables are called potentials (Cowell et al., 1999), denoted by ψC and ψS, e.g. the potential of a
clique C is denoted by ψC and potential of a separator S is denoted by ψS. Given the
conditional probability distributions P(Xi|Пi) of the variables Xi (or P(Xi) if there are no
parents) the initialization of the junction tree can be performed as follows.
First, assign each variable Xi to just one clique that contains Пi. The moralization process
guarantees that a node Xi with all of its parent Пi will occur together at least in a clique. For
all instance of this variable affect 1. For example, at the clique {A, B, I} (see Fig.5 (d)) we
assign the variables A, B and I. On the other hand, we assign just D at clique {B, I, D}

 (a) Initial graph (b) Moralization (c) Triangulation (d) Junction tree

A

B I

E D

G

H

 F

A

B I

E D

G

H

 F

A

B I

E D

G

H

 F

ABI

DEF IGE

 IDE GHE

 BID

 BI

 ID

DE IE GE

 Tools in Artificial Intelligence

376

because: the variable B was affected already to {A, B, I} and the other hand
ПB= {A} ∉{B, I, D}.
Second, for each clique C that is assigned with at least one variable define the potential
function as the product of P(Xi|Пi) over all Xi assigned to C. For all separators and
remaining cliques define the potential function to be 1. Table 1 summarizes the process of
initializing of junction tree given by Fig.5 (d).

Cliques Assigned variables Potential cliques
{A, B, I} A, B, I ψ{A, B, I}= P(A) . P(B|A) . P(I|A)
{B, I, D} D ψ{B, I, D}= P(D|B)
{I, D, E} E ψ{I, D, E}= P(E|I)
{D, E, F} F ψ{D, E, F}= P(F|D, E)
{I, G, E} G ψ{I, G, E}= P(G|I)
{G, H, E} H ψ{G, H, E}= P(H|E, G)

Table 1. Cliques associated to initial directed acyclic graph (Fig.5 (a))

Associating a separator potential function to each separator set, we have the following
factorization of the joint probability density (Cowell et al., 1999); (Murphy, 2002):

 1

()
(,...,)

()
c Cc C

n
s Ss S

X
P X X

X
∈

∈

Ψ
=

Ψ
∏
∏

 (7)

3.3.1 Flow of information between adjacent cliques
The junction tree potential does indeed satisfy the equation (7), but it might not be
consistent. Currently, comparing cliques they might tell you different stories about the
distributions on certain variables. For instance, consider two adjacent cliques Ci and Cj with
separator S, and both contains the variable “X”. Marginalizing on both Ci and Cj to get “X”,
might not give the same result. The reason for this is that the individual cliques have not yet
been affected by the information of other cliques in the tree. The information in the tree has
to be distributed “equally” on. The global propagation algorithm performs a series of local
manipulations that makes the junction tree locally consistent. To ensure consistency of the
junction tree, messages are passed between the cliques of the junction tree. This results in a
recalculation of the potentials. A clique Cj is said to absorb knowledge from a clique Ci, if the
separator S between Ci and Cj gets as new potential *

SΨ (Cowell et al., 1999):

 *

\
() ()

i i
i

S S C C
C S

X XΨ = Ψ∑ (8)

Namely, the separator potential)(SS XΨ is updated by marginalizing the clique potential
over the variables that are in Ci but not in S. Then the update factor of the separator is used
to update the potential of the destination clique Cj.

* ()

()
()

S S
S S

S S

XX
X

λ
Ψ

=
Ψ

 (9)

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

377

The new potential clique of Cj is given by:

 * () (). ()
j j j jC C C C S SX X XλΨ = Ψ (10)

In order to distribute the information in each clique to the whole tree a two-phase
propagation algorithm is used. Given a root clique in the tree, the collection-phase absorbs
the flows (messages) starting from the leafs towards the root. Once all the flows are collected
in the root, messages are send towards the leafs in the distribution-phase. After collection-
phase and distribution-phase are finished, it is guaranteed that the junction tree is globally
consistent. Namely, for all clique Ci and Cj which are connected with a separator S, and both
contains the variable “X”, marginalizing on both Ci and Cj to get “X”, might give the same
result.

3.3.2 Entering and propagation evidence
The algorithm of initializing the junction tree can be used to compute posterior distribution
given an observation of a subset of variables. Once the clique tree is properly initialized with
the observation, the two phase propagation algorithm diffuses the observation and the
resultant potentials are the posterior marginal distributions in each clique and separator.
The observations are used in the algorithm as follows. Let Xh be the subset of variables that
are hidden or unobserved and let Dl= {Xi=xi, Xj=xj,...} be an observation of the set of
variables Dl =X\Xh.. In order to compute P(Xh| Dl) we first define an evidence function such
that:

*1

()
0

i i
i

if x x
g x

otherwise
=⎧

= ⎨
⎩

 (11)

After initializing the junction tree with the conditional probability distributions, we multiply
each clique potential with the evidence function according to the variable assignment in the
initialization step:

:

() (). ()
i C

C C C C i
i X X

X X g x
∈

Ψ = Ψ ∏ (12)

Once again, we call collection-phase and distribution-phase to propagate this evidence
(observation) through the tree to yield the new (posterior) probabilities. The clique
potentials are the joint probability of the local hidden variables and the observed evidence:

 () (,)h
C C lX P X DΨ = (13)

If the potential function at a clique is normalized to sum to 1, one gets the conditional
probability of the local hidden variables given the observation:

)|(l
h DXP (14)

If the clique potential is marginalized over the hidden variables the probability of the
observed evidence is obtained:

 () (,)
h

h
l l

X

P D P X D= ∑ (15)

 Tools in Artificial Intelligence

378

3.4 Bayesian network model for Mono-vehicle localization
Vehicle localization on respect of a road map involves applying a first filter which selects all
the segments close to the estimated position of the vehicle. The goal is then to select the most
likely segment(s) from this subset. Nowadays, since the geometry of roadmaps is more and
more detailed, the number of segments representing roads is increasing. On the other hand,
the map is not perfect and presents a known uncertainty. The road classification module is
an important stage in the vehicle localization process because the robustness of the
localization depends mainly on this stage. In order to take into account the error of several
sensors or database used in this application, we introduce a concept which can manage
multi-hypothesis in the formalism of Bayesian network.
For each selected segment Cartoi, we represent it by a Gaussian: Cartoi~N (μi, Σi). Where μi=(xi,yi,
θi) is the projection of the estimated position on this segment and θi is the heading of the segment.
The proposed Bayesian network model for Mono-vehicle localization is illustrated in Fig. 6.
In this model we used two hidden variables. The discrete variable Sk represents the
segments of which the vehicle can be. The second is continuous variable; Xk(xk,yk,θk)
represents the estimation of a vehicle for each candidate segment. The graph represented in
Fig. 6. allows us to represent causal links between the variables. The continuous variable Xk
is updated by observations Cartok and GPSk if GPS measurement is available. This variable
is multi-modal because it has been updated by the set of candidates segments (Cartok). The
discrete variable Sk is update by cartographical observation (Cartok) and the estimation is
given by the hidden variable Xk.

Fig. 6. Bayesian network model for Mono-vehicle localization

Bayesian inference gives us :
1. the probability of each candidate segment given by the posterior probabilité P(Sk|Cartok,GPSk)
2. for each segment, the estimation of the vehicle’s position given by the probability

density P(Xk|Cartok,GPSk)

Fig. 7. Synoptic of Mono-vehicle localization using a Bayesian network

Select segments candidates around Xi:
 seg1, seg2,…,segN

GIS-2D

 Sk

Xk

Cartok GPSk

 Construct map-observation:
 seg1(x1, y1, θ1)… segN(xN, yN, θN)

GPS

Pi(S, X / Carto, GPS)

 Odometry : Xi=(x, y, θ)

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

379

Let us use a specific case study to illustrate the method. In Fig. 8, the vehicle is travelling
from the road 1 to road 8. At t=1, we have a predicted pose given by the odometer. We select
all segments around the predicted pose. In this case we have one. This segment was used to
generate one cartographical observation. Then, estimation is provided using Bayesian
network. At t=2, the estimation errors and the digital map errors oblige to select segments 2
and 3 around the predicted pose. These segments were used to generate two observations.
Then, using Bayesian network, two estimations were provided and so on, for the rest of the
experiment. Table 2 summarizes the process of inference Bayesian.

Fig. 8. Formalism of multi-hypothesis managing in Bayesian network

t Carto P(St|Carto) P(X|Carto)
1 {1} P(St={1}|{1})=1 X{1}=(x{1}, y{1}, θ{1})

2 {2,3} P(St={2}|{2,3})=0.75
P(St={3}|{2,3})=0.25

X{2}=(x{2}, y{2}, θ{2})
X{3}=(x{3}, y{3}, θ{3})

3 {4,5,6,7}

P(St={4}|{4,5,6,7})=0.55
P(St={5}|{4,5,6,7})=0.25
P(St={6}|{4,5,6,7})=0.15
P(St={7}|{4,5,6,7})=0.05

X{4}=(x{4}, y{4}, θ{4})
X{5}=(x{5}, y{5}, θ{5})
X{6}=(x{6}, y{6}, θ{6})
X{7}=(x{7}, y{7}, θ{7})

4 {8} P(St={8}|{8})=1 X{8}=(x{8}, y{8}, θ{8})

Table 2. Example of inference process given by Bayesian network

4. Bayesian network model for multi-vehicle localization
In order to move a set of vehicles in train configuration, each vehicle must to know its
position. In our approach, we propose that the path of the leader vehicle is propagated in
real time to follower’s vehicle using wireless communication. Each vehicle in the platoon is
equipped with: GPS sensors in order to determine its location and a Lidar to calculate the
distance to vehicle in front. Only the leader vehicle is equipped with RTK-GPS and a special
localization device. This device should provide geo-position with high accuracy.
Each follower vehicle can transmit its position and velocity. To reproduce the path of the
leader vehicle, each vehicle constructs the trajectory of the leader vehicle by linking up the
position transmitted by the leader. Then the follower can calculate the lateral and
longitudinal controls to be close to the leader vehicle path and to keep a constant distance
within vehicles. Follower’s vehicles positioning is improved by using the Lidar and
propagated measure of leader vehicle. According to Fig.9, the Cartesian coordinates of first
follower (f1) are given by:

 Predicted pose using odometry Cartographical observation Bayesian estimation

8

7
3

21

1 2 3 4
 t

6

4

5

 Tools in Artificial Intelligence

380

 1 Leader

Leader

X - D. cos () N (µ,)
Y - D. sin () N (µ,)

f
VobsX

β σ
β σ

+⎧
= ⎨ +⎩

 (16)

D is the distance (given by rangefinder) between the follower and the leader. The same
process is carrying out between follower (fi+1) and follower (fi):

 i-1

fi-1

fX - D. cos () N (µ,)
Y - D. sin () N (µ,)

if
VobsX

β σ
β σ

+⎧⎪= ⎨ +⎪⎩
 (17)

Fig.9. Approving follower’s position according to leader’s position and rangefinder data

The proposed Bayesian network model for multi-vehicle localization is illustrated in Fig.10.
In this model we used the continuous hidden variable),,()1(111 +++=+ k

S
k
S

k
SS iiii

yxkX θ for

each follower vehicle to estimate its position. This variable is updated by the observations
Xgps_Si(k+1) and XVobs_Si(k+1) and depends on the precedent state XSi(k) and law command
USi(k). Finally, the law command (lateral and longitudinal) depends on the trajectory of
leader the vehicle),,()1(111 +++=+ k

L
k
L

k
LL yxkX θ .

Fig.10. Bayesian network model for Multi-vehicle localization

Each vehicle has to know its position to derive an adequate control law which allows it to:
• preserve a constant distance (DistS) to the vehicle in front
• reduce lateral distance (DistL) between the trajectory of the follower and the leader one

(Fig.11).
Each vehicle’s position is represented by the (xk,yk) Cartesian coordinates of M. The heading
angle is denoted θk. The motion model can be expressed as:

yfollower

yLeader
D β

Y

X
xLeaderxfollower

XVobs_S1(k+1)

XS1(k)

Xgps_S1(k+1)

US1(k)

XS1(k+1)

XVobs_S2(k+1)

XS2(k)

Xgps_S2(k+1)

US2(k)

XS2(k+1)
Gero_L(k+1)

XL(k)

Xgps_L(k+1)

XL(k+1)

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

381

1

.cos()1 2

.sin()1 2

1

s

k s

x x dk k k

X y y dk k k

k k

θ

θ

θ

ω
θ

ω
θ

θ θ ω

+

⎧ = + +⎪ +
⎪
⎪= = + +⎨ +⎪

= +⎪
+⎪

⎩

 (18)

Where ds is the length of the circular arc followed by M and ωθ is the elementary rotation of
the mobile frame.

Fig.11. Model for leader vehicle with one follower

5. Experiment results
A test trajectory for a mono-vehicle localization has been carried out at Compiègne in France
with an experimental vehicle. The used GPS is a differential Trimble AgGPS132 receiver. For
odometry, we have used the ABS sensors of the rear wheels of the experimental vehicle.
For multi-vehicle localization, a test trajectory was carried out at the place Stanislas at
Nancy-France for the leader vehicle. For followers’ vehicle GPS and Lidar are simulated by
adding Gaussian noise for followers’ vehicles.

5.1 Performance of mono vehicle localization method
The test trajectory is presented in Fig.12. In this experience, the GPS measurements were
available in the beginning of the test trajectory. Then, the GPS was not used for 1.5Km. One
can remark that in spite of the long GPS mask, the vehicle location is matched correctly. As a
matter of fact, the final estimated positions stay close to the GPS points. In Fig.12, we only
presented the most probable Bayesian network estimation of the pose.
In second experiment (see Fig. 13), we want to show how the Bayesian network handles and
treats ambiguous situations (junction road and parallel road). To simulate satellite masks
occurring in urban environments we remove GPS data and put them back again. In the first
situation, GPS was not available before the junction. One can see that the method manages
two hypotheses (two segments) for three steps then wrong hypothesis was eliminated by
presence the GPS. One can remark that among the different hypotheses the good segment
was always given the highest probability by the Bayesian network inference. On the same
figure, a second ambiguous situation appears: close and parallel road. The method detects
the ambiguity of this situation and selects all probable segments in this parallel roads. The
Bayesian network manages all hypotheses until the elimination of the ambiguity. One can
remark that in spite the ambiguity the road on which the vehicle is running presents the
highest probability.

DistL

Leader trajectory

),,(111
L

t
L
t

L
t yx +++ θ

),,(L
t

L
t

L
t yx θ

),,(F
t

F
t

F
t yx θ

 Tools in Artificial Intelligence

382

Fig.12. Pose estimation with Bayesian network using odometry and cartographical
observation (GPS was masked)

Fig.13. Multi-hypothesis managed with Bayesian network to treat junction road and parallel
road situation

5.2 Performance of multi-vehicle localization
The real trajectory of the vehicle leader is presented by the green line on Fig.14. This
trajectory represents the centimetric precision GPS position. These geo-positions are
provided by the THALES Sagitta02 which is a centimetric GPS LRK. In this experiment, we
assume that all of two follows vehicles (blue and black respectively) are initially parked on
the reference path and not necessarily have the same leader’s heading. Followers dispose by
WiFi and in real time the path of the leader vehicle.
The leader’s path, given by centimetric GPS-LRK, is plotted by green line in Fig.14. The
figure 15 shows the time evolution of the vehicles positions provided by the proposed
approach. Thus followers’ vehicles are supposed to be equipped by low cost GPS sensors (3

 y

100
150
200
250

300
350
400
450
500
550
600

Accumulate errors
using Dead
Reckoning

 x

100 150 200 250 300

50

 BN pose estimation
 GPS

350

Start

GPS available in the
beginning of the test

 x

 y

100 150 200 250 300

50
100
150
200
250

300
350
400
450
500
550
600 BN pose estimation

 GPS

350

GPS available

GPS available

GPS masked
Start

Junction roads

Close and parallel roads

GPS masked

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

383

meters accuracy) for localization task and a rangefinder to determine distance between
vehicles. The obtained followers’ vehicles paths are plotted in Fig.15 by blue path for first
follower and red path for second one.

Fig.14. Leader’s trajectory and initial position of vehicles

Fig.15. Followers’ trajectory given by Bayesian network compared to leader’s trajectory

 Tools in Artificial Intelligence

384

One can remark that the followers’ paths shown in figure 15 present oscillations all around
leader path. We believe that oscillations come from the used control law. In this work, a
simple proportional law control is used.
Figure 16 show the distance between vehicles. Initially, inter-distance between vehicles is
chosen to be for about 2 meters. In this simulation, the desired security distance between
vehicles is chosen to be 1 meter. Namely, the objective is to control vehicles in order to
respect this distance. It can be noticed that the chosen control law in each vehicles
commands the vehicle velocity in order to respect the desired security distance. One can
remark that the security distance is generally respected.

Fig.16. Distance between vehicles

7. Conclusion
This article has presented a multi-sensor fusion method for vehicle localization. The main
contributions of this work are the formalization of a multi-sensor fusion method in the
Bayesian Network context and an experimental validation with real data.
An interesting characteristic of this approach is that it is flexible and modular in the sense
that it can easily integrate other sensors. This feature is interesting because adding other
sensors is a way to increase the robustness of the localization.
In this approach, the use of the digital map as an observation of the state space
representation has been introduced. This observation is used in the Bayesian Network
framework in the same way that the GPS measurement. It turned out in the experiments
that the GPS measurements are not necessary all the time, since the merging of odometry
and roadmap data can provide a good estimation of the position over a substantial period.
The strategy presented in this paper doesn’t keep only the most likely segment. When
approaching an intersection, several roads can be good candidates for this reason we
manage several hypotheses until the situation becomes unambiguous.
Multi-vehicle localization method presented in this work can be seen like an extension of the
Mono-vehicle method, in the sense that we have duplicate the (BN) used to fuse

Multi-Sensor Fusion for Mono and Multi-Vehicle Localization using Bayesian Network

385

measurements sensors to localize one vehicle for several ones. Then, we have added vehicles
inter-connection to represent finally the train of vehicles in the context of Bayesian network.
The multi-sensor fusion of leader’s vehicle measurements with the Lidar measurement in
Bayesian network formalism can provide continuous and accurate geo-position of followers’
vehicles. Thus this data fusion method allows computing an accurate follower’s position
without using an expensive sensor on each follower’s vehicle.
The proposed method for multi-sensors fusion for multi-vehicle localization in train
configuration permits to implement control law based on near-to-near approach, which can
only be seen as a first step in platoon control design. For both proposed approach, real data
was used in this work to test and quantify the quality of results.

8. Future work
In this work, we have not treated the control law of the follower vehicles. The perspective of
this work is to use the tricycle model validated by numerous laboratories (Daviet & Parent);
(Thuilot et al., 2004). The tricycle model allows us to manipulate the curvilinear distance
instead of rectilinear distance. The main advantage of curvilinear distance is that it agrees
with the distance travelled and is perfectly consistent when following reference paths with
high curvature (which is not the case with rectilinear distance) (Bom et al., 2005). Using
curvilinear distance allows us to reduce the difference between follower’s trajectory and
leader’s one. Moreover, platoon control design relies on nonlinear techniques, instead of
control approaches based on linear approximations. Since no approximation is achieved,
performances provided by the nonlinear control law are more satisfactory and more robust
than those offered by linear control. This control approach allows to fully decouple
longitudinal and lateral controls (Bom et al., 2005).

9. References
Abbott, E. & Powell, D. (1999). Land-Vehicle Navigation using GPS. Proceedings of IEEE,

vol.87, N.1
Bom, J.; Thuilot, B.; Bom, J.; Marmoiton, F. & Martinet, P. (2005). Nonlinear Control for

Urban Vehicles Platooning, Relying upon a Unique Kinematic GPS. Proceedings of
the 2005 IEEE International Conference

Castillo, E.; José M. G. & Ali, S. H. (1997). Expert Systems and Probabilistic Network Models,
Publisher, ISBN, New York Berlin Heidelberg

Cowell, R. G.; Dawid, A. P.; Steffen, L.; & David, J. S. (1999). Probabilistic Network and Expert
Systems, Publisher, ISBN, New York Berlin Heidelberg

Daviet, P. & Parent, M. (1995). Platooning for small public urban vehicles, In 4t hIntern.
Symposium Experimental Robotics, pp 345-35417, Stanford, CA (USA), July

Daviet, P. & Parent, M. (1996). Longitudinal and Lateral Servoing of Vehicles in a Platoon. In
Intelligent Vehicles Symposium. Tokyo Japan

Dissanayake, M.W.; Newman, P.; Clark, S.; Durrant-Whyte, H.F.; & Csorba, M. (2001). A
Solution to the Simultaneous Locakization and Map Building (SLAM) Problem.
IEEE Transaction on Robotics and Automation, Vol. 17, N0.3

EL Najjar, M. E. & Bonnifait, P. (2003). A Road Matching Method for Precise Vehicle
Localization using Belief Theory and Kalman Filtering. IEEE/EJS/ISR 11th Int.
Conference on Advanced Robotics, pp.1677-1682

 Tools in Artificial Intelligence

386

EL Najjar, M. E. & Bonnifait, Ph. (2005). To wards an Estimate of Confidence In a Road-
Matched Location. IEEE International Conference on Robotics and Automation

Heckerman, D. (1995). A tutorial on learning with Bayesian networks. Technical Report
MSR-TR-95-06, Microsoft Research, Advanced Technology Division

Judea, P. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference,
Publisher, ISBN, San Francisco

Jensen, F. V.; Lauritzen, S. L.; Steffen, & Olsen, K. G. (1990). Bayesian updating in recursive
graphical models by local computations, Computational Statistics and Data Analysis
Publisher, ISBN

Jensen, F. V. (2001). Bayesian networks and Decision Graphs, Statistics for Engineering and
Information Science. Springer, Berlin, Heidelberg

Kjaerulff, U. (1990). Triangulation of graphs-algorithms giving small total space.
Department of Mathematics and Computer Science. Institute of Electronic Systems.
Aalborg University

Murat Deviren (2001). "Structural Learning of Dynamic Bayesian Networks in Speech
Recognition". Technical Report.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, UC Berkley, Computer Science Division

Thrun, S.; Fox, D.; Burgard, W. & Dellaert, F. (2001). Robust Monte-Carlo localization for
mobile robots. Journal of Artificial Intelligence (AI). Vol. 128, No 1-2. pp 99-141

Thuilot, B.; Bom, J.; Marmoiton, F. & Martinet, P. (2004). Accurate automatic guidance of an
urban electric vehicle relying on kenematic GPS sensor. in 5th IFAC Symposium on
Intelligent Autonomous Vehicles (IVAC’04), July

Yannakakis, M. (1981). Computing the minimal fill-in in np-complete. SIAM Journal on
Matrix Analysis and Applications, Vol. 2, Issue 1, page 77-79

Zhao, Y. (1997). Vehicle Location Navigation Systems, Artech House Publishers

22

On the Definition of a Standard Language for
Modelling Constraint Satisfaction Problems

Ricardo Soto1,2, Laurent Granvilliers1
1CNRS, LINA, Université de Nantes

2Escuela de Ingeniería Informática,
Pontificia Universidad Católica de Valparaíso,

Chile

1. Introduction
A Constraint Satisfaction Problem (CSP) is a declarative representation of a system under
constraints. Such a representation is mainly composed by two parts: a sequence of variables
lying in a domain and a finite set of constraints over these variables. The goal is to find
values for the variables in order to satisfy the whole set of constraints.

Fig. 1. A solution of the 6-queens problem.

As an example, let us consider the 6-queens problem, which consists in placing 6 chess
queens on a 6x6 chessboard such that none of them is able to capture any other using the
standard chess queen's moves. A solution requires that no two queens share the same row,
column, or diagonal. A CSP for this problem can be stated by means of six variables and
three constraints. One variable for each of the six queens to represent their row positions on
the chessboard, each variable lying in the domain [1,6] (6 rows). One constraint to avoid that
two queens are placed in the same row. One constraint to avoid that two queens are placed
in the first diagonal; and finally one constraint to avoid that two queens are placed in the
second diagonal. A solution of the 6-queens problem is shown in Figure 1.

 Tools in Artificial Intelligence

388

Constraint Programming (CP) is called the software technology to solve CSPs. Currently,
several CP tools exist which are mainly systems or libraries built on top of a host language
such as Prolog (ECLiPSe (Wallace et al., 1997)), C++ (ILOG Solver (Puget, 1994)) or Java
(Gecode/J (Schulte & Stuckey, 2004)). These tools, generically named solvers, are able to
take as input the CSP and to solve it by exploring and pruning efficiently the search space
containing the potential solutions. A main advantage of this approach is that users just need
to state a declarative representation of the problem, instead of building complex procedures
or algorithms to search the solutions. This is a great asset; however, the language to express
these problems is not standard, each tool provides its own semantics with a level of
abstraction tied to its host language, which is commonly not easy to use. This is a big
concern in the CP field, since users need to deal with the encoding concerns of the solver
host language; and moreover to learn a new language each time they want to experiment
with a new solver.
In response to this, the CP community has defined the development of a standard language
as an important research direction. To this end, a solver-independent three layered
architecture has been proposed (Rafeh et al., 2007; Fritsh et al., 2007), including a modelling
language -which is expected to be simple enough for use by non CP experts-, a set of solvers
and a middle tool mapping models to executable solver code. Thus, the user is able to
design one model in a “human-comprehensible” language and to target many solvers.
In this work, we follow this research direction by proposing a solver-independent modelling
language but using an object-oriented approach. Our system is called s-COMMA (Soto &
Granvilliers, 2007) and it can be regarded as a hybrid built from a combination of an object-
oriented language and a constraint language. The s-COMMA constraint language provides
typical data structures, control operations, and first-order logic to define constraint-based
formulas. The object-oriented part is a simplification of the Java programming style. This
framework clearly provides model structures using composition relationships.
The s-COMMA system is written in Java (22000 lines) and it is supported by a solver-
independent execution platform where models can be solved by four well-known CP
solvers: Gecode/J, ECLiPSe, RealPaver (Granvilliers & Benhamou, 2006) and GNU Prolog
(Diaz & Codognet, 2000). We believe s-COMMA is in compliance with the requirements of a
standard language. Their simplicity is similar to the state-of-the-art modelling languages
(Nethercote et al., 2007; Fritsh et al., 2007). The expressiveness provided is considerable and
even it can be increased with extension mechanisms. The solver-independence is the base of
the platform which allows experimentations with many solvers.
The definition of a standard language is an evident hard task which may require many years
and several experimental steps. We believe that the work done on s-COMMA is one of the
steps towards the achievement of this important goal.
The outline of this chapter is as follows. Section 2 introduces an overview of the s-COMMA
language. The architecture and implementation of the system is explained in Section 3. The
related work is presented in Section 4 followed by the conclusions.

2. s-COMMA overview
In this section we give an overview of s-COMMA. We will first present the most important
elements of an s-COMMA model and then, we will illustrate these elements by means of
three examples, the n-queens problem, the packing squares problem and a production-
optimization problem.

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

389

2.1 s-COMMA models
An s-COMMA model is composed by two main parts, a model file and a data file. The
model file describes the structure of the problem, and the data file contains the constant
values used by the model. The model file is composed by import statements and classes; and
the data file is composed by constants and variable assignments.

2.1.1 Constants & variable assignments
Constants, namely data variables, are stated in a separate data file and imported from the
model file. Constants can be real, integer or enumeration types. Arrays of one dimension
and arrays of two dimensions of data variables are allowed. A variable-assignment is an
assignment of a value to a variable of an object defined in the model file (as example, see
line 3 of the data file in Fig. 4).

2.1.2 Classes
A class is composed by attributes and constraints zones. Single inheritance is permitted and
a subclass inherits all attributes and constraints of its superclass.

2.1.3 Attributes
Attributes may represent decision variables or objects. Decision variables must be declared
with an integer, real or boolean type. Objects are instances of classes which must be typed
with their class name. Arrays of one and two dimensions can be used; they can contain
either decision variables or objects. Decision variables and arrays of decision variables can
be constrained to a determined domain.

2.1.3 Constraint zones
Constraint zones are used to group constraints encapsulating them inside a class. A
constraint zone is stated with a name and it can contain constraints, forall loops, if-else
statements, optimization statements, and global constraints.

2.2 The n-queens problem
Let us begin the illustration of these elements by means of the n-queens problem presented
in Section 1. An s-COMMA model for this problem is shown in Figure 2. The model is
represented by a class called Queens which contains an array with n integer decision
variables lying in the domain [1,n]. The constant value called n is imported from the
Queens.dat file.
At line 6 a constraint zone called noAttack contains the three constraints required. One
constraint to avoid that two queens are placed in the same row (line 9). One constraint to
avoid that two queens are placed in the first diagonal (line 10); and one constraint to avoid
that two queens are placed in the second diagonal (line 11). Two for loops ensure that the
constraints are applied for the complete set of decision variables.

2.3 The packing squares problem
Let us continue with a more complex problem called packing squares. The goal of this
problem is to place a given set of squares in a square area. Squares may have different sizes
and they must be placed in the square area without overlapping each other. Figure 3 shows
a solution for the problem, 8 squares have been placed in a square area of side size 5.

 Tools in Artificial Intelligence

390

1. //Data file
2. n:=6;

1. //Model file
2. import Queens.dat;
3.
4. class Queens {
5. int q[n] in [1,n];
6. constraint noAttack {
7. forall(i in 1..n) {
8. forall(j in i+1..n) {
9. q[i] <> q[j];
10. q[i]+i <> q[j]+j;
11. q[i]-i <> q[j]-j;
12. }
13. }
14. }
15. }

Fig. 2. s-COMMA model for the n-queens problem.

Fig. 3. A solution of the packing squares problem.

Figure 4 shows an s-COMMA model for the packing squares problem. Data values are
imported from an external data file called PackingSquares.dat, sideSize (line 1) is an
integer constant that represents the side size of the square area where squares must be
placed, squares (line 2) represents the quantity of squares to place. PackingSquares.s
(line 3) is a variable-assignment for the array of Square objects declared at line 5 of the
model file, here a set of values is assigned to the third attribute (size) of each Square
object of the array s. For instance, the value 3 is assigned to the attribute size of the first
object of the array. The value 2 is assigned to the attribute size of the second, third and
fourth object of the array. The value 1 is assigned to the attribute size of remaining objects
of the array. We use standard modelling notation (‘_’) to omit assignments.
At line 3 in the model file, the definition of the class begins, PackingSquares is the name
given to this class. Then, an array containing objects from the class Square is defined. This
class, declared at line 30, is used to model the set of squares. Attributes x and y represent

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

391

respectively the x and y coordinates where the squares must be placed. So, s[8].x=5 and
s[8].y=5 means that the eighth square must be placed in row 5 and column 5, indeed in
the bottom right corner of the square area. Both variables (x,y) are constrained, they must
have values into the domain [1,sideSize]. The last attribute called size represents the
size of the square.

//Data file
1. int sideSize :=5;
2. int squares :=8;
3. Square PerfectSquares.s := [{_,_,3},{_,_,2},{_,_,2},{_,_,2},
 {_,_,1},{_,_,1},{_,_,1},{_,_,1}];

//Model file
1. import PackingSquares.dat;
2.
3. class PackingSquares {
4.
5. Square s[squares];
6.
7. constraint inside {
8. forall(i in 1..squares) {
9. s[i].x <= sideSize - s[i].size + 1;
10. s[i].y <= sideSize - s[i].size + 1;
11. }
12. }
13.
14. constraint noOverlap {
15. forall(i in 1..squares) {
16. forall(j in i+1..squares) {
17. s[i].x + s[i].size <= s[j].x or
18. s[j].x + s[j].size <= s[i].x or
19. s[i].y + s[i].size <= s[j].y or
20. s[j].y + s[j].size <= s[i].y;
21. }
22. }
23. }
24.
25. constraint fitArea {
26. sum(i in 1..squares)(s[i].size*s[i].size)) = sideSize*sideSize;
27. }
28. }
29.
30. class Square {
31. int x in [1,sideSize];
32. int y in [1,sideSize];
33. int size;
34. }

Fig. 4. s-COMMA model for the packing squares problem.

At line 7, a constraint zone called inside is declared. In this zone a forall loop contains
two constraints to ensure that each square is placed inside the area, one constraint about
rows and the other about columns. Let us note that loops use loop-variables which do not
need to be declared (i and j in the example).

 Tools in Artificial Intelligence

392

The constraint zone noOverlap, declared at line 14, ensures that two squares do not
overlap. The last constraint zone called fitArea ensures that the set of squares fits
perfectly in the square area.

2.4 The production problem
Let us finish the s-COMMA overview with a production-optimization problem. Consider a
factory that must satisfy a determined demand of products. These products can be either
manufactured inside the factory -considering a limited resource availability- or purchased
from an external market. The goal is to determine the quantity of products that must be
produced inside the factory and the quantity to be purchased in order to minimize the total
cost.
Figure 5 shows an s-COMMA model for this problem. At Line 28 of the model, the class to
represent products is stated. Each Product is composed by its demand, its inside and
outside cost, its consumption, and the quantity that must be produced inside and outside
the factory. At line 3 the main class of the problem begins, it is first composed by two arrays,
one containing the set of products and the other contains the available quantity of resources
for manufacturing the products.
At Line 9 a constraint zone called noExceedCapacity is stated to ensure that the resource
consumption of products manufactured inside do not exceed the total quantity of available
resources. At line 15, satisfyDemand is posted to satisfy the demand of all the products.
Finally, at line 22, an optimization statement is posted to determine the quantity of products
that must be produced inside the factory and the quantity to be purchased in order to
minimize the total cost.
The data file is composed by two enumerations that define the resources and the name’s
products respectively. At line 3, a variable-assignment for the capacity attribute of the
class Production is stated. At the end, Production.products is a variable-assignment
for the array products defined at line 5 of the model file. This variable-assignment states
that the demand of the product klusky is 1000, their inside and outside cost are 6 and 8,
respectively; and finally its production requires 5 flour items and 2 eggs. The assignment of
the following products is analogous.

//Data file
1. enum resourceList := {flour, eggs};
2. enum productList := {klusky, capellini, fettucine};
3. int Production.capacity := [200,400];
4. Product Production.products :=
 [klusky:{1000,6,8,[flour:5,eggs:2],_,_},

 capellini:{2000,2,9,[flour:4,eggs:4],_,_},

 fettucine:{3000,3,4,[flour:3,eggs:6],_,_}];

//Model File
1. import Production.dat;
2.
3. class Production {
4.
5. Product products[productList];
6. int capacity[resources];

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

393

7.
8. constraint noExceedCapacity {
9. forall(r in resourceList) {
10. capacity[r] >= sum(p in productList)
11. (products[p].consumption[r] * products[p].inside);
12. }
13. }
14.
15. constraint satisfyDemand {
16. forall(p in productList) {
17. products[p].inside + products[p].outside >= products[p].demand;
18. }
19. }
20.
21. constraint minimizeCost {
22. [minimize] sum(p in productList)
23. (products[p].insideCost * products[p].inside +
24. products[p].outsideCost * products[p].outside);
25. }
26. }
27.
28. class Product {
29. int demand;
30. int insideCost;
31. int outsideCost;
32. int consumption[resourceList];
33. int inside in [0,5000];
34. int outside in [0,5000];
35. }

Fig. 5. s-COMMA model for the production problem.

2.5 Extension mechanism
Extensibility is an important feature of s-COMMA. Let us now show this feature using the
packing squares problem. Consider that a programmer adds to the Gecode/J solver two
new built-in functionalities: a constraint called inside and a function called pow. The
constraint inside ensures that a square is placed inside a given area, and pow(x,y)
calculates the value of x to the power of y. In order to use these functionalities we can use
these new built-ins from s-COMMA by defining an extension file where the rules of the
translation are described. This file is composed by one or more main blocks (see Figure 6). A
main block defines the solver where the new functionalities will be defined. Inside a main
block two new blocks are defined: a Function block and a Relation block. In the
Function block we define the new functions to add. The grammar of the rule is as follows:

;"")(〉−〈→〉−〈〉〈 codesolverparametersinputname

In the example, the left part of the rule is pow(x,y),pow is the name of the function and x
and y the input parameters. The left part of the rule corresponds to the statement that will
be used to call the new function from s-COMMA. The right part corresponds to the code
that calls the new built-in method from the solver file. Thus, the code pow(x,y) will be
translated to power(x,y) from s-COMMA to Gecode/J. The translator must recognize the
correspondence between input parameters in s-COMMA and input parameters in the solver
code. Therefore, variables are tagged with ‘$’ symbols. In the example, the first parameter

 Tools in Artificial Intelligence

394

and the second parameter of the s-COMMA function will be translated as the first parameter
and the second parameter in the Gecode/J function, respectively.
Within the Relation block we define the new constraints to add. In the example, a new
constraint called inside is defined, it receives four parameters. The translation to Gecode/J
is given in the same way. Once the extension file is completed, it can be called by means of
an import statement. The resultant s-COMMA model using extensions is shown in Figure 6.

//Extension File
1. GecodeJ {
2. Function {
3. pow(x,y) -> "power(x,y)";
4. }
5. Relation {
6. inside(a,b,c,d) -> "inside(a,b,c,d);";
7. }
8. }
9.
10. ECLiPSe {
11. Function {
12. ...
13. GNUProlog {
14. Function {
15. ...
16. RealPaver {
17. Function {

//Model file
1. import PackingSquares.dat;
2. import PackingSquares.ext;
3.
4. class PackingSquares {
5.
6. Square s[squares];
7.
8. constraint placeSquares {
9. forall(i in 1..squares) {
10. inside(s[i].x,s[i].y,s[i].size,sideSize);
11. forall(j in i+1..squares) {
12. s[i].x + s[i].size <= s[j].x or
13. s[j].x + s[j].size <= s[i].x or
14. s[i].y + s[i].size <= s[j].y or
15. s[j].y + s[j].size <= s[i].y;
16. }
17. }
18. }
19.
20. constraint fitArea {
21. (sum(i in 1..squares) (pow(s[i].size,2)) = pow(sideSize,2);
22. }
23.}

 Fig. 6. s-COMMA model for the packing squares problem using extensions.

3. s-COMMA architecture
The s-COMMA system is supported by a three-layered architecture: Modelling, Mapping
and Solving (see Fig 7). On the first layer, models are stated; extension and data files can be

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

395

given optionally. Models are syntactically and semantically checked. If the checking process
succeeds, an intermediate model called flat s-COMMA is generated, the aim of this model is
to simplify the task of translators. Finally, the flat s-COMMA file is taken by the selected
translator which generates the executable solver file.

Fig. 7. s-COMMA architecture.

3.1 From s-COMMA to flat s-COMMA
A direct translation from s-COMMA to executable solver code is feasible (in fact, we have
studied this in (Soto & Granvilliers, 2007)). However, many statements provided by s-
COMMA are not supported by solvers. Thus, for performing this direct mapping, many
model-transformations must be carried out at the level of translators. This makes translators
bigger (in terms of code lines) and, as consequence, difficult to develop and maintain. A
well-known technique to simplify code generation is to include an intermediate phase
where the non-supported features are transformed to simpler (or supported) features. We
state this transformation on an intermediate model called flat s-COMMA. The set of
performed transformations from s-COMMA to flat s-COMMA are described below.
Flattening composition. The hierarchy generated by composition is flattened. This process is
done by expanding each object declared in the main class adding its attributes and
constraints in the flat s-COMMA file. The name of each attribute has a prefix corresponding
to the concatenation of the names of objects of origin in order to avoid name redundancy.
Loop unrolling. Loops are not widely supported by solvers, hence we generate an unrolled
version of loops.
Enumeration substitution. In general solvers do not support non-numeric types. So,
enumerations are replaced by integer values, original values are stored to give the results.
Data substitution. Data variables are replaced by its value defined in the data file.
Conditional removal. Conditional statements are transformed to logical formulas. For
instance, if a then b else c is replaced by)()(caba ∨∧⇒ .
Logic formulas transformation. Some logic operators are not supported by solvers. For
example logical equivalence ba ⇔ and reverse implication ba ⇐ . We transform logical
equivalence expressing it in terms of logical implication. Reverse implication is simply
inverted ab ⇒ .
Finally, the generated flat s-COMMA code is taken by the selected translator which
generates the executable solver file.

 Tools in Artificial Intelligence

396

4. Related work
s-COMMA is closely related to recent standard modelling language proposals as well as
object-oriented languages for modelling constraint problems.

4.1 The definition of a standard modelling language
The definition of a standard modelling language for CP is a recent trend. First
encouragements on this issue were done by J-F. Puget in (Puget, 2004). He suggested to
develop a ``model and run'' paradigm such as in Math Programming. The paradigm
involved a standard file format for expressing models and a CP library to solve them. Then,
at The Next 10 Years of CP (Benhamou et al., 2007), this challenge was confirmed as an
important research direction. Recently, at CP 2007 Conference, MiniZinc (Nethercote et al.,
2007) was proposed as a standard modelling language. MiniZinc can be seen as a subset of
elements provided by Zinc (Rafeh et al., 2007). The syntax is closely related to OPL (Van
Hentenryck, 1999) and its solver-independent platform allows translating MiniZinc models
into Gecode and ECLiPSe solver models. Essence (Fritsch et al., 2007) is another good basis
to define such a standard. This core is focused on users with a background in discrete
mathematics; this style makes Essence a specification language rather than a modelling
language. The Essence execution platform allows mapping specifications into the ECLiPSe
solver.
We believe s-COMMA may be a good starting point too, the constraint language of s-
COMMA is closely related to OPL and Zinc. The solver-independent platform is an
adequate support to map models to four different solvers. The object-oriented framework
and the extensibility are also important features not present in the aforementioned
proposals.

4.2 Objects + Constraints
The first attempt in combining an object oriented language with a constraint language was
on the development of ThingLab (Borning, 1981) which was built for interactive graphical
simulation. A next version of this approach was developed in the Kaleidoscope language
(Freeman-Benson, 1992). Then, similar ideas were developed in Gianna (Paltrinieri, 1994) for
modelling constraint-based problems with objects in a visual environment. COB (Bharat &
Tambay, 2002) is a more recent approach for the engineering field, the language is a
combination of objects first order formulas and CLP (Constraint Logic Programming)
predicates. Modelica (Fritzson & Engelson, 1998) is another object-oriented system for
modelling engineering problems, but it is mostly oriented towards simulation. In general,
the constraint language of these approaches was designed to specific application domains.
They also lack of extensibility and solver-independence.

5. Conclusion
In this chapter we have presented s-COMMA, a new language for modelling CSPs. The
basis of s-COMMA is a combination of an object-oriented language with an extensible
constraint language which allows users to state modular models using the benefits of the
object-oriented style. s-COMMA is also supported by a three layered architecture where
models can be mapped to four well-known solvers. We believe that these capabilities make
s-COMMA a good basis to define a standard modelling language.

On the Definition of a Standard Language for Modelling Constraint Satisfaction Problems

397

To reach this final purpose, several aspects could be developed, for instance: more work on
benchmarks, solver cooperation, new global constraints and translation to new solvers. The
development of a tool for modelling CSPs through a UML-like language will be useful too.

6. References
Benhamou, F.; Jussien, N. & O’Sullivan, B. (2007). Trends in Constraint Programming. ISTE,

ISBN: 9781905209972, England.
Bharat, J. & Tambay, P. (2002). Modelling Engineering Structures with Constrained Objects.

Proceedings of Principles and Practice of Declarative Languages (PADL), pp. 28-46,
LNCS Springer-Verlag, Portland, USA.

Borning, A. (1981). The Programming Language Aspects of ThingLab, a Constraint-Oriented
Simulation Laboratory. ACM Transactions on Programming Languages and
Systems., 3(4): pp. 353-387, ISSN:0164-0925.

Schulte, C. & Stuckey, P. (2004). Speeding Up Constraint Propagation. Proceedings of
Principles and Practice of Constraint Programming (CP), pp. 619-633, LNCS Springer-
Verlag, Toronto, Canada.

Diaz, D. & Codognet, P. (2000). The gnu prolog system and its implementation, Proceedings
of the ACM Symposium on Applied Computing (SAC), pp. 728–732, ACM Press, Villa
Olmo, Italy.

Frisch, A.; Grum, M.; Jefferson, C.; Martínez, B. & Miguel, I. (2007). The design of Essence: A
constraint language for specifying combinatorial problems, Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pp. 80–87, Hyderabad,
India.

Freeman-Benson, B. (1990). Kaleidoscope: Mixing Objects, Constraints and Imperative.
Proceedings of European Conference on Object-Oriented Programming (ECOOP), pp. 77-
88, SIGPLAN Notices 25(10), Ottawa, Canada.

Fritzson, P. & Engelson, V. (1998). Modelica - A Unified Object-Oriented Language for
System Modelling and Simulation. Proceedings of European Conference on Object-
Oriented Programming (ECOOP), pp. 67-90, LNCS Springer-Verlag, Brussels,
Belgium.

Granvilliers, L & Benhamou, F. (2006). Algorithm 852: Realpaver: an interval solver using
constraint satisfaction techniques. ACM Transactions on Mathematical Software.,
32(1):pp.138-156, ISSN:0098-3500.

Nethercote, N.; Stuckey, P.; Becket, R.; Brand, S.; Duck, G. & Tack, G. (2007). Minizinc:
Towards a standard cp modelling language. Proceedings of Principles and Practice of
Constraint Programming (CP), pp. 529–543, LNCS Springer-Verlag, Providence,
USA.

Paltrinieri, M. (1995). A Visual Constraint-Programming Environment. Proceedings of
Principles and Practice of Constraint Programming (CP), pp. 499–514, LNCS Springer-
Verlag, Cassis, France.

Puget, J. (1994). A C++ implementation of CLP. Proceedings of the Second Singapore
International Conference on Intelligent Systems, Singapore.

Puget, J. (2004). Constraint programming next challenge: Simplicity of use. Proceedings of
Principles and Practice of Constraint Programming (CP), pp. 5–8, LNCS Springer-
Verlag, Toronto, Canada.

 Tools in Artificial Intelligence

398

Rafeh, R.; García de la Banda, M.; Marriott, K. & Wallace, M. (2007). From zinc to design
model. Proceedings of Principles and Practice of Declarative Languages (PADL), pp. 215–
229, LNCS Springer-Verlag, Nice, France.

Soto, R. & Granvilliers, L. (2007). The Design of COMMA: An extensible framework for
mapping constrained objects to native solver models. Proceedings of the International
Conference on Tools with Artificial Intelligence (ICTAI), pp. 243–250, IEEE Computer
Society, Patras, Greece.

Van Hentenryck, P. (1999). Constraint Programming in OPL. Proceedings of Principles and
Practice of Declarative Programming (PPDP), pp. 98-116, ACM Press, Paris, France.

Wallace, M.; Novello, S. & Schimpf, J. (1997). Eclipse: A platform for constraint logic
programming, Technical report, IC-Parc, Imperial College, London, England.

23

Software Component Clustering and Retrieval:
An Entropy-based Fuzzy k-Modes Methodology

Constantinos Stylianou and Andreas S. Andreou
Department of Computer Science, University of Cyprus

Cyprus

1. Introduction
Component-based software engineering is a stepwise software development process that
relies on integrating small, independent software pieces into one larger fully-functioning
system. However, a delay in any of the steps may negatively affect a project’s schedule and,
even worse, jeopardise its completion. Furthermore, given that the process is ultimately
evaluation-oriented it is very difficult to find ways to accelerate certain stages in the process
since developers are unwilling to compromise quality over time. Consequently, the only
substantial means of reducing development time is to make components more easily and
readily accessible to reusers in order to shorten the time taken for locating them. For this
reason, component repositories have been introduced to store and organise software
components. However, with an ever-increasing number of components, covering a wider
variety of functionalities, there has been a parallel increase in the need for techniques to
search and retrieve software components from repositories. Thus, the main motive of the
research activity discussed in this chapter is to attempt to minimise the time necessary to
discover any or all of the components to be reused in a component-based system by
proposing an intelligent clustering methodology to aid the searching and retrieval of
components stored in a repository.
To date there has been a number of attempts for clustering and classifying software
components for reuse which have lead to the formation of various techniques. Several of
these rely on structuring a formal specification of software components using classification
methods based on natural language processing and documentation and retrieving
components based on the resulting formal specification. Other attempts employ artificial
intelligence methods for clustering software components, including genetic and
evolutionary algorithms as well as self-organising feature maps. The methodology
described in this chapter focuses on the utilisation of computational intelligence methods as
the underlying clustering mechanism based on predefined lexical categories of software
component attributes. Furthermore, the methodology incorporates a novel mechanism for
efficiently searching and retrieving software components residing in a repository.
Specifically, the methodology employs an entropy-based fuzzy k-modes clustering
algorithm, which has two main purposes. Firstly, to compute the number of clusters in a
software component repository and to identify candidate initial cluster centres and
secondly, to partition the software components into clusters with degrees of membership

 Tools in Artificial Intelligence

400

and to locate the final cluster centres. Accordingly, the methodology continues to compare a
user’s search preference with the final cluster centres in order to isolate the cluster closest to
the preference. The methodology concludes with an innovative retrieval technique to return
those components from within the isolated cluster that is closest to the search preference by
taking into account the degree of participation of each component in that cluster.
The evaluation of the efficiency and effectiveness of the methodology was carried out with
two tests. The first test aimed at examining whether, with a given set of software
components, the clustering mechanism adequately grouped similar software components.
The second test aimed at assessing whether the retrieval mechanism appropriately fetched
the most suitable software components based on a user’s search preference. Observations of
the results of the experiments proved that the combination of an entropy-based algorithm
with a fuzzy k-modes algorithm as an intelligent partitioning scheme efficiently clusters
software components into groups, which is significantly important as it deals with the
difficult issue of separating data into an unknown number of sets. Furthermore, the results
also showed that the approach exhibits a strong filtering mechanism since it will always
return the most suitable components from a repository for the user to evaluate and select
which of these will be later integrated into the software system. Through the experiments it
was also noticed that the parameters used in the methodology may significantly affect the
clustering and retrieval of software components.
The remainder of this chapter is organised as follows: Section 2 presents an overview of the
component-based software engineering development process and also looks into various
previous attempts carried out to deal with the problem of software component clustering,
classification and retrieval. Subsequently, Section 3 describes the main concepts of clustering
and gives a detailed explanation of two clustering algorithms employed within a three-step
fuzzy logic-based method proposed by (Tsekouras et al., 2005). Next, Section 4 describes the
proposed methodology, which uses the algorithms explained in Section 3, but as applied to
the problem of clustering software components in a repository. This section also gives a
description of the mechanism developed for the retrieval of the most suitable software
components based on a user’s search preference. Continuing, Section 5 provides an analysis
of the methodology’s assessment procedure as well as an evaluation of the results obtained.
Finally, in Section 6 the main strengths and weaknesses of the methodology are discussed in
addition to possible alternatives or modifications that could be carried out in future research
efforts.

2. Component-based software engineering overview
This section explores the component-based software development process and reviews
various attempts and techniques that have previously been developed relating to the issue
of component clustering and classification, in addition to searching and retrieval.

2.1 Software reuse, components & component-based software engineering
The idea of reuse is not recent. Ever since programming began, developers have been
reusing previously implemented code segments, functions and procedures to build new
software systems. However, it was not until 1968 at the NATO Software Engineering
Conference at Garmisch, that the notion of “software reuse” was first formalised in an
attempt to tackle the software crisis. There, Douglas McIlroy (Naur & Randell, 1969) argued

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

401

that systems should be built from “reusable software components” and over the years there
have been many definitions given for the term. One of which states that software
components are “independent deployable software entities with a certain functionality
which can be composed into larger systems by means of dynamically discoverable,
immutable interfaces following standardised conventions” (Naedele, 2000). By this
definition, it is possible for a software system to be comprised entirely of smaller, individual
units, each of which performs a specific functionality in the system. Subsequently, the
introduction of software components also gave rise to a new “integrate, not implement”
style of software development named component-based software engineering. Systems built
from reusable components following this approach are said to be component-based systems
and over the years the software engineering industry has witnessed the expansion of the
concept of “software reuse” to include not only code, but requirements, designs,
architectures, test-cases and many more reusable assets of software engineering (Frakes,
2007).

2.2 Trends in component-based software engineering
Recent years have seen an increase in the standardisation and adoption of component reuse
approaches to software development due to the shift of developers/programmers towards
minimising the re-creation of code. For instance, object-oriented programming with its
mechanisms for methods, inheritance and dynamic binding is one such approach that
adopts reuse. Minimising the re-creation of code in turn has prompted software houses to
prefer to employ component-based methodologies for developing systems over traditional
ones, offering them a much simple and accessible solution. Furthermore, the component-
based software development process has been improved with the introduction of
component repositories for storing large volumes of software components.
With components becoming more readily available and having in mind that this will allow
them to remain active in an ever-competitive industry, more companies are now willing to
undergo the cost of buying software components. However, as explained in the next
subsection, the process of development based on component reuse is a reasonably rigorous
approach which emphasises the evaluation of components, their correct integration into the
software system, and the components’ maintenance.

2.3 The component-based software development process
As with any other disciplined software development process, there are certain steps that
must be followed for successful software component reuse. Specifically, the component-
based software development process primarily consists of four steps (Brown & Wallnau,
1996):
1. Component qualification (sometimes referred to as suitability testing)
2. Component adaptation
3. Assembling components into systems
4. System evolution
Component qualification is the first step and is considered as “a process of determining
fitness for use of previously-developed components that are being applied in a new system
context” (Haines et al., 2007). This step is the most determinative of the four, because the
success of component reuse is largely based on whether the correct component is selected
for reuse. It can be logically separated into two phases – discovery and evaluation –

 Tools in Artificial Intelligence

402

whereby the former involves searching and retrieving the most suitable software
components while the latter adopts criteria to examine the “non-technical” aspects such as
quality, usability, developer’s credibility and many more.
Once a component has been selected for reuse, the second step requires component
adaptation to be carried out. Components may need to be configured before being
integrated into the system given that they are generally built to be used in different contexts
(Haines et al., 2007), which may lead to a greater chance of conflicts between components.
The third step of the process entails the components assembly into the system. This can be
viewed as the integration of the components by binding the individual components with a
well-defined infrastructure. The infrastructure forming the system can be based on several
architectural styles, including, databases, blackboards, and the more popular, object request
brokers (ORBs) (Haines et al., 2007).
The final step of the process is system evolution, similar to the concept of software
maintenance in traditional development life-cycles. This step deals with the evolving and
upgrading of a system by replacing erroneous and outdated components with newer and
more advanced components. This unavoidably will require the latest components to be
tested and validated before replacing the previous one. If a component needs replacing, but
there is no updated version for it, then the process will reiterate to the first step to discover
and evaluate components again (Haines et al., 2007). As a result, this step may end up being
the longest with respect to the process as a whole.
The process explained above can only be considered productive if the time taken to
successfully reuse a software component is less than the time it would take for a developer
to implement the particular functionality from scratch – and this extends to the development
of the system as a whole. This limitation coincides with one of the most challenging issues
facing software houses, that is: being able to deliver projects within the predetermined
deadline, and without exceeding the budget or compromising the system’s quality.
This is the point to which attention is drawn as the methodology proposed aims to provide
a solution for minimising the development time of component-based systems without
having adverse affects on productivity, effectiveness, and, above all, quality. In order to
minimise the development time, it is imperative to identify which parts of the process are
the most time-consuming and in turn try to reduce the duration required to complete them.
From the steps explained above, it can be observed that component discovery is one of the
lengthiest stages in the process. This is because developers struggle to locate the most
appropriate components to evaluate. If it is possible to find a way to reduce the time spent
by developers searching and retrieving components, then component-based software
development process will become more productive, efficient and reliable. Furthermore,
more time can then be allocated to the other steps of the development process, for instance,
to evaluate the retrieved components further on in the development process, whose
duration cannot or, rather should not, be reduced. Also, more time will be available for the
proper adaptation and assembling of the software components into the system’s framework.

2.4 Previous attempts of component clustering, search & retrieval
Over the years, various attempts have been made to aid developers in their search and
retrieval of software components for reuse.

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

403

Firstly, (Prieto-Díaz & Freeman, 1987; Prieto-Díaz, 1991) attempted to tackle the issue of
software component classification with an informal method whereby experts extract facets
from keywords contained in software components, and subsequently using these facets to
describe technical and non-functional features of components. The method then continues to
retrieve components by employing a weighted conceptual graph to match users’ queries
with software components taking into account the facets extracted by the experts. Another
informal method includes natural language processing in queries for the retrieval of
software components. Such techniques include semantic networks and free-text analysis for
automatic keyword extraction (e.g., Girardi & Ibrahim, 1995; Sugumaran & Storey, 2003; Yao
& Etzkorn, 2004). Formal methods, alternatively, aim to cluster and classify components by
providing a specification for software components (Chu et al., 2000; Nakkrasae &
Sophatsathit, 2002). Additionally, (Nakkrasae et al., 2004) expand the use of a formal
specification for classification by combining a fuzzy subtractive clustering technique. A
more recent attempt by (Chang et al., 2005) implements a scheme for the automatic
clustering of use-cases, actors, classes and other elements of object-oriented modelling into
candidate components.
There are also some noticeably distinct approaches that employ computational and artificial
intelligence methods. For example, (Wang et al., 2004) use self-organising feature maps in
order to cluster a software component catalogue, while (Andreou et al., 2006) make use of
genetic and evolutionary algorithms to cluster software components. The proposed
methodology deals with the issue of component clustering and retrieval from a similar
perspective as the last two abovementioned studies. By employing computational
intelligence and fuzzy logic techniques the methodology focuses on the construction, firstly
of the principal clustering mechanism and secondly, of the mechanism required for
searching and retrieving the most adequate components from repositories.

3. Clustering algorithms
Clustering is a form of unsupervised learning that aims to analyse and organise data into
groups based on their similarity (Jain et al., 1999). For this reason, clustering is widely used
in various problem-solving and decision-making applications, such as document retrieval,
marketing research, genotype assignment, insurance fraud identification, image
segmentation, and city-planning, to name a few. Over the years, there have been many
methods and techniques developed to perform cluster analysis. The main types of clustering
methods that exist include (Han & Kamber, 2000):
• Partitional clustering: This is one of the most common clustering methods, which aims

to partition data into a finite number of clusters based on various distance measures
and criteria. Examples include k-means, PAM and CLARANS.

• Hierarchical clustering: This method transforms a dataset into a hierarchical tree
structure. Hierarchical clustering models can adopt a bottom-up (agglomerative)
approach, such as in AGNES, which iteratively merges clusters into larger clusters. On
the other hand, they can adopt a top-down (divisive) approach, for instance as in
DIANA, by repeatedly splitting clusters into smaller clusters. In either approaches
merging or splitting ceases when a termination condition is satisfied (Kauffman &
Rousseeuw, 1990).

• Density-based clustering: This type of clustering takes into account the fact that data
objects may form clusters with arbitrary shapes and requires a cluster to continue to

 Tools in Artificial Intelligence

404

grow on condition that the number of objects assigned to it (i.e., its density) exceeds a
minimum threshold value. Examples of density-based methods can be found in the
DBSCAN (Ester et al., 1996) and OPTICS (Ankerst et al., 1999) models.

• Grid-based clustering: This approach creates a grid structure from a finite number of
cells on the data object space and only needs to operate clustering on this structure
rather than on all the data objects per se. For this reason it requires very little processing
time. Some of the most popular grid-based clustering methods include CLIQUE
(Agrawal et al., 1998), STING (Wang et al., 1997) and WaveCluster (Sheikholeslami et
al., 2000).

• Model-based clustering: This form of clustering assumes that each cluster has its own
model and attempts to determine the best fit of the data to that given model.

From the above list, it is apparent that clustering can take many forms and furthermore, it
offers a wide variety of possible solutions to data mining issues. For example, it has the
ability to discover trends in large datasets and can be used to identify potential outliers that
are inconsistent with the remaining data.
In order to improve the process of searching and retrieving components it was decided that
first and foremost it was imperative to partition the software components in a repository to
reduce, or rather, eliminate less suitable components. The component clustering process,
therefore, is the focal point of the suggested methodology, which adopts a strategy to cluster
components of a repository based on a similar approach used by (Tsekouras et al., 2005).
Here, however, the authors applied their technique to help in the analysis of cultural data, in
particular, ethnocultural identity (Cushner & Brislin, 1997; Tsekouras et al., 2005) which is a
major field in study of cross-cultural adaptation. The subsequent subsections take an in-
depth look at the clustering algorithms adopted and present the advantages for their use in
the suggested methodology as well as their underlying limitations.

3.1 Entropy-based clustering
Entropy-based clustering (Yao et al., 2000) is a technique that was first introduced in 1998,
which seeks to arrange similar data objects into clusters based on their total entropy values.
The goal of the technique is to traverse the dataset in just one pass to determine the number
of clusters present and also to identify the location of the cluster centres. The basic idea is
that if a data object has many surrounding objects, then its total entropy value will be
relatively lower and can therefore be considered as a strong candidate for a cluster
representative. The entropy value calculated for each data object is based on a predefined
similarity measure. The data object achieving the lowest total entropy value is selected as
the first cluster centre. At this point, the algorithm uses a parameter, β, representing a
threshold of similarity or association (Yao et al., 2000). Any data objects with high similarity
to the recently selected cluster centre (i.e., data objects with a similarity value higher than
the threshold β) are removed from the dataset. The reasoning behind this is that since these
data objects are similar they should stop being considered as potential clusters, and instead
be assigned to the cluster they are highly similar to. Once these data objects are removed
from the dataset, the number of clusters is increased and the data object with the next least
total entropy value is selected and the procedure repeats until there are no objects left in the
dataset.

3.1.1 Entropy-based clustering notations
Let X = {X1, X2, …, Xn} be a set of n data objects described by m attributes. The entropy
value, Hij, of two data objects, Xi and Xj, is defined by:

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

405

 = − − − −2 2 log () (1)log (1)ij ij ij ij ijH E E E E (1)

where i ≠ j. Eij is a similarity measure between Xi and Xj and is calculated using:

 α= - ijD
ijE e (2)

where Dij is the distance between data objects Xi and Xj, and α is calculated automatically by:

 ()α = − ln 0.5 D (3)

where D is the mean distance among the pairs of data objects in a hyperspace. From
Equation (1), the total entropy value of data object Xi with respect to all other data objects is
computed as:

=
≠

⎡ ⎤= − − − −⎣ ⎦∑ 2 2
1

 log () (1)log (1)
n

i ij ij ij ij
j
i k

H E E E E (4)

Finally, let Zl = {Zl,1, Zl,2, …, Zl,m} represent a cluster centre, which is assigned the data object
that achieves the least entropy value after each iteration.

3.1.2 Entropy-based clustering algorithm
The entropy-based clustering algorithm is presented in Fig. 1.

Algorithm: Entropy-based Clustering

1. Select threshold of similarity, β, and set the initial number of clusters c = 0.
2. Determine the total entropy values H for each data object in X based on Equation (4).
3. Set c = c + 1.
4. Select the data object Xmin with the least entropy Hmin and set Zc = Xmin as the cth

cluster centre.
5. Remove Xmin and all data objects having similarity with Xmin greater than β from X.
6. If X is empty then stop; otherwise go to step 3.

Fig. 1. Entropy-based clustering algorithm
The key reasons for using an entropy-based clustering algorithm are two-fold. It is
effectively capable of computing the number of clusters in a given dataset, in addition to
discovering which objects are candidates for cluster centres. Secondly, it is highly efficient
due to the fact that the entropy values of data objects are required to be calculated only once
and after a cluster centre is determined, data objects are iteratively removed from the
dataset.

3.2 Hard and fuzzy k-modes algorithms
In 1998, (Huang, 1998) introduced the k-modes algorithm as an alternative method of
clustering objects in a dataset. This partitional clustering method is specifically designed to
handle categorical data, a limitation posed by the hard and fuzzy k-means algorithms. There

 Tools in Artificial Intelligence

406

are 3 basic modifications to the original algorithm. Firstly, the distance measure between
two objects is altered to a simple matching of the attributes of the dataset as opposed to the
squared Euclidean distance. Secondly, the cluster centres are defined by the modal value of
each attribute instead of the mean value. Finally, computation of the modes utilises a
frequency-based method applied on every category of the dataset’s attributes. Despite these
alterations, the clustering method still keeps the efficiency of the k-means algorithm,
especially for large datasets. As previous, the objective of the algorithm is to minimise its
cost function in order to separate the dataset into clusters.

3.2.1 k-modes notations
Clustering by k-modes adopts extremely similar notations from those of k-means clustering.
However, since the attributes in the latter consist of numeric data – and consequently their
domains – modifications are required to accommodate the use of categorical values.
Specifically, let X = {X1, X2, …, Xn} be a set of n data objects. Each of these objects can be
described by a set of m attributes A1, A2, …, Am, and each attribute, Aj, can take any value
from the attribute domain DOM(Aj) = {aj(1), aj(2) , …, aj(nj) } where nj is the number of category
values possible for attribute Aj, for 1 ≤ j ≤ m. Data objects can therefore be logically
represented by a conjunction of attribute-value pairs [Ai,1 = xi,1] ∧ [Ai,2 = xi,2] ∧ … ∧ [Ai,m =
xi,m], where xij ∈ DOM(Aj), for 1 ≤ j ≤ m (Kim et al., 2004) and hence this is extended so that
each Xi can be represented by a vector [xi,1, xi,2, …, xi,m] for 1 ≤ i ≤ n. Finally, let a cluster
centre be symbolised by Zl = {zl,1, zl,2, …, zl,m} for 1 ≤ l ≤ k. To minimise a cost function F(W,
Z) (Bezdek, 1980) therefore requires that:

 () ()α

= =

= ∑∑
1 1

, ,
k n

li l i
l i

F W Z w d Z X (5)

subject to:

 ≤ ≤ ≤ ≤ ≤ ≤0 1, 1 , 1 liw l k i n (6)

=

= ≤ ≤∑
1

 1, 1
k

li
l

w i n (7)

=

≤ ≤ ≤ ≤∑
1

0 , 1
n

li
i

w n l k (8)

where k (≤ n) is a predefined number of clusters, W = [wli] is a k × n partition matrix, Z = {Z1,
Z2, …, Zk} is the set of cluster centres, and d(·, ·) is some measure of distance between the
two objects. The fuzziness exponent, α ∈ [1, ∞) found in Equation (5) identifies whether
hard (α = 1) or fuzzy (α > 1) k-modes clustering occurs.

3.2.2 The k-modes dissimilarity function
In contrast with k-means clustering, which calculates the dissimilarity of objects with the
Euclidean norm, the dissimilarity function comprises of matching the category values of
attributes comprising the objects. If two objects share the same category in an attribute, then

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

407

the distance for that attribute is assigned a value of zero, symbolising that there is no
difference. Whereas if the objects do not have the same category value for an attribute, then
the difference is allocated a value of one, indicating that a difference exists. By employing
such generalised Hamming distance (Kohonen, 1987; Hunag, 1998), it is possible to see how
close two objects are by summing the number of mismatches of category values. Hence, the
smaller the number of mismatches, the nearer the objects are. The formal representation of
the dissimilarity function is as follows:
Let X1 = [x11, x12, …, x1m,] and X2 = [x21, x22, …, x2m,] be two data objects of X defined by m
attributes. The dissimilarity between the two objects, d(X1, X2), is denoted by:

 () ()δ
=

= ∑1 2 1 2
1

, ,
m

j j
j

d X X x x (9)

where:

 ()δ
=⎧⎪

⎨ ≠⎪⎩

1 2
1 2

1 2

0,
, =

1,
j j

j j
j j

x x
x x

x x
 (10)

The dissimilarity function in Equation (9) is then used to (re)assign a data object to a cluster.
Accordingly, in the case of the hard k-modes algorithm, if object Xi yields the shortest
distance with centre Zl in a given iteration, this is represented by setting the value at the
nearest cluster to 1 and the values at the rest of the clusters to 0 in the partition matrix W.
Formally, for α = 1:

 () ()⎧ ≤ ≤ ≤⎪= ⎨
⎪⎩

1, if , , , 1 ˆ
0, otherwise

l i h i
li

d Z X d Z X h k
w (11)

On the other hand, in the case of the fuzzy k-modes algorithm, for α > 1, the partition matrix
W is given by:

()
()

()α −

=

=⎧
⎪
⎪
⎪ = ≠
⎪⎪= ⎨
⎪ ≠ ≠ ≤ ≤⎪

⎡ ⎤⎪
⎢ ⎥⎪
⎢ ⎥⎪ ⎣ ⎦⎩

∑
1 1

1

1, if

0, if ,

ˆ
1 , if and , 1

,
,

i l

i h

li

i l i h
k

l i

h ih

X Z

X Z h l

w

X Z X Z h k
d Z X
d Z X

 (12)

for 1 ≤ l ≤ k, 1 ≤ i ≤ n. This means that if a data object shares the same values for all attributes
with a particular cluster centre, then it will be assigned wholly to that cluster and not at all
to the rest. Conversely, if a data object is not completely identical to any of the cluster
centres, then the data object is assigned a membership degree to each cluster, which also
solves the constrained optimisation problem of Equation (7) (Tsekouras et al., 2005).
Equation (6), however, does not emphasise any importance of a category in an attribute. For
example in a hospital database, the category value “YES” of the attribute “SMOKER” may

 Tools in Artificial Intelligence

408

be considered more important than the category value “NO”. For this reason, (He et al.,
2007) provides various methods to assign weights not only to the attributes but also to the
categories in attributes to properly reflect the reality of dissimilarity between data objects.
Alternatively, in order to take into account the frequencies of the categories in the dataset,
(Huang, 1998) proposed a chi-squared distance, which gives greater importance to less
frequent categories of an attribute. Likewise, (San et al., 2004) suggest integrating the
relative frequency of a category in the distance function. In either case, the partition matrix,
W = [wli], is computed by using Equation (11) for hard k-modes clustering and Equation (12)
for fuzzy k-modes clustering.

3.2.3 The k-modes update function
Updating the centres in k-modes clustering uses a frequency-based method that basically
assigns the most frequent category of each attribute as representative of the cluster. It
should be noted, however, that the newly computed mode of a cluster does not necessarily
mean it is an element of that cluster. Strictly speaking, every cluster, Zl = [zl,1, zl,2, …, zl,m] for
1 ≤ j ≤ m, is updated so that:

 () ()= ∈,ˆ DOMr
l j jjz a A (13)

where, in the case of hard k-modes clustering, aj(r) satisfies:

 () ()⎧ ⎫ ⎧ ⎫= = ≥ = = ≤ ≤⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

, ,, 1 , 1 , 1 r t
li i j li li i j li jj jw x a w w x a w t n (14)

for 1 ≤ l ≤ k. It can be observed from Equation (13) that the mode is neither unique. It is
possible for two categories to tie as the most frequent in an attribute. In such cases, the
algorithm will arbitrarily assign the first category that achieves the maximum frequency
(Huang & Ng, 1999) for the attribute in its cluster.
In fuzzy k-modes clustering, the general idea of the update function remains the same – the
mode is decided based on the category achieving highest frequency. The difference lies in
the computation of the frequency since there are no crisp values, (i.e., zeros or ones) in the
partition matrix but membership values. For this reason the update function is represented
as Equation (14) though aj(r) must now satisfy:

() ()

α α

= =

≥ ≤ ≤∑ ∑
, ,, ,

 , 1
r t

i j i jj j

li li j

i x a i x a

w w t n (15)

By Equation (14) the category assigned to attribute Aj of cluster Zl is the category which
“achieves the maximum of the summation of wli to cluster Zl over all categories” (Huang &
Ng, 1999). Nevertheless, it is still possible for two or more categories to tie as most frequent
in the attribute.

3.2.4 The k-modes algorithm
The k-modes algorithm performs exactly like the k-means algorithm in that it attempts to
minimise the cost function, firstly by fixing Z to determine W and secondly, fixing W to
determine Z. The algorithm required to perform this is outlined in Fig. 2.

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

409

Algorithm: k-Modes Clustering

1. Select k initial clusters randomly Z(1) = {Z1(1), Z2(1), …, Zk(1)}.
2. Determine W(1) by selecting either Equation (11) or Equation (12) for the type of k-

modes clustering, such that F(W, Z(1)) is minimised.
3. Set t = 1.
4. Determine Z(t+1) based on Equation (13) satisfying either Equation (14) for hard k-

modes clustering or Equation (15) for fuzzy k-modes clustering, such that F(W(t),
Z(t+1)) is minimised.

5. If F(W(t), Z(t+1)) = F(W(t), Z(t)) then stop; otherwise go to step 6.
6. Determine W(t+1) using the same equation used in step 2, such that F(W(t+1), Z(t+1)) is

minimised.
7. If F(W(t+1), Z(t+1)) = F(W(t), Z(t+1)) then stop; otherwise set t = t + 1 and go to step 4.

Fig. 2. The k-modes clustering algorithm

Since the k-modes clustering algorithm is adapted to function on categorical data, it is a
suitable candidate for the clustering algorithm required for the methodology proposed in
the next section. Furthermore, because of the disorderly and chaotic configuration of
components in a repository, the fuzzy k-modes clustering algorithm is preferred over hard k-
modes clustering to allow for levels of ambiguity in a repository’s configuration.

4. Proposed methodology
This section presents the proposed methodology for the clustering and retrieval of software
components from a component repository, indicating any necessary parameters as well as
computed outputs. The three-step approach is defined by: (i) the clustering procedure
including any pre-processing activities required, (ii) the input of the user’s search preference
and the isolation of the subset of software components in which the actual search will be
carried out, and (iii) the retrieval of the most suitable components from the repository.

4.1 Software component attributes
Software components in repositories are composed of many different behavioural,
functional, or structural attributes (Nakkrasae & Sophatsathit, 2002). The main attributes
chosen to comprise the software components in the methodology were selected based on an
earlier attempt carried out by (Andreou et al., 2006), which features software components
described by both technical and non-functional characteristics. Specifically, the software
component attributes are: component domain and specific functionality, platform,
implementation language, operating system independence, synchronisation, visibility of
implementation, price range, processor, memory and disk utilisation, binding, data
encryption, data open format compatibility and finally, password protection. Furthermore,
each of the 15 selected attributes is assigned a predefined domain that consists of categorical
values (or categories). It is important to note that any other schemes attempting to employ
the suggested methodology are not bound by the use of only these 15 attributes. In fact,
other attributes may be included or present ones removed depending on the quality of the
information found in the component repository.

 Tools in Artificial Intelligence

410

4.2 Roles and parameters of the methodology
There are two main roles in the methodology. Firstly, there is that of the “application
administrator” whose is responsible for configuring the nonuser-related parameters
required by the clustering mechanism. The second role is that of the “user”, who is required
to provide their search preference and the level of confidence (covered in Subsection 4.5) to
control the level to which the results should satisfy their search. Furthermore, as the
approach is loosely based on a client-server model, the application administrator is involved
at the server-side and conversely, the users’ interactions and searches take place at the
client-side.

4.3 Clustering procedure
The purpose of this step, as mentioned previously, is to avoid having to locate candidate
components from the whole of the repository, but instead to isolate a part of it and perform
the search in that part. Therefore, the first step in the methodology entails the clustering of
the software components into groups based on the 15 features listed in Subsection 4.1.
However, a problem arises since the number of groups to be formed is initially unknown.
Hence, the clustering technique to be employed must be capable of determining the number
of clusters in the repository automatically, while still being able to respond to and cope with
an extremely large volume of high-dimensional data. The partitioning technique used
therefore, utilises a clustering approach suggested by (Tsekouras et al., 2005), which consists
of pre-processing data using the entropy-based clustering algorithm before feeding the
results into the connecting fuzzy k-modes clustering algorithm.

4.3.1 Entropy-based clustering
The pre-processing begins by executing the entropy-based clustering algorithm explained in
Section 3.1 on the repository in order to compute the number of clusters present as well as
the candidate cluster centres. The entropy value of each component is calculated by
evaluating the dissimilarity of each component with regards to all others. Here, the
categorical nature of component attribute-types leads to using the Hamming distance as the
most suitable dissimilarity measure between two components. Subsequently, a new cluster
is formed assigning the component achieving the lowest entropy value. Next, all
components achieving similarity equal or above the value of the threshold, β (selected by the
application administrator) are assigned to the newly created cluster and cease from being
considered as potential centres. At the end of this stage, the entropy-based clustering
algorithm will have computed the parameter k along with the k initial cluster centres for the
fuzzy k-modes algorithm to apply.

4.3.2 Fuzzy k-modes clustering
With the completion of the pre-processing stage, the clustering procedure executes the fuzzy
k-modes clustering algorithm using as inputs the value of k and the initial cluster centres.
The final input required is the fuzziness exponent, α, and this is selected by the application
administrator in order to set the level of fuzziness to be considered in the clustering of the
software components. For each component, the measure of similarity between each cluster
centre is computed by using a simple pattern match of the attributes of the components to
the cluster centres to determine the distance. Each component will then be assigned to all
clusters. However, the higher the similarity to a cluster centre, the higher the participation

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

411

(level of membership) the component will have in the respective cluster. After each iteration
(i.e., after all components have been assigned), using the appropriate update functions of
Equations (13)-(15), the cluster centres are revised resulting in new cluster centres.
Specifically, the new centres are found by computing the mode from the categories of
component attributes that achieve the highest summation of membership degrees in the
cluster. The process of assignment and update repeats until the algorithm converges. The
end results will be a partition matrix holding the membership degrees (easily convertible to
percentages) of components to clusters as well as the finalised cluster centres. Both these
elements will be used in the subsequent steps. Table 1 presents an example of a component
partition matrix indicating the degree of membership of each component in all clusters. The
values in boldface represent the highest membership degree of a component, relative to the
cluster in which it achieved the degree. As shown in the matrix it is possible for a
component to achieve highest membership in more than one cluster, as for example
components C4 and C6.

 Component Assignments

 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Cluster Z1 0.13 0.50 0.94 0.38 0.17 0.44 0.79 0.04 0.02 0.13

Cluster Z2 0.08 0.69 0.03 0.18 0.17 0.09 0.10 0.86 0.03 0.08

Cluster Z3 0.22 0.20 0.01 0.06 0.49 0.44 0.01 0.06 0.90 0.22

Cluster Z4 0.57 0.24 0.03 0.38 0.17 0.03 0.10 0.04 0.05 0.57

Table 1. Example of a component partition matrix

4.4 Isolating the search cluster
After components have been assigned membership degrees to all the clusters and the final
cluster centres have been determined, a user is able to search for components in the
repository. The search procedure is not necessarily limited to one user at a time since each
search only needs read-access to the cluster centres and membership degrees. Specifically, a
user provides their preference through a simple user-interface application by selecting from
the available categories in each attribute. The search preference is then transformed into a
vector, just like in the form of the components in the repository, and is matched against the
final cluster centres produced as a result of the previous clustering procedure. Subsequently,
the cluster’s index whose centre is nearest to the user’s search preference is isolated to act as
the “search cluster”, based on the belief that it will inherently contain components nearer to
the user’s search preference. As always, the measure of closeness between a cluster centre
and the search preference is calculated using the generalised Hamming distance. If a user
decides not to give a category for certain attributes, then those attributes will not be taken
into consideration during the matching with cluster centres and thus will be assessed based
on a reduced attribute set. Furthermore, in the case where more than one cluster centre is
nearest to the search preference (i.e., with equal distances from the search preference) then
they are isolated and merged into one search cluster. Apart from their search preference, a

 Tools in Artificial Intelligence

412

user can optionally select a value for a level of confidence, which represents a cut-off limit
on the ranking of subsequently retrieved components.

4.5 Retrieval of software components
The final step of the methodology is to retrieve components from the repository and display
the results to the user. The search results will include components contained only in the
search cluster as this is considered to store software components nearest to the user’s search
preference. Furthermore, it is important that the retrieved results are ranked in order to
allow the user to make a more informed reuse decision. The retrieval mechanism first
calculates the membership degree of the search preference with respect to the search cluster.
Therefore, components with similar degrees of participation in the search cluster will be
near to the user’s search preference. Thus, by isolating a range around the preference’s
degree of membership, the software components further away from the search preference
can be eliminated whilst keeping those that are nearer. This range is constructed by defining
an upper and lower bound based on the value of the preference membership degree. For
experimentation purposes, this was set at ±10% meaning that, for instance, if a search
preference was assigned a membership degree of 60% in the search cluster, the components
retrieved would have membership degrees between 50%-70%. An example of this is
presented in Fig. 3. In cases where the upper bound or lower bound is calculated to be
higher than 100% or 0% respectively, the bounds are truncated accordingly.
The next stage of the retrieval procedure takes the subset of components and matches them
against the user’s search preference to find all the distances between the search preference
and each component in the subset. This is done to form a ranking (in percent) from highest
to lowest of the components based on the user’s search preference matching attributes over
the total number of attributes. However, before displaying the software components to the
user, the level of confidence (given by the user in the second step of the methodology) is
applied to eliminate those components that fall below a suitable level of similarity selected
by the user. After the ranked set of components has been formed, the results of the search
are ready to be displayed to the user.

Fig. 3. Retrieval of the closest (suitable) components
The steps in the proposed methodology are outlined in Fig. 4. The methodology is shown as
two separate units – one for the server (application administrator’s) side and one for the
client (user) side. Their only interaction is with the final cluster centres and the partition
matrix. Of course, in reality, there would be more user instances connecting to the server.

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

413

component
clusters

 Application
User

search preference
level of confidence Component search Component rankingsearch cluster

 Application
Administrator

Entropy-based
clustering

threshold of similarity Fuzzy k-modes
clustering

number of clusters
initial cluster centres

component
repository

final cluster centres
partition matrixfuzziness exponent

Server (Application Administrator) Side

Client (User) Side

Fig. 4. Illustration of the proposed methodology

5. Experimental results
In order to test the efficiency and effectiveness of the methodology, a two-fold evaluation
was carried, firstly to examine the clustering mechanism and secondly, to evaluate the
retrieval mechanism.

5.1 Design of the experiments
The experiment involved the random generation of one-thousand software components and
one random user search preference. For comparison reasons, the similarity of the search
preference with all components was calculated and recorded, in order to distinguish which
of these were closest to the search preference, as well as to be able to examine whether the
clustering, isolation and retrieval processes do in fact return these closest components. The
comparison was carried out according to the closest components in the dataset achieving
similarity above: (1) 50% (near), (2) 75% (nearer) and (3) 90% (nearest). In addition, the
methodology was tested by performing searches using three different variations of the
preference: using all 15 attributes, 8 attributes and finally, 4 attributes.
For entropy-based clustering, an average threshold of similarity parameter (β = {0.50, 0.55})
was selected, bearing in mind the small number of attributes in the component dataset.
Preliminary tests showed that with generally low total entropy values, a high threshold

 Tools in Artificial Intelligence

414

leads to cases were, once the selection of the component with the lowest entropy value
forms a cluster centre, very few or no components would achieve a higher similarity to the
threshold in order to be assigned it. In this instance, clusters will only be composed of a
single component – the centre itself – resulting further in the formation of an undesirably
high number of cluster centres. As regards to fuzzy k-modes clustering, in particular, its
fuzziness exponent, it was decided to use values of α = {1.10, 1.20} to control the level of
fuzziness. Less strict values (i.e., high exponents) during the clustering procedure may lead
to the overlooking of some of the suitable components during retrieval, which again is an
undesirable outcome.
A prototype tool to support the methodology was built for both the application
administrator (responsible for the clustering procedure) and the users/developers (for
searching and retrieving). The tool, as with the implementation of the algorithms, was built
using Matlab® Release 14, version 7.0.

5.2 Experimental results
A summary of the results are presented in Tables 2-4, displaying the number of components
retrieved from the repository compared to the known number of components similar to the
search preference.
The first evaluation (presented in Table 2) used all 15 attributes of the search preference to
retrieve the most suitable components. With a “near” (>50%) similarity, it was calculated
(using a simple pattern matching method) that 17 components were similar to the search
preference. The best results were obtained with values β = 0.50 and α = 1.10, whereby the
methodology managed to retrieve 13 of the 17 components, equalling a 76% match.

Similarity to search preference > 50%
Number of known near components 17
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
13 (76%) 9 (53%) 11 (65%) 8 (47%)

Similarity to search preference > 75%
Number of known nearer components 7
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
7 (100%) 7 (100%) 7 (100%) 7 (100%)

Similarity to search preference > 90%
Number of known nearest components 2
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
2 (100%) 2 (100%) 2 (100%) 2 (100%)

Table 2. Percentage of the closest components retrieved using 15 attributes

Furthermore, it was observed that the 4 components not retrieved were actually not as close
to the preference and that the most suitable components were indeed returned. In the

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

415

second case (similarity >75%) with 7 “nearer” components, all combinations managed to
achieve a 100% match, retrieving all 7 components. Likewise, the 2 “nearest” components
with respect to the search preference (similarity >90%) were both retrieved.
In the second evaluation only 8 of the 15 attributes of the search preference were used to
retrieve components. In particular the attributes chosen were: domain functionality, specific
functionality, operating system independence, implementation language, platform, visibility
of implementation, price, and binding. The results are summarised in Table 3 below.

Similarity to search preference > 50%
Number of known near components 45
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
12 (27%) 9 (20%) 10 (22%) 8 (18%)

Similarity to search preference > 75%
Number of known nearer components 10
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
9 (90%) 8 (80%) 8 (80%) 8 (80%)

Similarity to search preference > 90%
Number of known nearest components 2
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
2 (100%) 2 (100%) 2 (100%) 2 (100%)

Table 3. Percentage of the closest components retrieved using 8 attributes

By using only 8 attributes, it is observed that more components belong in the three similarity
ranges (45 in >50%, 10 in >75% and 2 in >90%) than compared to using all 15 attributes. This
is down to the fact that a fewer number of attributes decrease the likelihood of finding
mismatches and hence greater distances. Moreover, from the results of Table 3, the
percentage of “near” (> 50%) components with respect to the actual retrieved components
has fallen substantially since retrieval is now based on a stricter matching. Also, although
only 12 components were retrieved, these in fact were the ones that were closest to the
preference, so in effect, the most suitable were not lost. At the two higher levels of similarity
the best “nearer” and “nearest” components were almost always retrieved, with matches
ranging from 80%-90% for similarity >75% and 100% for similarity >90% with the various
combinations of parameters. Lastly, similarly to Table 2, the best results are obtained by
using values of β = 0.50 and α = 1.10, which retrieve all 7 “nearest” components.
In the third and final evaluation, only the 4 attributes believed to be the most likely to be
included in a search took part. These were the domain functionality, specific functionality,
operating system independence, and implementation language. Table 4 shows the results
obtained from the evaluation. It is immediately evident that the percentage of the “near”
components retrieved is considerably low when compared to the other above experiments
that used 15 or 8 attributes since the number of known components has increased.
Specifically, even with the best β = 0.50 and α = 1.10 parameter values only 15 of the 87 (17%)

 Tools in Artificial Intelligence

416

“near” components are retrieved and 9 of the 23 (39%) “nearer” components. Despite these
low figures, in both cases, the components retrieved were still the ones closest to the
preference. Also, all 7 of the “nearest” components were retrieved indicating at large that
the methodology is capable of eliminating the less suitable components from the results at
various levels of confidence.

Similarity to search preference > 50%
Number of known near components 87
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
15 (17%) 9 (10%) 11 (13%) 8 (9%)

Similarity to search preference > 75%
Number of known nearer components 23
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
9 (39%) 8 (35%) 8 (35%) 7 (30%)

Similarity to search preference > 90%
Number of known nearest components 7
β = 0.50 β = 0.55
α = 1.10 α =1.20 α = 1.10 α =1.20
7 (100%) 6 (86%) 6 (86%) 6 (86%)

Table 4. Percentage of the closest components retrieved using 4 attributes

Based on the results of the various experiments it can be deduced that in order for the
component retrieval process to be more accurate and reliable, the search must be carried out
with as many, if not all the attributes defining the components. Nevertheless, this is
attributable to the way in which the retrieval of the components works with respect to the
quantity of the attributes – not quality, and certainly not due to the clustering procedure
itself. Notably in the latter two experiments, although the number of components retrieved
is low, they were still the most suitable according to their similarity to the search preference.
As regards the retrieval of the “nearest” components, (similarity >90%), the methodology
always manages to locate and display the best and most suitable components.

6. Conclusions
The number of software houses attempting to adopt a component-based development
approach is rapidly increasing. However many organisations still find it difficult to
complete the shift as it requires them to alter their entire software development process and
philosophy. Furthermore, to promote component-based software engineering, organisations
must be ready to promote reusability and this can only be attained if the proper framework
exists from which a developer can access, search and retrieve a component. Hence, in the
case of component-based software systems the ability to deliver software systems on time,
within budget and with an acceptable level of quality is largely affected by the efficiency
and effectiveness of the mechanisms employed for searching and retrieval of software

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

417

components. Component repositories, even though having a large impact on promoting
component-based software development as an organised and accessible means for searching
and retrieving software components, can be difficult and time-consuming to handle due to
the usually large volume of residing components.
This chapter aspired to provide a methodology to improve the current means of searching
and retrieving software components from a repository. Specifically, the proposed
methodology employed computational intelligence techniques that seek to cluster software
components based on their similarity and then continuing to search for components
combining the suggested clustering scheme with an innovative mechanism for isolating and
retrieving the closest and most suitable software components based on the search preference
provided by its user.

6.1 Benefits and limitations
The proposed methodology has several advantages. Firstly, the clustering procedure
employs highly simple, efficient and accurate algorithms, namely, the entropy-based and
fuzzy k-modes clustering algorithms. Also, the methodology’s scheme is very flexible since
it can be easily adopted for use with any component repository, provided that the correct
encoding of component attributes is applied. Furthermore, it can accommodate for an even
higher-dimensional component representation (currently with 15 attributes) or even with a
completely modified feature set.
On the other hand, the methodology is not without its drawbacks. One disadvantage lies in
the fact that in reality, the results of the clustering algorithms rely on the subjectivity of the
person performing the clustering, that is, the application administrator. Furthermore, it is
their decision whether to keep a computed clustering scheme or to re-compute the final
cluster centres. Also, there may be some cases where entropy-based clustering creates many
clusters due to a low similarity of components in a repository. This would lead to a larger
number for k and thus many final clusters. In this situation it is probable that a user’s
preference will be similar to many cluster centres and could lead to the search cluster
containing too many clusters with which the preference will be compared too.

6.2 Discussion on future work
The number of parameters required in the methodology is relatively small. The application
administrator is required to select values for the threshold of similarity of the entropy-based
clustering algorithm and the fuzziness exponent of the fuzzy k-modes clustering algorithm.
On the other hand, the user is only required to provide their search preference and level of
confidence applied to the retrieved results. Even with its small number of input parameters
in the clustering process, the values can have a significant impact on the search and retrieval
of software components. One possible approach to eliminate this high dependence is to
attempt to automatically calculate the most suitable values of these parameters instead of
them having to be defined by the application administrator. This may be achieved either
through pre-processing of the component repository or with a validation scheme after the
clustering takes place. In (Tsekouras et al., 2005) the authors have proposed a cluster validity
index that determines the optimal number of clusters based on compactness and separation
criteria.
In general, the proposed methodology is functional and promising. Although, at first glance
of the results, it seems to “lose” components during retrieval, in essence these components

 Tools in Artificial Intelligence

418

are of lower similarity, and in fact, the methodology exhibits a strong filtering mechanism
since it will always return the best (closest) suitable components from a repository for the
user to evaluate and select which of these will be later integrated into the software system.

7. References
Agrawal, R.; Gehrke, J.; Gunopulos D. & Raghavan, P. (1998). Automatic Subspace

Clustering of High Dimensional Data for Data Mining Applications, Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp. 94-105, ISBN
0-89791-995-5, Seattle, WA, USA, June 1998, ACM Press, New York City

Andreou, A.S.; Vogiatzis, D.G. & Papadopoulos, G.A. (2006). Intelligent Classification and
Retrieval of Software Components, Proceedings of the Thirtieth Annual International
Computer Software and Applications Conference, Vol. 2, pp. 37-40, ISBN 0-7695-2655-1,
Chicago, IL, USA, September 2006, IEEE Computer Society, Los Alamitos

Ankerst, M.; Breunig, M.M; Kriegel, H.-P. & Sander, J. (1999). OPTICS: Ordering Points to
Identify the Clustering Structure, Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 49-60, ISBN 1-58113-084-8, Philadelphia, PA,
USA, June 1999, ACM Press, New York City

Bezdek, J.C. (1980). A Convergence Theorem for the Fuzzy ISODATA Clustering
Algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE),
Vol. 2, No. 1, January 1980, 1-8, ISSN 0162-8828

Brown, A.W. & Wallnau, K.C. (1996). Engineering of Component-based Systems, Proceedings
of the Second IEEE International Conference on Engineering of Complex Computer
Systems, pp. 414-422, ISBN 0-8186-7614-0, Montreal, Canada, October 1996, IEEE
Computer Society, Los Alamitos

Chang, S.H.; Han, M.J. & Kim, S.D. (2005). A Tool to Automate Component Clustering and
Identification, Proceedings of the Eighth International Conference on Fundamental
Approaches to Software Engineering, pp. 141-144, ISBN 978-3-540-25420-1, Edinburgh,
Scotland, April 2005, Springer-Verlag, Berlin

Chu, W.C.; Lu, C.-W.; Yang, H. & He, X. (2000). A Formal Approach for Component
Retrieval and Integration Analysis, Journal of Software Maintenance: Research &
Practice, Vol. 12, No. 6, November/December 2000, 325-342, ISSN 1532-060X

Cushner, K. & Brislin, R.W. (1997). Improving Intercultural Interactions: Modules for Training
Programs, Vol. 2, ISBN 978-0761905370, Sage Publications, California

Ester, M.; Kriegel, H.-P.; Sander, J. & Xu, X. (1996). A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise”, Proceedings of the
Second International Conference on Knowledge Discovery and Data Mining, pp. 226-231,
ISBN 1-57735-004-9, Portland, OR, USA, August 1996, AAAI Press, Menlo Park

Frakes, W.B. (2007) Software Reuse, ReNews – Software Reuse and Domain Engineering,
http://frakes.cs.vt.edu/renews.html

Girardi, M.R. & Ibrahim, B. (1995). Using English to Retrieve Software, Journal of Systems &
Software (Elsevier), Vol. 30, No. 3, September 1995, 249-270, ISSN 0164-1212

Capt. Haines, G.; Carney, D. & Foreman, J. (2007). Component-based Software
Development/COTS Integration, Software Technology Roadmap, Software
Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA, USA,
http://www.sei.cmu.edu/str

Software Component Clustering and Retrieval: An Entropy-based Fuzzy k-Modes Methodology

419

Han, J. & Kamber, M. (2000) Data Mining: Concepts and Techniques, Morgan Kauffman, ISBN
1-55860-489-8, CA, USA

He, Z.; Xu, X. & Deng, S. (2007). Attribute Value Weighting in k-Modes Clustering, Computer
Science e-Prints: arXiv:cs/0701013v1 [cs.AI], Cornell University Library, Cornell
University, Ithaca, NY, USA, http://arxiv.org/abs/cs/0701013v1

Huang, Z. (1998) Extensions to the k-Means Algorithm for Clustering Large Datasets with
Categorical Values, Data Mining and Knowledge Discovery (Springer), Vol. 2, No. 3,
September 1998, 283-304, ISSN 1384-5810

Huang, Z. & Ng, M.K. (1999). A Fuzzy k-Modes Algorithm for Clustering Categorical Data,
IEEE Transactions on Fuzzy Systems (IEEE), Vol. 7, No. 4, August 1999, 446-452, ISSN
1063-6706

Jain, A.K.; Murty, M.N. & Flynn, P.J. (1999). Data Clustering: A Review, ACM Computing
Surveys (ACM), Vol. 31, No. 3, September 1999, 264-323, ISSN 0360-0300

Kauffman, L. & Rousseeuw, P.J. (1990). Finding Groups in Data: An Introduction to Cluster
Analysis, Wiley-InterScience, ISBN 978-0471878766, NY, USA

Kim, D.-W.; Lee, K.H. & Lee, D. (2004). Fuzzy Clustering of Categorical Data Using Fuzzy
Centroids, Pattern Recognition Letters (Elsevier), Vol. 25, No. 11, August 2004, 1263-
1271, ISSN 0167-8655

Kohonen, T. (1987). Content-Addressable Memories, Springer-Verlag, ISBN 038717625X, NJ,
USA

Naedele, M. (2000). Presentation Slides for Component Software: An Introduction, Industrial
Software Systems CHCRC.C2, ABB Corporate Research Limited, Baden, Switzerland

Nakkrasae, S. & Sophatsathit, P. (2002). A Formal Approach for Specification and
Classification of Software Components, Proceedings of the Fourteenth International
Conference on Software Engineering & Knowledge Engineering, pp. 773-780, ISBN 1-
58113-556-4, Ischia, Italy, July 2002, ACM Press, New York City

Nakkrasae, S.; Sophatsathit, P. & Edwards, Jr., W.R. (2004). Fuzzy Subtractive Clustering-
based Index Approach for Software Components Classification, International Journal
of Computer & Information Science (ACIS), Vol. 5, No. 1, January 2004, 63-72, ISSN
1525-9293

Naur, P. & Randell, B. (1969). Software Engineering, Report of a Conference Sponsored by the
NATO Science Committee, Garmisch, Germany, October 1968, Scientific Affairs
Division, NATO, Brussels, Belgium

Prieto-Díaz, R. & Freeman, P. (1987). Classifying Software for Reuse, IEEE Software (IEEE),
Vol. 4, No. 1, January 1987, 6-16, ISSN 0740-7459

Prieto-Díaz, R. (1991). Implementing Faceted Classification for Software Reuse,
Communications of the ACM (ACM), Vol. 34, No. 5, May 1991, 89-97, ISSN 0001-0782

San, O.M.; Huyini, V.-N. & Nakamori, Y. (2004). An Alternative Extension of the k-Means
Algorithm for Clustering Categorical Data, International Journal of Applied
Mathematics and Computer Science (AMCS), Vol. 14, No. 2, 2004, 241-247, ISSN 1641-
876X

Sheikholeslami, G.; Chatterjee, S. & Zhang, A. (2000). WaveCluster: A Multi-resolution
Clustering Approach for Very Large Spatial Databases, International Journal on Very
Large Data Bases (Springer), Vol. 8, No. 3-4, February 2000, 289-304, ISSN 1066-8888

 Tools in Artificial Intelligence

420

Sugumaran, V. & Storey, V.C. (2003). A Semantic-based Approach to Component Retrieval,
The DATA BASE for Advances in Information Systems (ACM SIGMIS), Vol. 34, No. 3,
August 2003, 8-24, ISSN 0095-0033

Tsekouras, G.E.; Papageorgiou, D.; Kotsiantis, S.; Kalloniatis, C. & Pintelas, P. (2005). Fuzzy
Clustering of Categorical Attributes and its Use in Analyzing Cultural Data,
International Journal of Computing Intelligence (WASET), Vol. 1, No. 2, January 2005,
123-127, ISSN 1304-2386

Wang, W. ; Yang, J. & Muntz, R. (1997). STING: A Statistical Information Grid Approach to
 Spatial Data Mining, Proceedings of the Twenty-third International Conference on Very

Large Data Bases, pp. 186-195, ISBN 978-1558604704, Athens, Greece, August 1997,
Morgan Kaufmann, San Francisco, California

Wang, Z.; Liu, D. & Feng, X. (2004). Improved SOM Clustering for Software Component
Catalogue, Proceedings of the International Symposium on Neural Networks, Vol. 1, pp.
846-851, ISBN 978-3-540-22843-1, Dalian, China, August 2004, Springer-Verlag,
Berlin

Yao, H. & Etzkorn, L. (2004). Towards a Semantic-based Approach for Software Reusable
Component Classification and Retrieval”, Proceedings of the ACM Forty-second
Annual Southeast Regional Conference, pp. 110-115, ISBN 1-58113-870-9, Huntsville,
AL, USA, April 2004, ACM Press, New York City

Yao, J.; Dash, M.; Tan, S.T. & Liu, H. (2000). Entropy-based Fuzzy Clustering and Fuzzy
Modeling, Fuzzy Sets and Systems (Elsevier), Vol. 113, No. 3, August 2000, 381-388,
ISSN 0165-0114

24

An Agent-Based System to Minimize
Earthquake-Induced Damages

Yoshiya Takeuchi, Takashi Kokawa, Ryota Sakamoto,
Hitoshi Ogawa and Victor V. Kryssanov

College of Science and Engineering, Ritsumeikan University
Japan

1. Introduction
Over 2000 earthquakes happen every year in Japan, so that this country is often called
earthquake-ridden (Government of Japan, 2006). There exists a serious problem to prevent
the occurrence of earthquake-induced disasters, such as fire, short-circuits, gas leakage, etc.
With the recent advent of nation-wide telecommunication networks, real-time earthquake
information can be received at every household, and it can thus be utilized to control
consumer electronics and reduce the risk of these earthquake-provoked disasters (Kueppers,
2002).
Real-time information about the seismic activity in Japan is provided by the national
earthquake early warning system operated by the Japan Meteorological Agency, JMA (Doi,
2002). By sensing primary waves, this system can notify people (e.g. via radio and TV
channels, a mobile phone subscription service, etc.) several seconds before the earthquake
devastating secondary waves hit a specific area.
The Japan Electronics and Information Technology Industries Association (JEITA) has
recently introduced an automatic consumer electronics control system (JEITA, 2005). When
an earthquake early warning is received, this system provides services, such as activating
alarms, stopping gas, opening doors, and the like. This system cannot, however, comply
with the specific situation at each particular household, as circumstantial information about
who live/stay in, where they are, what they currently do, etc. is not utilized by the system.
In the presented study, we propose an agent-based system for the earthquake-induced
disaster prevention. The system uses household-specific knowledge and can provide for
generally a higher level of safety for the inhabitants than existing systems with similar goals
do. The proposed system realizes a distributed architecture – a design solution making it
quite reliable in (post-)earthquake conditions. There are specialized agents installed in
different places (e.g. of a house or a public facility) and called “room agents,” which are
autonomous, monitor various appliances and people in the rooms, and can control the
equipment and electronics, and guide evacuation when an earthquake happens. For the
control, countermeasure agents processing different types of rules are set up. During an
earthquake, a countermeasure agent receives earthquake data and selects appropriate
constraints, which are to be used by the room agents. As there can often be conflicts when

 Tools in Artificial Intelligence

422

simultaneously applying control rules obtained from different countermeasure agents, the
system implements a conflict-resolving mechanism to produce an optimized set of rules by
solving a weighted constraint satisfaction problem with achievement parameters.
In the chapter’s remainder, the earthquake early warning system is first outlined. The
architecture of a system prototype developed by the authors is then presented. Next, it is
explained how the developed system agents act. A case study of the control of home
appliances is described. The ability of the system to guide evacuation in an earthquake
situation is analyzed through several simulation experiments. Finally, related work is briefly
discussed, and conclusions are drawn.

2. The early warning system
All earthquakes produce two types of shock waves: primary (P) and secondary (S).
P-waves arrive first and usually do not cause any damages. S-waves follow P-waves, are
much stronger, and often result in devastation and loss of lives. The earthquake early
warning system operated by the JMA deals with current seismic information, such as
magnitude of an earthquake and place of its occurrence, obtained by sensing and processing
data of the P-waves. Since P-waves are propagated about twice as fast as S-waves (excepting
for the case of epicentral earthquakes), the system can usually provide earthquake
information to its clients seconds to tens of seconds before the damaging wave hits an area.
In the presented study, a program developed by the Japan Weather Association and the
Earthquake Research Institute at the University of Tokyo is used to calculate the expected
seismic intensity and time of the S-wave arrival at a specific location for a given earthquake,
based on the earthquake early warning data (Kikuchi, 2004).

3. The agent-based system
3.1 System architecture
Fig. 1 shows the architecture of the system proposed in this study. An earthquake
information agent (EIA) is a “JAVA wrapping” of the program processing earthquake early
warning data. The EIA receives an earthquake early warning from the JMA and calculates
the S-wave arrival time and the expected seismic intensity. The EIA then communicates to
three countermeasure agents: an earthquake countermeasure agent (ECA), a personal care
agent (PCA), and a precondition for consumer electronics control agent (PCCA). The ECA
utilizes general rules for earthquake disaster prevention. The PCA applies personalized
rules by utilizing inhabitant-related information. The PCCA makes use of appliance-specific
rules to appropriately control consumer electronics and other equipment in the room. The
countermeasure agents propose constraints to room agents. After a room agent
communicates (or attempts to communicate) to the countermeasure agents to update its
rules, it generates, through resolving achievement-weighted constraints, a set of instructions
to control the appliances and, possibly, to guide the evacuation process.

3.2 Human status and the system interface
Fig. 2 shows the experimental environment – a living room – used in the study. The room
space is divided into 9 locations and a corridor (location 10) with spotlights to help navigate

An Agent-Based System to Minimize Earthquake-Induced Damages

423

JMA

Earthquake Information Agent (EIA)

P-wave

Consumer
Electronics

Earthquake Early
Warning

Household

constraints

Consumer
Electronics

instructions instructions

control control

status

earthquake information

Earthquake
Countermeasure

Agent (ECA)

Personal Care
Agent (PCA)

Precondition for
Consumer

Electronics Control
Agent (PCCA)

Room
Agent 1

Room
Agent 2

Household
Status

Database

Fig. 1. System architecture

Web
camera

PC

Oil heater

Speakers

Speakers

Table

Bed Microwave
oven

Refrigerator

93

2

1

6

5

4 7

8
TV

DVD

10
Corridor light

to Room 2

Room 1

Fig. 2. Experimental environment (Room 1)

people. Current human and consumer electronics statuses are stored in the Household
Status Database. Tables 1 and 2 list typical records of the database, which are continuously
updated while the room agents monitor the environment. Table 1 gives an example of
human statuses. The human status domain is a list of generally expected behavior, which is

 Tools in Artificial Intelligence

424

created, based on a personal profile (e.g. a healthy young man is expected to be able to help
other people in the house, while someone with a badly injured leg could hardly move
without assistance). Actions recommended by the system are selected from the
corresponding pre-defined domains. (The difference in the domains shown in Table 1 is due
to the difference in the individuals’ current statuses.)
There are two types of human statuses processed by the system: static and dynamic. The
static status is a general, “permanent” (or rarely changed) description of an individual
present in the room: the individual’s gender, age, physical abilities, etc. The dynamic status
is regularly updated information about the individual’s current behavior (e.g.
sleeping/resting, being involved in noisy activities, etc.) and location. The dynamic status
information is obtained by using RFID tags and an image-recognition system (with a camera
connected). For example, when a person registered in the household database (i.e. someone
with a static status record) enters the room, her or his location data of the dynamic status is
updated, as the person approaches the corresponding sensors of the room agent. Any
individual having no static status is automatically associated with a temporary
“visitor/guest” profile generated by the system.
A consumer electronics status (Table 2) is predefined at the time when the corresponding
appliance is installed. A domain for the control of the electronics and other equipment is
also predefined (e.g. by downloading relevant rule-sets via a consumer electronics network),
based on the appliance type and manufacturer. The current statuses of the appliances are
updated when the electronics are controlled, whether automatically or manually.
When an earthquake early warning is received, room agents resolve achievement-weighted
constraints, and a status rule-set for the consumer electronics and people in the room is
determined. The system can change the electronics statuses by sending control signals (e.g.
via infrared channels). Human behavior cannot, however, be controlled as such, and the
system instead issues instructions, based on the most recently registered (static and
dynamic) human status. At this point, the current status is (attempted to be) recognized
with the sensors, and the records may be updated in the database.

Individual’s
ID#

Current (dynamic)
status

Location
(Room) Domain for the human behavior variables

1 Watching (DVD),
low activity

5
(1)

{Normal, Sleeping, Watching(X), Hiding
under(X), Staying away from(dangerous

object), Being accompanied, Making a
contact, Reporting own location}

2 Sleeping,
no activity

1
(2)

{Normal, Sleeping, Watching(X), Being
accompanied, Making a contact,

Reporting own location}

Table 1. Human status

The system keeps continuously updating the status database and producing control and
evacuation instructions, based on the latest available information about the dynamically
changing environment and the human behavior. The system thus realizes a “latent”
interface for consumer electronics and other controlled equipment (e.g. oil or/and gas
heaters, doors, etc.) by sensing and processing not only the early warning information
received from the EIA, but also the response (of both the inhabitants and the electronics) to
the instructions issued by the system, which is registered by the room agents. The interface

An Agent-Based System to Minimize Earthquake-Induced Damages

425

is self-adapting (in the sense that its current state mainly depends on its previous state) and
proactive (in the sense that it tries to minimize catastrophic consequences of earthquake-
induced problems, which may arise in the future).

Appliance /
equipment

Current
status Location Domain of the control variables

TV On(DVD) 2 {On(TV), On(DVD), On(CH num), Off}
DVD Play(DVD) 2 {On, Play(DVD), Rec(CH num), Off}

Speaker On(DVD) 2 {On(TV), On(DVD), On(PC),
Announce(X), VolUp, VolDown, Off}

Light 1 Off 1 {On, Off}
Light 2 On 2 {On, Off}
Light 3 Off 3 {On, Off}
Light 4 Off 5 {On, Off}

Corridor light Off 10 {On, Off}
Web-camera Off 1 {Record, On, Off}

Heater On 6 {On, Off}
Phone Off 1 {Connect(Person h), Off}

Micro-wave oven Off 7 {On, Off}
Refrigerator On 7 {On, Off}

Table 2. Consumer electronics status (Room 1)

3.3 Constraints for the control
A room agent determines appropriate (optimized) control instructions by solving an
achievement-weighted constraint satisfaction problem, AWCSP (Kokawa & Ogawa, 2004).
An AWCSP solver implemented in the system is an enhanced reasoning engine for
constraint satisfaction problems (CSP) that allows for obtaining a Pareto optimal solution
even when the invoked constraints are too strict. The AWCSP is similar to the classic CSP

(Walliser & Branschen, 2004) and is represented with a set of variables, a domain of values
for each variable, and a set of constraints, but it also requires a set of constraint weights and
a set of constraint achievement degrees defined. Various theoretical and applied aspects of
AWCSP were actively studied in the past 10 years (Bistarelli et al., 1999; Luo et al., 2002;
Schiex et al., 1995), as it became a relatively popular reasoning technique for agent-based
systems (Yokoo, 2001).
In the developed system, consumer electronics statuses and human actions are represented
as follows: a set of consumer electronics states, CE = {ce1, ce2, ce3, …, cen}, where n is the
number of appliances installed; a set of human actions, ACT = {act1, act2, …, actm}, where m is
the number of the inhabitants. Domains of the variables are represented as DCE = { 1ced , 2ced ,

…, nced } and DACT ={ 1actd , 2actd , …, mactd }, respectively.
The ECA handles general countermeasure rules for earthquake disaster prevention, which
are usually pre-defined. The PCA deals with human-related rules by utilizing information
about the current status of each inhabitant. The PCCA processes specialized rules, based on
a control policy defined for the household. The countermeasure agents produce constraints
for the variables by utilizing the relevant rules. In a room agent, a set of constraints is
represented as C = {c1, c2, …, ck}, k is the number of constraints. Below, these are examples of
the knowledge of countermeasure agents:

 Tools in Artificial Intelligence

426

ECA:
Rule: If (Seismic intensity >= 4) and
 (There is a person h in Room r)
 Send a Constraint to Room r agent:
 ECc1 {acth = “Hide under furniture”}
PCA:
Rule: If (Seismic intensity >= 3) and (“There is a child at home”)
 and (There is a person h(with activity) in Room r)
 Send a Constraint to Room r agent:
 PCc1 {acth = “Accompany the child”}
PCCA:
Rule: If (Seismic intensity >= 5) and (“Agreement for recording”)
 Send a Constraint:
 PCCc1 {state(cei, Camera), cei=”Record”, i = 1, …, n}

PCA also defines rules to support people with disabilities. For example, for those with
hearing disabilities, important information is delivered in a visual form, e.g. on a TV screen
or simply with blinking light. Analogously, whenever people with reduced vision are
present in the room, all important information is delivered via voice and sound channels.
Constraints generated by the agents may often be in conflict. For example, if there is no
furniture to hide under, a constraint “Hide under furniture” would never be satisfied, and
no instructions would be issued by the system. The room agent should still recommend an
accomplishable action for the inhabitants, such as, for example, “Stay away from dangerous
objects.” If one then tries to represent the expected behavior with weighted constraints, the
rules become complicated and difficult to maintain the integrity (Yokoo, 2001). To cope with
this problem, achievement degrees are defined for the constraints. When a constraint is fully
satisfied, the room agent chooses a variable value having the highest achievement degree.
An achievement degree is a parameter showing when and to what extent a given constraint
is satisfied. This parameter consists of a variable and a threshold. A set of the achievement
variables A = {a1, a2, …, ak} represents satisfaction degrees of the constraints. A set of
achievement thresholds F = {f1, f2, …, fk} gives thresholds that the values of ai, i = 1, …, k,
must achieve to make the constraints satisfied.
An example of achievement degrees for a constraint, which refers to issuing
recommendations that would help maintain a higher safety level for the inhabitants, is given
in Table 3.

Achievement degree Safety
Level Actions

5 Hide under furniture (table, etc.)
4 Stay away from dangerous objects (window, etc.)
3 Accompany someone
2 Make a contact (via mobile, etc.)
1 Report location

ai = (achievable
safety level /

recommended safety
level by

constraint ci) × 100 1 No action required

Table 3. Achievement degrees and recommended actions

An Agent-Based System to Minimize Earthquake-Induced Damages

427

The assignment of values to the variables is done via an optimization procedure. Room
agents produce sets of variable values corresponding to achievement degrees higher than
the achievement threshold of a constraint. Room agents then calculate M, an “optimization
degree” of the whole set as the following sum:

 ∑
= ⎪⎩

⎪
⎨

⎧

<
−
−

×

=
=

k

i i
i

ii
i

ii

f
f

faw

fw
M

1 .100,
100

,100,

　

　　　　
 (1)

If a constraint ci is completely satisfied, the corresponding summand is the constraint’s
weight wi. Otherwise, the added value is a product of the constraint’s weight wi and the
normalized distance between the achievement degree value ai and the achievement
threshold fi; k is the total number of constraints. Of course, there may be used formulas other
than the above to calculate M, depending on the optimization strategy chosen (e. g. see
Schiex et al., 1995).

4. Case study
In this section, we describe a case study of the development of (a prototype of) the system
shown in Fig. 1 for the environment specified in Tables 1-2 and (partly) in Fig. 2. Table 4
exemplifies situations considered in the case study, and Table 5 lists constraints and
constraint parameters for the situations.
Situation 1 is, perhaps, the most usual (or expected) situation: Person 1 is relaxing in the
living room, while a middle-level earthquake occurs; there is enough time for the action
stipulated by c2.
Situation 2: Person 1 is sleeping, and the system needs to awake her or him as specified with
c7.
Situation 3: the difference between Situations 3 and 2 is that there is not enough time for
action in the former case. The system cannot advise to move to a safer place, as it would
very likely cause panic rather than improve the overall safety.
Situations 4 and 5 show possible interactions between Room 1 and Room 2 agents, as
assumed with c4. There is a conflict between c2 and c4, since there is no furniture to hide
under in Room 2 (this room is not shown in Fig. 2 but is assumed to be a Japanese-style
tatami room with no furniture; see Fig. 4.). If Person 1 does not go to Room 2 but, instead,
hides under the table, Person 1’s own safety is maintained, but the safety of Person 2 with
no activity is not. On the other hand, if Person 1 goes to Room 2 and accompanies Person 2,
the own safety of Person 1 cannot be maintained sufficiently high, but the safety level of
Person 2 is improved. In this experiment, the weights of c2 and c4 are the same, and the
constraint achievement thresholds f2 and f4 are balanced to help the person with no activity,
depending on the seismic intensity and the remaining time. Every household member is
assumed to have a mobile phone.
Situation 6: there is a specified rule in the household policy. Constraint c8 allows for making
a video record for rescue operations or future analysis. Owing to privacy issues, the
agreements of this type’s constraints depend on the household privacy policy.

 Tools in Artificial Intelligence

428

Table 4. Pre-earthquake situations

Table 6 shows results – constraint parameters obtained as well as main actions undertaken –
of the electronics control by the system. An example of the calculation of achievement
degrees in Situation 1 is listed below:

a

1
: the number of appliances actually turned off is 10 / the total

number of the appliances in the room is 13,

a2: safety level 5 is obtained / safety level 5 is requested,

a3, a5 and a6 are always assigned by the constraint,

a4, a7, a8 are not calculated because c4, c7, c8 are not sent by countermeasure
agents (indicated with “–”).

Note that in Situation 5, constraint c4 cannot be completely satisfied, since the remaining
time is too short (10c). The system then issues an alternative recommendation “Make a

Situation
number

Person 1
status (in
Room 1)

Person 2
status (in
Room 2)

Electronics
Status

Early
warning

information
Explanation

1 Watching
a movie

-
(no data)

TV and DVD
are turned ON

Seismic
intensity is 4;
Remaining

time is 20sec

The system needs to get
attention of Person 1 for
announcing instructions

2 Sleeping,
no activity

-
(no data)

Refrigerator
and micro-

wave oven are
turned ON
(stand-by)

Seismic
intensity is 4;
Remaining

time is 22sec

The system needs to wake
Person 1 up (alarm and

room light ON)

3 Sleeping,
no activity

-
(no data)

Refrigerator
and micro-

wave oven are
turned ON
(stand-by)

Seismic
intensity is 5;
Remaining
time is 4sec

There is not enough time
to sensibly act (e.g. escape

/ hide anywhere)

4 Reading a
book

Sleeping,
no activity

Room lights
are turned ON

Seismic
intensity is 4;
Remaining

time is 21sec

Person 1 would (attempt
to) help Person 2 in Room

2

5 Watching
a movie

Sleeping,
no activity

TV and DVD
are turned ON

Seismic
intensity is 5;
Remaining

time is 10sec

For Person 1, there is not
enough time to run to

Person 2; An alternative
way to help Person 2

needs to be found

6 Reading a
book

-
(no data)

Room lights
are turned ON

Seismic
intensity is 7;
Remaining
time is 3sec

If the policy at the
household allows for

using the camera, turn it
on to possibly assist

future rescue operations

An Agent-Based System to Minimize Earthquake-Induced Damages

429

contact (via a mobile phone)” with a safety level 2 through solving the optimization problem
defined with constraints c2 and c4.

Table 5. Constraint list for Room 1 agent

5. Simulation experiments
5.1 Simulator
In the previous section, we described constraints utilized to control consumer electronics, as
well as instructions apparently suitable to guide the evacuation process. Generally however,
there is always a chance that the people (and, to a less extent, the equipment) would not act
as expected. Another possible source of complications is the fact that people would almost
unavoidably interact with each other when evacuating.

Constrain
t number

Constraint
specification

(i=1,…,n)
Agent

Constra
int

weight

Achievement
degree Explanation

c1
state(cei, all
electronics),
cei = “OFF”

ECA 3

Electronics
actually turned

off / all
electronics in the

room

Turn off electronics for
preventing electric

shocks

c2
acth = “Hide under

furniture”,
h: adult

ECA 5
Depends on the
human action’s

safety level

Act to maintain own
safety

c3
state(cei, Heater),

cei = “OFF” ECA 6
This constraint
must always be

satisfied

Turn off all the
equipment, which may

cause fires

c4

acth = “Accompany
a”,

a:with “no activity”,
h:adult

PCA 5
Depends on the
human action’s

safety level

If there is any “weak”
person (e.g. child), act

to help her or him

c5
state(cei light), cei =
“On”, (cei located
near the person)

PCA 4
This constraint
must always be

satisfied

To facilitate human
evacuation and record
the person’s location
for rescue operations

c6

state(cei, Speaker),
cei =

“Announce(earthqu
ake information)”

PCA 4
This constraint
must always be

satisfied

Deliver earthquake
information and

navigate the person

c7
state(cei, Speaker),

cei = “VolUp” PCA 4
This constraint
must always be

satisfied

System can do “VolUp”
and “Announce(X)”at

the same time

c8
state(cei, Camera),

cei = “Record” PCCA 2
Depends on the

household
policy settings

Make a video record for
rescue or future

analysis

 Tools in Artificial Intelligence

430

Situation
number a1 a2 a3 a4 a5 a6 a7 a8 System actions

1 77% 100% 100% - 100% 100% - -

Issue a warning about the earthquake
with speakers.

Advise to hide under the table.
Turn on lights on the evacuation

route.
Unnecessary equipment is turned off.

2 77% 100% 100% - 100% 100% 100% -

Wake up the person, turn on the light
in the room, and issue a warning

about the earthquake; advise to hide
under the table.

Turn off unnecessary equipment.

3 77% 83% 100% - 100% 100% 100% -

Wake up the person, turn on the light
in the room, and issue a warning

about the earthquake;
advise to get under the bed (to stay

away from dangerous objects).
Turn off unnecessary equipment.

4 85% 100% 100% 100
% 100% 100% - -

Announce the earthquake information
with speakers.

Advise to go to Room 2 to help Person
2; advise to stay away from dangerous

objects.
Turn on lights on the route to Room 2.

5 70% 100% 100% 67% 100% 100% - -

Announce the earthquake information
with speakers.

Advise to contact Person 2 via a
mobile phone.

Turn off unnecessary electronics.

6 77% 100% 100% - 100% 100% - 100%
Announce the earthquake information

with speakers.
Start recording with the web camera.

Table 6. Constraint achievement degrees and system actions

To explore these factors, we have conducted experiments for estimating human evacuation
rates with external guidance by a prototype of the proposed system (results of one
experiment comparing evacuation rates for a house with and without external guidance by
the developed prototype were reported elsewhere (Kokawa et al., 2007); Section 5.3 presents
a similar experiment, in which the evacuation rates were estimated for a public facility).
Since it is usually impractical to test systems with goals analogous to the ones of the
developed prototype in real-world settings on a sufficiently (for validation purposes) large
scale due to high risks (for both involved people and equipment) associated with the
evacuation process, we have developed a simulator capable of reproducing living spaces
(e.g. houses, apartments, and the like) and public facilities (e.g. schools, hospitals, cinemas,
etc.) with people in there.

An Agent-Based System to Minimize Earthquake-Induced Damages

431

The developed simulator allows for evaluating possible human behavior under external
guidance, and it calculates the evacuation rate for different guidance policies emerged from
instructions issued by the induced disaster prevention system prototype. The simulator thus
operates with the household status database and can dynamically change the simulated
evacuation policy.
With the simulator, people are represented as “actors” having 4 parameters: a reaction time,
a (running) speed, chances of recovery after a collision, and a recovery time. The reaction
time (RT) is the delay from the moment when evacuation instructions are issued until when
the actor reacts (e.g. starts moving). This time is randomly assigned, based on a lognormal
RT model obtained empirically from data of the real human RT to the prototype guidance
(an outline of the corresponding experiment is given in the next paragraph). The running
speed is the average moving speed, with which actors would proceed towards an exit (the
speed is assigned randomly, based on a Gaussian probability distribution model). Chances
of recovery after a collision and the recovery time for an actor are determined by utilizing
statistics of evacuation processes reported in the literature (D. Heilbing, 2000).
People normally need time to think and decide upon their actions. Therefore, when
evacuation instructions are compiled, a realistic human reaction time should be taken into
consideration by the system. Fig. 3 shows results of the experiment conducted to obtain a
human reaction time model. The model is to create a random RT generator for the simulator.
Two types of subjects have been involved in the experiment: in the figure, “Priming” stands
for a group of 30 subjects, who knew about the experiment in advance (the solid line), “No
priming” – for 30 (15+15) subjects, who did not possess knowledge about the planned
evacuation (the dashed and dotted lines). It is well known that the variance (σ 2) and the
average (μ) of human reaction time may differ significantly, depending on the individual’s
prior knowledge (R. D. Luce, 1986).

Fig. 3. Human RT patterns in the evacuation process (μ and σ are the parameters of the
lognormal MLE fit to the data; the curves thus show the “best-fit models” obtained from the
experimental data)

Two types of situations were explored for the “No priming” group: a quiet, and a
comparatively noisy, distracting environments. As can be seen from the figure, the

 Tools in Artificial Intelligence

432

“Priming” group and the “No priming, quiet environment” group demonstrated, though
expectedly, a significantly faster reaction, on average.
Actors’ behavior in the simulation is defined with a few simple rules, which are listed
below:
• Actors cannot walk through each other, walls, and furniture.
• Actors start acting (e.g. moving) after a delay determined by the reaction time.
• Actors try to avoid collisions if there is a physical object (e.g. another actor) ahead.
• If an actor collides, it will be delayed or, by chance, even permanently stopped (“killed”

in a trample).
• Actors will be delayed when passing in front of an opening door or going on stairs.
• Actors have prior knowledge about the physical environment and the evacuation paths.

5.2 Experiment 1
Fig. 4 shows the living space reproduced in the simulation. Room 1 of the space is the room
used in the case study described in Section 4. Totally, there are 3 “big” rooms with the
corresponding room agents installed. These room agents are also “in charge of” the adjacent
spaces, such as corridors, closet, kitchen, etc. A family of three – “father,” “mother,” and
“child” – was modeled in the experiment as follows.
Father: is fully aware of the installed system and its capabilities; in day-time, is usually not

at home; is usually “associated” with a quiet environment.
Mother: is aware of the installed system; spends a significant part of her time at home; in

day-time, is mainly “associated” with a noisy, distracting environment (e.g. due to
housekeeping activities).

Child: does not know about the installed system; needs help when an earthquake occurs.

Fig. 4. Living space used in Experiment 1

The flow of the simulated events is as follows. First, an earthquake early warning is initiated
at random, and the corresponding data – the seismic intensity and the remaining time – are
randomly set. The room agents then decide upon the control of consumer electronics

An Agent-Based System to Minimize Earthquake-Induced Damages

433

specified in the simulator as “installed equipment,” and the appropriate evacuation
strategies (if any) are implemented. Finally, the damage caused by the earthquake is
calculated.
The statuses of the family members are assigned based on the time of the simulated
earthquake, as well as on the “most typical/expected” behavior of the members, who are “at
home” at the given time. Human responses to the external guidance are modeled, using the
detailed information of each room’s layout (e.g. see Fig. 2 for the details on Room 1), the
relevant RT model, and the current statuses of the inhabitants. The damage D caused by the
earthquake is calculated as follows:

1 1 1

0,0,
.

1, 1,

NQ people areas ji

n i ji j

if level dtif level dp
D

if level dp if level dt
α β

= = =

⎛ < ⎞⎧<⎧ ⎪= +⎜ ⎟⎨ ⎨⎜ ⎟≥ ≥⎪⎩ ⎩⎝ ⎠
∑ ∑ ∑ (2)

As it may be understood from formula (2), the damage is estimated for NQ simulated
earthquakes, and it includes the “human damage” (summation over the people present at
the time of the earthquake) and the “living space damage” (summation over the living space
areas); level is a simulation parameter proportional to the strength of the simulated
earthquake, dpi and dtj are thresholds assigned from empirical data reported in the
specialized literature (Heilbing, 2000), and α and β are coefficients representing the
corresponding damage rates, which are set to values given in post-earthquake reports by the
governmental organizations (Government of Japan, 2006).
In this simulation experiment, 3 different disaster-prevention strategies were evaluated:
when earthquake information is simply announced with the available electronics (the case
of the JMA early warning system – see Section 1), when earthquake information is
announced and simple disaster-prevention countermeasures are executed (the case of the
JEITA system), and when the full range of the prevention measures available to the system
is duly executed (the case of the proposed system). Fig. 5 shows the simulation results. As it

Fig. 5. Experiment 1: Simulation results

can clearly be seen from the graphs, the simple disaster-prevention strategies (lines with
filled diamonds and squares), even though appear useful from a common-sense point of
view, provide for a significantly lower level of safety (i.e. greater earthquake-induced
damage) than the more sophisticated, adaptive strategy implemented with the system

 Tools in Artificial Intelligence

434

developed in this study (shown with filled triangles) does. Under other similar conditions,
the developed system would help reduce, in a long run and on average, the earthquake-
induced damages by nearly a half, compared to the simplest case of the JMA early warning
system.

5.3 Experiment 2
We have also conducted a simulation experiment to estimate the possible effect of the
guided evacuation of people from a public facility on the evacuation rate. A university’s 3-
story building was modelled with the simulator. This building is normally full of students
(the estimated student number is 500÷1000) in class-hours. Fig. 6 shows the layout of the
building, which has 12 classrooms in its 1st floor and 6 larger lecture halls in each of its
higher floors; the floors are connected with two stairs at both sides of the building, where
the exits are located. In the simulation model, we did not include the W.Cs and the elevator
(denoted X in the figure).

Fig. 6. Layout of the simulated public facility: A - 1st floor, B – 2nd and 3rd floors

In the model used, a teacher was positioned in front of every classroom, and students were
randomly distributed over the seats available; the number of students in every class was
randomly assigned in the range from 25 to 75% of the full capacity. It was assumed that
when an announcement is made (or an alarm is activated), people inside of the rooms will
start moving after a delay, as it is stipulated in Fig. 3 for the “Priming” case. The people will
then try to get out of the building, using the relatively narrow doors and stairs. A 3D model
of the building with people evacuating is shown in Fig. 7, where the cylinders represent
people at a time in the middle of evacuation.

An Agent-Based System to Minimize Earthquake-Induced Damages

435

In the simulation experiment, two types of the evacuation guidance strategies were
compared. In the first case, it was assumed that the people, all together, start evacuation
when a simple alarm is activated in each room (Sim1 in Fig. 8). The second strategy implies
the use of the earthquake-induced disaster prevention system with the room agents installed
in the classes. The developed system prototype then decides on the timing of the
announcement and its contents (e.g. “Stay in the class,” “Quickly move outside! Go to the
front stairs,” etc.), using its knowledge base and the monitoring agents. In the experiment
shown in Fig. 7, the system recommended for the students in rooms 1, 5, 7, 12, 13, 15, 16, and
18 (see Fig. 6) to start evacuation as soon as the earthquake early warning is received; a 5
second delay was recommended for rooms 2, 5, 8, 11, 14, and 17, and a 10 second delay – for
rooms 3, 4, 9, and 10. In the given experiment, the total time available for evacuation was
varied by the disaster prevention system from 15 to 25 seconds. Results of the evacuation
with delays are shown in Fig. 8 as Sim2.

Fig. 7. A screenshot of the simulator during the modelled evacuation process

While the results obtained in the experiment (see Fig. 8, where the graphs are build after
averaging over 20 simulations) clearly indicate the advantage of the guided evacuation
strategy, it is understood that earthquakes in reality seldom leave us as much as 10 seconds
to react. At the same time, however, the purpose of this (second) experiment was not just to
test the developed prototype in a different environment and at a larger scale, but rather to
show the potential applicability of the proposed system to the case of disasters other than
earthquakes – fires, bio- and chemical accidents, etc. The current implementation of the
secondary disaster prevention system is quite specialized to deal with the case of
earthquakes. It then appears a natural but still unrealized extension of the proposed system
concept to generalize it to handle a variety of hazardous situations, possibly using multiple
communication networks (in addition to the earthquake early warning network) for
obtaining initial data.

 Tools in Artificial Intelligence

436

Fig. 8. Results of Experiment 2: the developed system prototype (graph Sim2) provides for a
faster evacuation rate than in the case when a simple alarm system, which is usually used at
public facilities such as university buildings, is activated (graph Sim1)

6. Related work
Most of the relevant studies reported in the literature deal with earthquake early warning
systems to merely deliver earthquake-related information to the inhabitants in an effective
way. As a typical example, the Real-time Earthquake Information Consortium system was
developed to convey earthquake-related announcements to every home in a particular area
using IP phones (REIC, 2004). There also were, however, reports in the past few years about
systems that have goals and capabilities similar to the ones pursued in the presented study.
The system proposed by JEITA is an automatic consumer electronics control system (JEITA,
2005). A somewhat analogous system was developed by Seismic Warning Systems
Incorporated, using an earthquake early warning network deployed in the West Coast of the
USA (SWS, 2004). Another relevant system was created in Taiwan (Wu et al., 2004). All these
systems can control simple electronic devices for the earthquake-induced disaster
prevention, utilizing the data obtained from the corresponding early warning systems, e.g.
they can shut off gas, issue warnings, open door locks, and so on. The systems have,
however, to have countermeasures defined for every possible scenario in advance and,
hence, if the environment changes, the recommended actions may become ineffective or
even dangerous. Besides, the consistency of the systems’ knowledge bases appears hard to
maintain due to the changing surroundings.
A wide area of research, which is closely related to our study, is the creation of global and
local telecommunication infrastructures (networks) that could be used by various disaster-
prevention systems. Although not explored in detail in our experiments, it may be natural to
expect that the robustness and reliability of the corresponding data- and information-
networks will, to a large extent, determine the efficiency of automated disaster-prevention
systems. The agent-based design proposed in our study can utilize, in its agent-to-agent-
communication part, the best solutions reported in the literature (Harayama & Inoue, 2006;
Lin et al., 2002).

An Agent-Based System to Minimize Earthquake-Induced Damages

437

7. Concluding remarks
In the presented study, an intelligent adaptive system to control consumer electronics and
guide the evacuation process based on the earthquake early warning has been proposed.
The system has an agent-based architecture, and it dynamically implements optimized
strategies for the prevention of earthquake-induced disasters by solving an achievement-
weighted constraint satisfaction problem. The system’s sensor-based latent interface allows
for adjusting disaster prevention control policies, depending on human behavior in (pre-)
earthquake conditions. The system is thus able to adapt to dynamic environments, as its
room agents monitor the populated space and update the system’s knowledge- and data-
bases.
A system prototype has been created and used in a case study and tests conducted with a
simulator, which has also been developed in this research. Experimental results obtained
demonstrated that the proposed design solutions provide for a significantly higher level of
safety for people in hazardous situations, when compared with the existing disaster-
prevention systems.
In future work, we plan to increase the flexibility of the system by diversifying control and
evacuation strategies potentially available, to connect the system agents to a consumer
electronics network, and to develop a new version of the system prototype capable of
operation in realistic earthquake conditions. An augmentation of the simulator functionality
to provide for dealing with more environmental parameters and to diversify the possible
(simulated) interactions among the actors is also planned. A more challenging task remains
to develop a secure, efficient and effective but inexpensive technology to monitor human
behavior and update the dynamic status database.

8. References
S. Bistarelli, P. Codognet, F. Rossi (1999), Abstracting Soft Constraints: Framework,

properties, examples, Artificial Intelligence, Vol.139, 1999, pp. 175-211
K. Doi, (2002). Earthquake early warning system in Japan, In: Early Warning System for

Natural Disaster Reduction, Jochen Zschau, (Ed.), Springer, Berlin
Government of Japan, (2006) Earthquake occurred in Japan, Disaster Prevention Information

Page. Abstract of earthquake countermeasures in Japan, Available from:
http://www.bousai.go.jp/jishin/chubou/taisaku_gaiyou/pdf/hassei-jishin.pdf

(last accessed on May 04, 2008) (In Japanese)
H. Harayama, M. Inoue (2006). Study on home network for realization of real-time disasters

prevention system, Information Processing Society of Japan, Vol.2006, No.54, 2006, pp.
39-42, ISSN: 0919-6072 (In Japanese)

D. Heilbing (2000). Simulating Dynamical Features of Escape Panic, Nature, Vol. 407, Sep
2000,. pp. 487-490

JEITA (2005). IT automatic disaster prevention system, Second Press Release, Japan
Electronics and Information Technology Industries Association (JEITA), Japan, 2005.12.7
Available from: http://home.jeita.or.jp/spp/index.html (last accessed on May 04,
2008) (In Japanese)

A. N. Kueppers (2002). Early Warning System for Natural Disaster Reduction, Springer,
Berlin

 Tools in Artificial Intelligence

438

M. Kikuchi (2004). The development of a software system to utilize the earthquake real-time
information, Ministry of Education, Culture, Sports, Science and Technology Research
Report, pp. 410-425, Tokyo ,Japan, (In Japanese)

T. Kokawa, H. Ogawa (2004). A decision-making support system in consideration of
individual preferences, The Institute of Electronics, Information and Communication
Engineers(IEICE), Technical Report, Vol. 104, No. 133, Tokyo, Japan, 2004, pp. 1-6
(In Japanese)

T. Kokawa, Y. Takeuchi, R. Sakamoto, H. Ogawa, V. V. Kryssanov (2007). An Agent-Based
System for the Prevention of Earthquake-Induced Disasters, Proceedings of IEEE
International Conference on Tools with Artificial Intelligence, Oct. 2007, pp. 55-62, ISBN:
978-0-7695-3015-4

Y. Lin, H.A Latchman, M. Lee, and S. Katar (2002). “A power line Communication Network
Infrastructure for the Smart Home”, IEEE Wireless Communications, Vol.9, Issue.6,
2002, pp. 104-111, ISSN: 1536-1284

R.D. Luce (1986). Response times: their role in inferring elementary mental organization,
Oxford University Press, New York, USA

X. Luo, J. H. Lee, H. Leung, N. R. Jenningsa (2002), Prioritised fuzzy constraint satisfaction
problems: axioms, instantiation and validation, Fuzzy Sets and Systems, Vol. 136,
No. 2, 2002, pp. 151-188

REIC (2004) Research and Development of Automatic Disaster Prevention System towards
Domestic Controlled Network (IP Phone), Real-time Earthquake information
Consortium (REIC) http://www.real-time.jp/research/lp/lp-04b.html

T. Schiex, H. Fargier, G. Verfaillie (1995), Valued constraint satisfaction problems: Hard and
easy problems, In Proc. IJCAI-95, 1995, pp. 631-637

SWS (2004), Corporate Backgrounder, Seismic Warning Systems Inc. (SWS), Corporate
Overview, 2004

M. Walliser, S. Branschen (2004). M. Calisti, T. Hempfling, Constraint Satisfaction
Techniques for Agent-Based Reasoning, Brinkhauser Verlag, Berlin, 2004

Y. M. Wu, T. L. Teng, N. C. Hsiao, T. C. Shin, W. H. K. Lee and Y. B. Tsai (2004). Progress on
Earthquake Rapid Reporting and Early Warning Systems in Taiwan, In: Y. T. Chen,
G. F. Panza, Z. L. Wu (Ed), Earthquake Hazard, Risk, and Strong Ground Motion,
Seismological Press, Berlin, 2004, pp. 463-486

M. Yokoo (2001), Distributed Constraint Satisfaction, Foundations of Cooperation in Multi-
agent System, Springer-Verlag, New York

25

A Methodology for the Extraction of
Reader’s Emotional State Triggered

from Text Typography
Dimitrios Tsonos and Georgios Kouroupetroglou

National and Kapodistrian University of Athens
Greece

1. Introduction
Writing is employed by humans in order to communicate, exchange ideas or store facts and
descriptions. A well known Latin phrase is “verba volant, scripta manent” i.e. “spoken words
fly away, written words remain”. Humans in prehistoric years, used figurations to describe
several events and express their fear or their admiration, the ancient Egyptians used
papyrus to write down their ideas and the Chinese, in 11th Century, went beyond
handwriting using typography with moveable type to create multiple copies of their
documents. Through centuries typography has evolved and nowadays is one of the major
manners to exchange ideas and information.
Using computers, typography and the way we write has changed radically. We have a
plethora of software tools, e.g. for writing a plain text (like NotePad in MS Windows), word
processors (e.g. Open Office) for text editing as well as for more elegant visual appearance
of the documents and professional tools for the creation of posters, advertisements e.t.c. (e.g.
Adobe’s Tools and Editors). Utilising these tools, computer users have the ability not only to
write a plain text, but also to format the text and arrange it in the page. In newspapers, for
example, the page designer distinguishes the title from the body of text at the top of the
page or the article, with larger font size. Also, when an editor wishes to emphasize a specific
word or phrase he uses bold or italics typesetting. A writer can convey a message, a felling
or an idea not only by the meaning of the content but also by the way the text is visually
presented to the reader. Page layout affects the way a newspaper is read (Holmqvist &
Wartenberg, 2005; Holmberg, 2004; Küpper, 1989; Wartenberg & Holmqvist, 2005).
The use of the WWW and the web page creation and design, introduced a new perception
for the meaning of documents and publishing. In web pages, the text and background color
combinations have impact on the readability and aesthetics (Porat et al., 2007; Richard
& Patrick, 2004; Hill & Scharff, 1997) and a well designed graphical web document can be
reader friendly (Borchers et al., 1996).
Humans express their emotions in every personal or social occasion. Everything they do or
make is followed by or follows an emotional expression. For example, some people are afraid
of being among many people. So they act accordingly by avoiding congestion. If they
cannot, they are feeling anxious and nervous. Another example of the role of the emotions in

 Tools in Artificial Intelligence

440

our life is that people find themselves to be more productive when they are happy than when
being depressed or unhappy. Thus emotions play a significant role in our daily life.
But, what are emotions? There are theories that are trying to answer this question (James,
1884; Cornelius, 2000; Narayanan & Alwan, 2004) and set additional questions like which is
the optimum theory to explain emotions and how can those be measured (Scherer, 2005).
This chapter aims to present how emotions can be used in Artificial Intelligence, for the
automated extraction of the reader’s emotional states. Starting with a survey on the basic
theories on emotions, a sort description of the existing experimental procedures for
measuring emotions follows. We present the Self Assessment Manikin Test (Lang, 1985) as a
tool for modelling reader’s emotions and emotional states such as “Pleasure”, ”Arousal”
and ”Dominance” (Tsonos et al., 2008). In the second part of the chapter there is a sort
description of what typography is, what typographic elements are used in documents and
how they affect the reader emotionally. In the third part we propose a system architecture
for the automated extraction of readers’ emotional state along with the necessary steps that
should be followed during its implementation.

2. Emotions and emotional states
Through the years, several studies and theories on emotions have emerged. In this section,
we describe four theories - approaches on emotions. The theoretical survey helps to
understand and investigate how reader’s emotions and emotional states are affected by text
typography, how these emotions can be measured and the optimum experimental
procedure that can be used for modelling emotions.

2.1 Theories on emotions and emotional states
Emotional theories are classified as:
• the Darwinian Theory,
• the Jamesian Theory,
• the Cognitive Theory,
• the Social Constructivist Theory.
The Darwinian Theory assumes that emotions “are evolved phenomena with important
survival functions that have been selected for because they have solved certain problems we
have faced as species” (Cornelius, 2000). All organisms sharing an evolutionary past should
share the same emotions as well. The emotions should be analyzed in terms of their
functionality and survival value (Cornelius, 2000; Narayanan & Alwan, 2004).
According to the Jamesian Theory, “bodily changes follow directly the perception of the
exciting fact and our feeling of the same changes as they occur is the emotion” (James, 1884).
James’s belief on emotions is that, we experience emotions because our bodies have evolved
to respond automatically and adaptively to features of the environment that have survival-
related significance to us. Our bodies respond first and our experience of these changes
constitutes what we call emotion (Cornelius, 2000). In this approach, if we consider a system
that is a “black box”, the stimulus (e.g. document, speech) is considered to be the input of
the system while the output is the bodily change. Thus, we can change someone’s emotions
as we like just by changing the stimulus (Narayanan & Alwan, 2004).
The Cognitive Theory proposes that “every emotion has associated with it a particular
pattern of appraisal is that if the appraisal is changed, the emotion should change as well”
(Cornelius, 2000). The thought and emotions cannot be separated, and what one feels

A Methodology for the Extraction of Reader’s Emotional State Triggered from Text Typography

441

depends in how one understands and judges the events. Emotions result from mental
activity (Cornelius, 2000; Narayanan & Alwan, 2004).
Finally, according to the Social Constructivist Theory, culture and social rules play a key
role in the organization of emotions at a variety of levels. The last two theories are closely
related, and the development of thoughts is tightly connected to culture and social status
(Narayanan & Alwan, 2004).

2.2 Experimental procedures for emotional state extraction
According to Scherer, emotion is defined as “an episode of interrelated, synchronized
changes in the states of all or most of the five organismic subsystems in response to the
evaluation of an external or internal stimulus event as relevant to major concerns of the
organism” (Scherer, 2005).
Psychologists have developed several tools and experimental procedures that can measure
emotions. They can be categorized into Free Response Measurement and Forced Choice
Response Measurement.
Using Free Response Measurement, the participants of an experimental procedure are asked
to respond with freely chosen labels or short expressions that characterize the nature of the
emotional state they experienced. Using this procedure, instructors and researchers may
face problems, like in case where the participants may not be able to express their emotions
due to the use of inappropriate labels or the limited range of their vocabulary that may
constrain their responses. Also, it is quite difficult to statistically analyze free responses
(Scherer, 2005). Researchers sort numerous free responses into a small number of emotion
categories using synonyms and resemblances. It is not a standard experimental procedure
but efforts have been made towards standardizing the emotional labels.
Forced Choice Response Measurement can be subdivided (Scherer, 2005) into a) Discrete
Emotion approach and b) Emotion Dimensions approach.
In Discrete Emotion approach, the participants are asked to assess their emotions using
verbal expressions that best describe their emotions or provide feedback on a 3 to 5-point
scale indicating whether the emotion experienced was weak or strong or use an analog scale
to indicate the intensity of an experienced emotion.
There is a standardized measurement procedure for this type of experiments, but many
researchers prefer to develop their own emotional categories. Such approaches result to
mismatched categories that may present problems concerning the comparability of the
results (Scherer, 2005). There are also problems in cross-study statistical analyses due to the
abundance of missing data.
The participants in Emotion Dimensions procedure, are asked to denote how positive
(pleasant) or negative (unpleasant) and how aroused (excited) or calm they feel. The
emotions can be mapped using the bi-dimensional space of Pleasure-Arousal. This method
is very simple, straightforward and reliable (Scherer, 2005). Also, simple or advanced single
study or cross-study statistical analyses can be obtained in contrast with the Free Response
Measurement and Discrete Emotion approach. In this case it is difficult to differentiate the
intensity of the feeling from body excitation (Scherer, 2005).

3. Emotional state assessment using the Self-Assessment Manikin test
3.1 The S.A.M. test
The Self Assessment Manikin (SAM) Test was introduced in 1985 by P.J. Lang (Lang, 1985).
The SAM procedure came up as a test for the assessment of advertisements (Bagozzi et al.,

 Tools in Artificial Intelligence

442

1999). It offers the ability to avoid the verbal expression of the emotion assessment, so it
establishes a quick and easy to use experimental procedure. Also, having a pictorial
assessment rather than a verbal one makes SAM test cross–cultural and language-
independent (Morris, 1995).
The test assesses the emotional states of the participants. These states are “Pleasure”,
“Arousal” and “Dominance” (The SAM test is also known as “PAD test” the initials of each
emotional state). Synonyms are used for the expression of the PAD dimensions. “Pleasure”
can be replaced by “valence” and “evaluation”, “Arousal” by “activation” and “activity”
and “Dominance” by “power” and “potency”. In our study we used the initial verbal
expressions of the three dimensions.
Using the three-dimensional space of emotional states, we are able to map them into specific
emotions. A well-known example is the Russell’s circumplex (Scherer, 2005). The two
dimensions of “Pleasure” and “Arousal” are represented on a X-Y grid respectively. Russell
placed the verbal expressions of the emotions on the grid. Figure 1 illustrates the emotional
wheel with the verbal semantic mapping of the emotions.

Fig. 1. The verbal expressions of the emotions placed on the Pleasure–Arousal grid
according to Russell

Another version of emotional wheel is the Geneva Emotion Wheel (GEW) introduced as an
experimental tool (Scherer, 2005; Bänziger et al., 2005). A computer screen of the GEW is
presented in Figure 2.
How do we assess the emotional states and how do these values derive and can be
presented on an X-Y grid? The SAM test, as it is described, can “produce” the values of the
Pleasure, Arousal and Dominance dimensions.

A Methodology for the Extraction of Reader’s Emotional State Triggered from Text Typography

443

Fig. 2. A computer screen of the Geneva Emotion Wheel

During the experimental procedure, the participants assess their emotional states using five
manikins (example in Figure 3) for each dimension of Pleasure, Arousal and Dominance.

Fig. 3. The manikins of the 9-point scale SAM Test as presented during the experimental
procedure. The verbal expressions of “Pleasure”, “Arousal” and “Dominance” do not
appear during the experimental procedure

There are no verbal expressions to assess their emotional states. The participants can choose
from at least 5 selections of manikins. In some studies (Morris, 1995; Tsonos et al., 2008) are
presented by larger scales of 9-points to 25-points. For example, in a 9-point scale there are 5

 Tools in Artificial Intelligence

444

points of selection for the images and 4 points as interval values. The choice of the scale
depends on the design of the experimental procedure and the number of the participants. If
there is a need for more accuracy for the results a 9-point scale or greater should be selected.
The scale of the experimental procedure is proportional to the number of subjects needed for
acceptable statistical results.
For the emotional state of “Pleasure”, the rating begins from a happy, smiling manikin to an
unhappy, frowning one. For the “Arousal” dimension the aroused pole is represented by a
highly energetic manikin and the other pole is represented by a relaxed and eyes-closed one,
while for “Dominance” the controlled and in-control poles are represented by a small and
large manikin respectively.
The answers of the participants can be transformed from the 1-5 point scale (or 1-9 point
scale, etc.) into a dimensional space of [-1,1] or [-100%,100%]. Using the percentage approach
we are able to distinguish how much an emotional state has been varied from the neutral
state (the value “zero” represents the neutral state in both spaces).

3.2 Using SAM test as an experimental tool in artificial intelligence: case studies
Using SAM test we can have two different results that are closely related, the dimensional
perspective of emotions and the emotions. Using only one experimental procedure, the
researcher is able to have two approaches on his research.
Conducting this kind of test, modeling the emotions and emotional states of the
participants, on specific projected stimuli, is feasible.
In (Grimm et al., 2006; Grimm et al., 2007a; Grimm et al., 2007b) a system was implemented
for the automated estimation of emotion primitives (the dimensional approach) from speech
using acoustic features.
There is also a study on the automated detection of pleasant and unpleasant emotions in
spoken dialogs (Chul & Narayanan, 2005) obtained from a call center application.
Busso (Busso et al., 2007) modeled head motion sequences in expressive facial animations,
analyzing them in terms of their naturalness and emotional salience in perception (SAM test
is used for the evaluation of the results).

3.3 Description of the experimental procedure
In this paragraph we present a version of the SAM experimental procedure, designed for
our experimental needs, following the paper and pencil IAPS Guidelines (Lang et al., 2005).
The automated procedure helps to create an easy of use experiment and the rapid collection
and process of the results.
For the development of the procedure, PHP was used on an Apache Web Server and
MySQL. PHP allowed us to develop dynamic web pages, for the presentation of the stimuli,
and to automate the registration of the participants’ answers. The answers were stored in a
database (MySQL). Before the experimental procedure began, participants read a short
description of the purpose of our study and explicitly tutored in the emotional states theory.
Certain guidelines were followed for all participants during the experimental procedure
(Lang 2005). They were given ample time to read the instructions and freely ask the
instructors for any additional information or clarification. Also, they were asked to complete
an electronic form with some personal information, for example about their age, education
level, for any visual problems, and also if she/he agrees to participate in the experimental
procedure.

A Methodology for the Extraction of Reader’s Emotional State Triggered from Text Typography

445

The participants were familiarized with the test before the actual experimental procedure.
Each stimulus was presented for a few seconds after which the participant was asked to
complete the form with the manikins as presented in Figure 3. By pressing the “continue”
button, she/he was presented with the next stimulus and so on. The presentation of the
stimuli was in the same random sequence to all the participants.

Fig. 4. Extracting the emotion using the SAM Test. Using the manikins, participants assess
their emotional state. The 9-point scale values are converted into a percentage scale and then
mapped on to the emotion wheel for the verbal-semantic representation of the emotion

4. Text typography in documents
The origin of the word “Typography” comes from the Greek word “Τυπογραφία” which is
derived from the words “τύπος” (’’τύπτω’’ = to strike) and “γράφω” (=to write). Through
centuries, typography has evolved using different techniques. In 20th century, Computer
and Information Science created a new framework for the typography. Using computers, the
layout designers of books, magazines etc. can create good aesthetic and functional results on
documents in a very short time.
But in the last few years the concept “typography” has been changed due to the wide spread
of computers and internet. Most computer users and readers prefer to read documents from
their computer screens. The classic printed documents are transformed into electronic
documents. Readers are given the possibility and functionality to interact with content of
electronic documents. The reader can search specific sentences or phrases in the document,
request for a summarization of specific parts of the document and browse a collection of
documents.

 Tools in Artificial Intelligence

446

In this section we will describe how the typographic elements can be categorized and how
these elements or their combination affect the readability of the document.

4.1 Classification and usage of typographic elements
There are many efforts that categorize and classify the typographic elements, either in
printed or electronic documents, according to the needs of each study. W3C (W3C, 2008a),
DAISY/NISO (DAISY, 2008; ANSI/NISO, 2008) standard and Open Document Format
(ODF) by (OASIS, 2008) are the three major contributors towards that classification.
In our study, the elements are categorized using the guidelines provided by these standards.
The typographic elements of the documents will be mentioned as meta-data. These meta-
data can be categorized in (Tsonos et al., 2007a):
• Text Formatting,
• Text Structure,
• Text Layout,
• Non-textual (Figures, Drawing, Pictures, Logos etc).
Text Formatting meta-data include the formation elements of the text, typesetting elements
and font elements (like bold, italics, font size). Text Structure meta-data specify the attribute
of a part of the document (chapter, title, paragraph etc.), while the Text Layout meta-data
describes the visual layout of the text (like columns, headlines, borders). The text with the
formation and structural metadata can be combined with other non-textual metadata, such
as figures, drawing etc.
One can notice that there is a relation between these elements. For example, a title (text
structure) element may have a 16pt font size (text formatting) and placed in a text column
(text layout). A subtitle element may have 14pt font size and placed in a column, but also
under the title.
Often, textual features present purely logical structure information. For example, a piece of
text can be part of a list or footnote. However, frequently, the use of these features has the
purpose of communicating semantic information to the reader. Examples of such purposes
are: giving emphasis to an important piece of text; focusing the readers’ attention to the
central point of an article; highlighting a name entity like the title of a movie and so on. This
classification can help the creation of sophisticated document manipulation tools including
an enhanced audio representation of the document.
Recently there was an attempt to produce an automatic extraction system of semantic
information based only on the document layout, without the use of natural language
processing (Fourli-Kartsouni et al., 2007). However, there are several studies on the
automatic identification of logical structure of documents e.g. (Conway, 1993; Yamashita et
al., 1991; Derrien-Peden, 1991; Krishnamoorthy, 1993). Most traditional approaches in this
field have employed deterministic methods (decision trees, formal grammars) (Mao et al.,
2003; Tsujimoto & Asada, 1990; Derrien-Peden, 1991), which may suffer from poor
performance due to noise and uncertainty. In addition, such approaches create models which
are not flexible to domain changes and cannot easily evolve in the presence of new evidence.
In order to overcome such limitations, Fourli-Kartsouni (Fourli-Kartsouni et al., 2007)
employed a probabilistic approach based on Bayesian networks trained on a series of
labelled documents. Bayesian networks offer a significant tolerance to noise and uncertainty,
they can capture the underlying class structure residing in the data and they can be trained
on examples, thus adapting to existing and future evidence.

A Methodology for the Extraction of Reader’s Emotional State Triggered from Text Typography

447

4.2 How typographic elements affect reader’s emotional state, comprehension and
navigation in electronic documents?
E-documents have exceeded documents in printed format by providing several
functionalities to the reader like browsing, navigation, searching, highlighting and
multimedia facilities. The meta-data and the way it is combined, has specific meaning for
each reader in different documents (Küpper, 1989; Holmberg, 2004) and the way the
document is read (Holmqvist et al., 2003; Holmqvist & Wartenberg, 2005). The authors
utilize structural and layout meta-data to personalize the content. The style of a document
sets the typographic rules, used more often in technical or scientific papers and reports than
in magazines. There are also studies on how the combination of colors on a page and the
different type of style on text, affects the readers’ emotional state and the readability of the
document (Laarni, 2003), the meaning (Küpper, 1989; Holmberg, 2004) and the reader
comprehension.
Emotions and the emotional state of the reader depend on document structure, layout and
text formatting. Multiple combinations of colors (Birren, 1984), font size, type and style in a
document affects the emotional state (Sánchez et al., 2006; Sánchez et al., 2005) and
consequently the readability of the document (Laarni, 2003; Saari et al., 2004) not only in
printed but also in electronic format (Larson, 2007).

5. Extraction and modeling reader’s emotional state
5.1 Proposed architecture
Based on the SAM test, we proposed an XML-based architecture for the real-time extraction
of reader’s emotional state excluding any content and/or domain dependent information
from the input documents (Tsonos et al., 2007b). Figure 5 illustrates a diagram of the system
architecture. The proposed system is designed to process all types of documents in printed
or electronic format. The Markup Normalization Module converts all non-tagged
documents as well as tagged (not conforming to the DAISY/NISO format) into tagged
compliant to DAISY/NISO format. Printed documents are scanned and parsed through an
OCR system so to be digitized and exported in a tagged format. Documents being already in
a tagged format include meta-data about the format and the structure of the text. All these
have to be normalized to the required meta-data and file type (DAISY/NISO standard).
The documents, in the desired format, can be processed by the Emotional State Extraction
Module. This module is implemented using the model derived by several experimental
procedures on how the reader is affected by the document metadata provided in paragraph
4.1. The experimental procedure is similar to one described in 3.3. Conducting multiple
experiments using SAM Test we are able to distinguish the way each document element
affects the reader’s emotional state but also their combination. For the readers’ emotional
state modelling in paragraph 5.3, the results from ongoing experiments and how the
readers’ emotional states varying according to font type, size and color, background color
and typesetting elements are presented. Future work may reveal the need of a rule based
model or a statistical one.
The Emotional State Extraction Module produces an XML file, the Emotional-ML. This file
contains the content of the documents but also the initial tagging (after markup
normalization) and the emotional state annotation. Currently, there is an effort to create a
new markup language by W3C Emotion Markup Language Incubator Group. The group
will discuss and propose scientifically valid representations of several aspects of emotional
states that appear to be relevant for a number of use cases (W3C, 2008b).

 Tools in Artificial Intelligence

448

Fig. 5. The proposed architecture for the real-time extraction of reader’s emotional state

5.2 Experimental methodology
For the reader’s emotional state modelling, an experimental procedure has been created
according to 3.3, assessing 15 participants. Fifty-four combinations of font and typesetting
elements, projected on identical LCD displays in 1024x768 resolution, were investigated on
an emotionally neutral Greek text similar to one used by Hill & Scharff (Hill & Scharff,
1997). These are:
• Plain text in font sizes 9pt, 10pt, 11pt, 12pt, 13pt, 14pt, 15pt, 16pt, 18pt, 26pt and 32pt

and font type Times New Roman.
• Plain, bold, italics, bold-italics in size 16pt. in both Arial and Times New Roman, in

color combinations as proposed in (Laarni, 2003) and (Hill & Scharff, 1997) (see Table 1).
During the experimental procedure, the presentation of some stimuli was repeated for two
or three times, in order to correlate the dependency of the previously presented
combinations of typographic elements to the current reader’s emotional response. All
stimuli were displayed in a random sequence for approximately 15 seconds. In the following
screen participants were asked to assess their emotional state on a 9-point PAD scale using
the manikins provided by the SAM test.
The duration of the experimental procedure was 20-30 minutes, depending on the
participants response time.

5.3 Results
The results indicated that during the experimental procedure, the participants were mostly
influenced by the font/background color combinations and the font size rather than by the
typesetting elements and font type. For the later, a new experimental procedure should be
designed and implemented that will clearly distinguish the affect of these elements to the
emotional states.
Previously studied (Laarni, 2003) font and background color combinations as stimuli in the
experimental procedure, was to investigate the hypothesis and the confirmation of the
results that the SAM test is cross-cultural and language independent (Morris, 1995) test.

A Methodology for the Extraction of Reader’s Emotional State Triggered from Text Typography

449

The mean values of the emotional states are displayed in Figure 6. According to (Laarni,
2003) and the presented experiment, the outcome can be summarized as:
• Red on Green (RG) color combinations are the most arousing and less pleasant.
• Black on White (BW) color combination has the lowest mean arousal value.
• White on Blue (WU), Green on Yellow (GY) and Black on White (BW) are the most

pleasant combinations.

Abbreviation Font Color Background Color
YU Yellow Blue
WB White Black
GY Green Yellow
BW Black White
BG Black Grey
RG Red Green
WU White Blue

Table 1. The explaination of the abbreviations used in Fig. 6

The font size has a great impact to the reader’s emotional state and especially to “Pleasure”
and “Dominance” dimensions as presented in Figure 7. The “small-size fonts” (9 to 13
points) can be characterized as unpleasant and aroused. The “medium-size fonts” (14 to 27
points) are considered to be the most pleasant and calm. The “large-size fonts” (27 points
and higher) have similar impact with “small size fonts”.

Fig. 6. The font and background color combinations on “Pleasure” and “Arousal” grid. The
abbreviation of the color combinations are explained in Table 1

The statistical analysis of our results, is based on the approach used by (Grimm & Kroschel,
2005) on listeners’ emotional state assessment. From equations (1), (2), (3) and (4), the

resulting mean values of the participants-evaluators confidence scores (kr) are shown in
Table 2.

 Tools in Artificial Intelligence

450

Fig. 7. The distribution of the impact of font size on the 3 dimensions of “Pleasure”,
”Arousal” and ”Dominance”

Mean Values
Number of
evaluators Age P

kr for “Pleasure” A
kr for “Arousal” D

kr for “Dominance”

15 26,3 0,59 0,51 0,53

Table 2. The participants mean confidence score for each dimension

 ,() ()
,

1

1 K
MLE i i
n n k

k
x x

K =

= ∑ (1)

 () ()
,

1

1 N
i i

k n k
n

x
N

μ
=

= ∑ (2)

 ,() ,()

1

1 N
MLE i MLE i

n
n

x
N

μ
=

= ∑ (3)

() () ,() ,()
,

1

() () 2 ,() ,() 2
,

1 1

()()

() ()

N
i i MLE i MLE i

n k k n
n

k N N
i i MLE i MLE i

n k k n
n n

x x
r

x x

μ μ

μ μ

=

= =

− −
=

− −

∑

∑ ∑

 (4)

An ideal evaluator is considered with () 1i
kr = and an unreliable one with () 0i

kr < . All

evaluators are reliable (() 0i
kr >).

A Methodology for the Extraction of Reader’s Emotional State Triggered from Text Typography

451

6. Conclusion, future work and potential applications
In this chapter we presented a theoretical survey on emotions and a methodology on how
reader’s emotional state can be modelled. The selection of the Self Assessment Manikin Test
and the dimensional approach for emotions led to a procedure for modelling the reader’s
emotional states on typesetting and font elements of e-documents. Documents contain many
more elements and their combinations as presented in 4.1 prior to the elements in our
experiment, for further experimentation.
The proposed modelling can be used in Artificial Intelligence for a number of applications.
For example, as proposed in (Tsonos et al., 2007b), we can use the emotionally annotated
documents for the multimodal accessibility of documents, focusing on the acoustic
modality. Expressive Speech Synthesis (IEEE, 2006) creates more physical results. The
dimensional approach of the emotions is also used in speech synthesis (Tsonos et al., 2007b)
(Schröder, 2006). In Figure 8 a proposed real-time system that automatically produces
emotional annotation to documents and conveys the visual elements into acoustic modality
using expressive speech synthesis is presented.
Future work includes the use of an e-TSA composer (Xydas & Kouroupetroglou, 2001a,
2001b) (Xydas et al., 2005) on the DEMOSTHeNES Text-to-Speech platform (Xydas &
Kouroupetroglou, 2001c) and models for expressive speech synthesis as proposed by
Schröder (Schröder, 2006), for acoustic rendition of emotionally annotated documents.

Fig. 8. The proposed architecture produces automatically emotional state annotation and
uses Expressive Speech Synthesis for the acoustic production of documents

7. Acknowledgements
The work described in this chapter has been funded by the European Social Fund and
Hellenic National Resources under the HOMER project of the Programme: PENED, Greek
General Secretariat of Research and Technology.

 Tools in Artificial Intelligence

452

8. References
ANSI/NISO (2008), Specifications for the digital talking book, http://www.niso.org/kst

/reports/standards/
Bagozzi, R. P.; Gopinath, M. & Nyer, P. U. (1999). The Role of Emotions in Marketing. Journal of

the Academy of Marketing Science, Vol. 27, No. 2, pp. 184 – 206, ISSN 1552-7824
Bänziger, T.; Tran, V., & Scherer, K. (2005). The Geneva Emotion Wheel: a tool for the verbal

report of emotional reactions, Poster presented at ISRE 2005, Bari, Italy, (Available as pdf
from http://www.unige.ch/fapse/emotion/isre/ BanzigerTranSchererISRE05.pdf)

Birren, F. (1984). Color & Human Response: Aspects of Light and Color Bearing on the Reactions of
Living Things and the Welfare of Human Beings. J. Wiley & Sons Inc, ISBN: 978-0-471-
28864-0, New York

Borchers, J.; Deussen, O.; Klingert, A. & Knörzer, C. (1996). Layout rules for graphical Web
documents. Computers and Graphics, Vol. 20, No. 3, pp. 415 – 426, ISSN: 0097-8493

Busso, C.; Deng, Z.; Grimm, M.; Neumann, U. & Narayanan, S. (2007). Rigid Head Motion in
Expressive Speech Animation: Analysis and Synthesis. IEEE Transactions on Audio, Speech,
and Language Processing, Vol. 15, No. 3, March 2007, pp. 1075-1086, ISSN: 1558-7916

Chul, M. L. & Narayanan, S. S. (2005). Toward detecting emotions in spoken dialogs. IEEE
Transactions on Speech and Audio Processing, Vol. 13, No. 2, March 2005, pp. 293-303,
ISSN: 1063-6676

Cornelius, R. R. (2000). Theoretical approaches to emotion, Proceedings of ISCA Workshop on
Speech and Emotion, pp. 3–10, Belfast, Northen Ireland, September 2000

Conway, A. (1993). Page grammars and page parsing: a syntactic approach to document
layout recognition, Proceedings of the Second International Conference on Document
Analysis and Recognition 1993, pp. 761-764, ISBN: 0-8186-4960-7, Tsukuba Science
City, Japan, 20 – 22 October 1993

DAISY Consortium (2008), www.daisy.org
Derrien-Peden, D. (1991). Frame-based system for macro-typographical structure analysis in

scientific papers. Proceedings of International Conference on Document Analysis and
Recognition, pp. 311-319, Saint-Malo, France, September 1991

Grimm, M. & Kroschel, K. (2005). Evaluation of natural emotions using self assessment
manikins, Proceedings of the IEEE Workshop on Automatic Speech Recognition and
Understanding, pp. 381-385, ISSN: 0-7803-9478-x, 27 Nov. – 1 Dec. 2005

Grimm, M.; Mower, E.; Narayanan S. & Kroschel, K. (2006). Combining categorical and
primitives-based emotion recognition, Proceedings of 14th European Signal Processing
Conference (EUSIPCO), Florence, Italy, September 2006

Grimm, M.; Kroschel, K.; Mower, E. & Narayanan S. (2007a). Primitives-based evaluation
and estimation of emotions in speech. Speech Communication, Vol. 49, No. 10-11,
October 2007, pp. 787-800, ISSN: 0167-6393

Grimm, M.; Kroschel, K. & Narayanan, S.(2007b). Support Vector Regression for Automatic
Recognition of Spontaneous Emotions in Speech, IEEE International Conference on
Acoustics, Speech and Signal Processing 2007 (ICASSP 2007), Vol. 4, pp. 1085-1088,
ISBN: 1-4244-0728-1, Hawaii, USA, 15 – 20 April 2007

Hill, A. & Scharff, L. V. (1997). Readability of screen displays with various
foreground/background color combinations, font styles, and font types, Proceedings
of the Eleventh National Conference on Undergraduate Research (NCUR-97), Vol. 2, pp.
742-746, Austin, Texas U.S.A., 24-26 April 1997

Holmberg, N. (2004). Eye movement patterns and newspaper design factors. An experimental
approach. Master Thesis, Lund University Cognitive Science

A Methodology for the Extraction of Reader’s Emotional State Triggered from Text Typography

453

Holmqvist, K.; Holsanova, J.; Barthelson, M. & Lundqvist, D. (2003). Reading or scanning? A
study of newspaper and net paper reading, In: The mind's eye: cognitive and applied
aspects of eye movement research, Hyönä, J. R., and Deubel, H. (Eds.), pp. 657-670,
Elsevier Science Ltd, ISBN: 0-444-51020-6, Holland

Holmqvist, K. & Wartenberg, C. (2005). The role of local design factors for newspaper
reading behaviour – an eye-tracking repspective, Lund University Cognitive Studies,
127. Lund: LUCS, ISSN: 1101-8453

IEEE (2006). Special Section on Expressive Speech Synthesis, as presented in the Editorial of
IEEE Transactions on Audio, Speech and Language Processing, Vol. 14, No 4, July 2006,
pp. 1097-1098, ISSN: 1558-7916

James, W. (1884). What is an emotion? Mind, Vol. 19, pp. 188 – 205, ISSN: 0026-4423
Fourli-Kartsouni, F. ; Slavakis, K. ; Kouroupetroglou, G. & Theodoridis S. (2007). A Bayesian

Network Approach to Semantic Labelling of Text Formatting in XML Corpora of
Documents, Lecture Notes in Computer Science (LNCS) Vol. 4556, pp. 299-308, ISBN :
978-3-540-73282-2

Krishnamoorthy, M.; Nagy, G.; Seth, S. & Viswanathan, M. (1993). Syntactic segmentation and
labeling of digitized pages from technical journals. IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 15, Iss. 7, July 1993, pp. 737-747, ISSN: 0162-8828

Küpper, N. (1989). Recording of Visual Reading Activity: Research into Newspaper Reading
Behaviour, (Available as pdf from http://calendardesign.de/leseforschung/ eyetrackstudy.pdf)

Laarni, J. (2003). Effects of color, font type and font style on user preferences, Adjunct
Proceedings of HCI International 2003, C. Stephanidis (Ed.), Greece, pp. 31-32,
Heraklion, University Press, ISBN: 960-524-166-8

Lang, P. J. (1985). The cognitive psychophysiology of emotion: Fear and anxiety, In: Anxiety and the
anxiety disorder, A. Tuma & J. Maser (Eds.), pp. 131-170, Lawrence Erlbaum, New Jersey

Lang, P. J.; Bradley, M. Μ. & Culthbert, Β. N. (2005). International Affective Picture System
(IAPS): Instruction Manual and Affective Ratings. Technical Report A-6, The Center
for Research in Psychophysiology, University of Florida, U.S.A.

Larson, K. (2007). The Technology of Text. IEEE Spectrum, May 2007, pp. 20 – 25, ISSN: 0018-9235
Mao, S; Rosenfeld, A. & Kanungo, T. (2003). Document structure analysis algorithms: a

literature survey, Proceedings of SPIE, Vol. 5010, pp. 197-207, ISBN 0-8194-4810-9
Morris, J. D. (1995). Observations SAM: The self-assessment manikin- An efficient cross-

cultural measurement of emotional response, Journal of Advertising Research, Vol. 6,
November - December 1995, pp. 63-68, ISSN: 1470-7853

Narayanan, S. & Alwan, A. (2004). Text to Speech Synthesis : new paradigms and advances,
Prentice Hall, ISBN: 9-780131-456617, Upper Sandle River, New Jersey

OASIS (2008). Organization for the Advancement of Structured Information Standards,
www.oasis-open.org/home/index.php

Porat, T.; Liss, R. & Tractinsky, N. (2007). E-Stores Design: The Influence of E-Store Design
and Product Type on Consumers’ Emotions and Attitudes. Lecture Notes in
Computer Science (LNCS), Vol. 4553, pp. 712 - 721, ISBN: 978-3-540-73109-2

Richard, H. & Patrick, H. (2004). The Impact of Web Page Text-Background Colour
Combinations on Readability, Retention, Aesthetics and Behavioural Intention.
Behaviour and Information Technology, Vol. 23, No. 3, May-June 2004, pp.183-195,
Taylor & Francis Group Journals, ISSN-0144-929X

Saari, T.; Turpeinen, M.; Laarni, J.; Ravaja N. & Kallinen, K. (2004). Emotionally Loaded Mobile
Multimedia Messaging, Third International Conference Entertainment Computing - ICEC
2004, pp. 476-486, Eindhoven, The Netherlands, 1-3 September 2004

 Tools in Artificial Intelligence

454

Sánchez, J. A.; Kirschning, I.; Palacio, J. C. & Ostróvskaya, Y. (2005). Towards mood-oriented
interfaces for synchronous interaction, Congreso Latinoamericano de Interacción
Humano-Computadora (CLIHC´05), pp. 1-7, Cuernavaca, México, 2005

Sánchez, J. A.; Hernández, N. P.; Penagos J. C. & Ostróvskaya, Y. (2006). Conveying mood
and emotion in instant messaging by using a two-dimensional model for affective
states, Proceedings of the Symposium on Human Factors in Computer Systems (IHC
2006), pp. 66-72, ISBN: 1-59593-432-4, Brazil, 2006, ACM, New York

Scherer, K. R. (2005). What are emotions? And how can they be measured? Social Science
Information, Vol. 44, No. 4, pp. 693-727, ISSN: 0539-0184

Schröder, M. (2006). Expressing degree of activation in synthetic speech. IEEE Transactions on Audio,
Speech and Language Processing, Vol. 14, Iss. 4, July 2006, pp. 1128-1136, ISSN: 1558-7916

Tsonos, D.; Xydas, G. & Kouroupetroglou G. (2007a). Auditory Accessibility of Metadata in
Books: A Design for All Approach. Lecture Notes in Computer Science (LNCS), Vol.
4556, pp. 436 - 445, ISBN: 978-3-540-73282-2

Tsonos, D.; Xydas, G. & Kouroupetroglou, G. (2007b). A Methodology for Reader's Emotional
State Extraction to Augment Expressions in Speech Synthesis, Proceedings of 19th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2007), Vol. 2, pp. 218-
225, Patras, Greece, 29-31 October 2007 ISBN: 0-7695-3015-X

Tsonos, D.; Ikospentaki, K. & Kouroupetrglou, G. (2008). Towards Modeling of Readers’
Emotional State Response for the Automated Annotation of Documents, IEEE
World Congress on Computational Intelligence (WCCI 2008), pp. 3252 - 3259, Hong
Kong, 1 – 6 June 2008, ISSN: 978-1-4244-1821-3

Tsujimoto, S. & Asada, H. (1990). Understanding multi-articled document, Proceedings of 10th
International Conference on Pattern Recognition, Vol. I, pp. 551-556, ISBN: 0-8186-
2062-5, Atlantic City, NJ, USA, 16-21 June 1990

Wartenberg, C. & Holmqvist, K. (2005). Daily Newspaper Layout - Designers’ Predictions of
Readers’ Visual Behaviour - A Case Study, Lund University Cognitive Studies, 126.
Lund: LUCS, ISSN: 1101-8453

W3C (2008a), World Wide Web Consortium, www.w3.org
W3C (2008b), World Wide Web Consortium, Emotion Markup Language Incubator Group,

www.w3.org/2005/Incubator/emotion
Xydas, G.; Argyropoulos, V.; Karakosta, T. & Kouroupetroglou, G. (2005). An Experimental

Approach in Recognizing Synthesized Auditory Components in a Non-Visual
Interaction with Documents, Proceedings of the 11th Int. Conference on Human-
Computer Interaction, Las Vegas, Nevada USA, 22-27 July 2005, Lawrence Erlbaum
Associates, Inc, ISBN: 0-8058-5807-5

Xydas G. & Kouroupetroglou, G. (2001a). Text-to-Speech Scripting Interface for Appropriate
Vocalisation of e-Texts, Proceedings of EUROSPEECH 2001, pp. 2247-2250, Aalborg,
Denmark, 2-7 September 2001, ISBN: 87-90834-09-7

Xydas, G. & Kouroupetroglou, G. (2001b). Augmented Auditory Representation of e-Texts
for Text-to-Speech Systems, Lecture Notes in Artificial Intelligence (LNAI), Vol. 2166,
2001, pp. 134-141, ISBN: 978-3-540-42557-1

Xydas, G. & Kouroupetroglou, G. (2001c). The DEMOSTHeNES Speech Composer,
Proceedings of the 4th ISCA Tutorial and Research Workshop on Speech Synthesis, pp.
167-172, Perthshire, Scotland, 29 August – 1 September 2001

Yamashita, A.; Amano, T.; Takahashi, I. & Toyokawa, K. (1991). A model based layout
understanding method for the document recognition system, Proceedings of
International Conference on Document Analysis and Recognition, pp. 130-138, Saint
Malo, France, September 1991

26

Granule Based Inter-transaction
Association Rule Mining

Wanzhong Yang, Yuefeng Li and Yue Xu
Queensland University of Technology

Australia

1. Introduction
Association rule mining extends data mining in a number of ways. Han et al. (Han &
Kamber, 2006) summarized the features of association mining as single (Agraw et al., 1994)
or multi-dimensional (Lee et al., 2006), multiple level (Han et al., 1999), quantitative (Ruckert
et al., 2004), sequential pattern (Tzvetkov, P. et al., 2003), constraint based (Pei et al., 2001)
etc. However, in line with requirements of knowledge discovered in the real applications,
people also divide the association rule mining into intratransaction and intertransaction.
Intratransaction was the focus for most traditional approaches which include two stages of
frequent itemset mining and rule generation. In frequent itemset mining, Apriori-like
(Agraw et al., 1993) and FPT (Han et al., 2000) are two important methods applied in
association rule mining. In a transaction database, intratransaction discusses the association
of items in the same transaction. For example, if intratransaction association mining is
applied in a market basket analysis, the high profit products could be associated with the
low profit products in the same transaction.
Beyond intratransaction association mining, Lu et al. (2000) proposed intertransaction
association mining which is the most widely used in some industry areas. Intertransaction
association mining is used to discover patterns among different transactions. In the example
of McDonalds, Burger King and KFC, the business association is along locations and also the
time dimension as well.
Obviously, knowledge discovery in intertransaction association mining is more complicated
than intratransaction association mining. To solve intertransaction association mining, Lu et
al. (2000) proposed the EH-Apriori and E-Apriori algorithms. However, both algorithms
take a significant amount of time to generate large extended itemsets.
Tung et al. (2003) proposed the FITI (First Intratransaction Then Intertransaction) algorithm
which is adaptive to intertransaction association mining. It focuses on the two stages of
mining frequent intertransaction itemsets and rule generation. The experimental results
show this method is better for real world applications when compared to the high running
time of EH-Apriori.
However, finding frequent intertransaction itemsets is still a time consuming process in
intertransaction association mining. The FITI algorithm can show the efficiency when the
transaction length is very short. If there are many items in each transaction and the
threshold is low, the discovery process in frequent intertransaction itemsets could take a
very long time. This algorithm considers the intervals of the intertransaction, but does not

 Tools in Artificial Intelligence

456

include the average size of transactions. The extended database produces many unneeded
combinations of items. The number of extended itemsets is much larger than the number of
the set of items. It is difficult to apply this technique in high dimensional data.
It is a challenging issue to find the association among high dimensional data in industry. To
breakthrough the classical methods in mining association rules, Li et al. (2006) proposed
multi-tier granule mining for intratransaction association rules. Granule mining is a new
initiative that attempts to improve the quality of discovered knowledge in multidimensional
databases. The basic idea of granule mining came from decision tables presented by Pawlak
(2002), where the attributes are divided by users into two groups: condition attributes and
decision attributes; and a granule is a predicate that describes the common feature of a
group of objects (transactions). In intratransaction association mining, granule mining has
been proved to reduce the meaningless association rules significantly.
In this paper, we propose the method of granule based intertransaction association rule
mining. It takes advantage of granule mining’s capacity to transfer intertransaction
association into a multi-tier structure and simplify the process of the long pattern in
intertransaction association.
The remainder of the paper is structured as follows. We begin by introducing classical
intertransaction association rule mining in Section 2. In Section 3, we introduce the concept
of granule mining. In Section 4, we present granule based intertransaction association rule
mining and use the multi-tier structure to deal with the process. In Section 5, we propose the
concept of precision to evaluate the effectiveness of association rules and introduce the
experimental results. The related work is in Section 6 and last Section contains the
conclusion.

2. Intertransaction association mining
2.1 Intertransaction association mining
Let T = {t1, t2, …, tn} be a transaction database, and each transaction is a set of items. Tung et
al. (2003) used the sliding window and extended-items to describe the intertransaction. Each
sliding window W can be viewed as a continuous ω (a fixed interval called maxspan, or
sliding_window_length) sub-windows such that each sub-window contains only one
transaction. Let ei be an item, its occurrences in different transactions in a sliding window
can be extended from ei(0) to ei(ω), where 0, …, ω are positions of transactions in the
window. The transactions in a sliding window W can be merged into a mega transaction (or
extended transaction) by putting all of W’s extended items in a collection. Hence, an inter
itemset refers to a set of extended-items, and an inter association rule can be represented as
X → Y, where X and Y are both a set of extended-items and X ∩Y = ∅.
The definition of the support and confidence in inter association mining follows up the intra
association mining. Let N be the number of megatransactions and, X and Y both be a set of
extended-items and X ∩Y = ∅. Let Txy be the set of megatransactions that contains X and
also Y, and Tx be the set of megatransactions that contains X. We have

sup(X → Y) = |Txy|/N, conf(X → Y) = |Txy| /|Tx| .

2.2 FITI algorithm
FITI algorithm is the state of the art in intertransaction association rule mining, it consists of
three stages. For example 1 (in Table 1), we choose the same example used by Tung et al. But
we assign the real meaning for each variable in ASX share market for bank and insurance. In

Granule Based Inter-transaction Association Rule Mining

457

this example, there are only four transactions. Let a, b, c represent bank shares and d, e, f, g, h,
i be insurance shares.
Stage I of FITI algorithm offers a data structure FILT to store frequent intra transaction
items. Using FILT, stage II of FITI represents transaction database by FIT tables. Stage I and
stage II is data preparation where FITI represents the database by an embedded data
structure. We also can view the data preparation as the generation of an extended database.
Stage III of FITI is data processing which generates frequent intertransaction itemsets. In this
stage FITI controls the implementation using the algorithms.

d E
100
104
105
109

a, b, c
a, b, c, d, e

a, f, g
e, h

Table 1. A database with four transactions

In stage I, the data structure, called Frequent-itemsets Linked Table (FILT) is used to store
frequent intratransaction itemsets. This stage is based on the property that a frequent
intertransaction itemset must be a frequent intratransaction itemset. To generate frequent
intratransaction itemset, the Apriori algorithm is applied for the item selection. The basic
structure of FILT for Table 1 is lookup links, where the frequent itemsets are sorted from
one-itemset to n-itemset and stored in Table 2. This table can be extended to links in
different directions. In table 2 a, b, c not only can be generator of {a, b}, {a,c} and {b, c}, but
also can be the subset of {a, b}, {a, c} and {b, c}.

ID Ptr

1

2

3

4

5

6

7

8

Table 2. Lookup links

Stage II of FITI is database transformation, where the database is represented by a set of
encoded Frequent-Itemset Tables (FIT tables). A feature of FIT tables is that they represent each
transaction by the ID of frequent itemsets in FILT. In particular, the FIT tables (in Table 3)
can represent each transaction by the IDs from one-itemsets to n-itemsets separately.
Phase I and Phase II can be viewed as data preparation for frequent intertransaction itemsets
mining. This process is mining frequent intratransaction itemsets and represents them by
using encoded IDs sorted from one itemsets to n-itemsets.

a

b

c

e

a, b

a, c

b, c

a, b, c

 Tools in Artificial Intelligence

458

F1 F2 F3
di IDseti di IDseti di IDseti

100
104
105
109

1, 2, 3
1, 2, 3, 4

1
4

100
104
105
109

5, 6, 7
5, 6, 7

100
104
105
109

8
8

Table 3. FIT tables

Stage III of FITI is data processing where FITI uses the algorithm to control intertransaction
association and output a set of frequent intertransaction itemsets. The algorithm is based on
the Apriori principle.
The input layer of the algorithm is the ID encoded intertransaction itemset I, which is
corresponding to each sliding window. For the itemsets in each sub window, only one top
ID from the FIT tables can be selected into I if it is available. Otherwise, it is zero.
During the data processing, the algorithm divides the generation of frequent inter-
transaction itemset I into two cases of k = 2 and k > 2 in order to control the implementation.
When k= 2, FITI generates frequent intertransaction 2-itemsets, L2. FITI makes use of the
hashing approach in previous research and refines the hash formula for the bucket number.
When k >2, FITI uses the loop to generate the candidates of frequent intertransaction
itemsets.
While (Lk-1 ≠ ∅)
{
 Generate candidate intertransaction itemsets, Ck;

 Scan transformed database to update the count for Ck;

 Let Lk = {c∈ Ck | support(c) ≥ mins up};
 k++;
}
The algorithm inside the loop is based on the classic Apriori principle which generates the
itemsets based on the joins. However FITI separates the joins into intertransaction join and
cross transaction join.

d E
100
101
102
103
104
105
106
107

a
e, h
a, b
b, d

a
f, i
a, c
b, g

Table 4. A part of transaction database

W1 a(0) , b(1) f(1), a(2) d(2), g(3)
W2 a(0) h(0), b(1), i(2), e(3)

Table 5. Sliding windows

Granule Based Inter-transaction Association Rule Mining

459

I 1, 0, 5, 2
J 1, 0, 6, 2

Table 6. Intertransaction joins

We use example 2 (in Table 4) to describe the intertransaction join in FITI. Table 4 is a part of
the transaction database where the FIT tables are the same as Table 3. The sliding window
size is four. So there are two sliding windows W1 and W2 for Table 4. The intertransaction
itemsets in W1 and W2 are listed in Table 5. Their encoded IDs in the itemset of I and J are
mapped from FIT tables listed in Table 6. According to the rule of intertransaction join,
because 5 and 6 are in the same column of I and J in Table 6, and other items in I and J are
same, the inter- transaction itemset is {1, 0, 8, 2}.

d E
100
101
102
103
104
105
106
107

a
b f
a, d

g
a, h
b,
i
e

Table 7. A part of transaction database

W1 a(0) , e(1) h(1), a(2) b(2), b(3)d(3)
W2 a(0), f(1) i(1), a(2) c(2), b(3) g(3)

Table 8. Sliding windows

I 1, 2, 1, 0
J 1, 2, 0, 4

Table 9. Cross transaction join

We use example 3 (in Table 7) to describe cross transaction join in FITI. Table 7 is a part of
the transaction database where the FIT tables are the same as Table 3. The sliding window
size is four. So there are two sliding windows W1 and W2. The cross transaction itemsets in
W1 and W2 are listed in Table 8. Their encoded IDs in the itemset of I and J are mapped
from FIT tables listed in Table 9. According to the rules of cross transaction join, because {1,
0} and {0, 4} are in the last two columns of I and J in Table 8, and the values in the other
columns are same. The intertransaction itemset is {1, 2, 1, 4}.
The next step in the algorithm is to calculate the count of each itemset and sort the itemset
by the frequency. Following the Apriori algorithm, the process prunes off the itemsets
which are not frequent and generates all frequent itemsets.

2.3 The restriction of FITI algorithm
The advantage of the FITI algorithm is is that it provides a complete set of frequent itemsets.
However, the weakness is obvious as well. The FITI algorithm generates many redundant

 Tools in Artificial Intelligence

460

itemsets. In particular in industry, those itemsets are useless. We use an example from the
share market to illustrate this. Also, the large amount of calculation is time consuming.
FITI is based on the Apriori algorithm, which is used twice in mining inter- transaction
association rules, including both generation of frequent intratransaction itemsets and
generation of frequent intertransaction itemsets.
The advantage of Apriori is the output of a complete set of itemsets. The weakness is the
complexity of the calculation. Therefore, intertransaction association is very complex. In
particular when applying in high dimensional database, Apriori not only means a large
amount of calculation for item joins, but also loss of the common feature in industry.
In the example in Table 1, each transaction has different length, where the number of items
could be various. But in the share market, most important shares all have values on each
transaction. We view all transactions as same length.
The FITI algorithm consists of three phases. The evaluation of the efficiency and
effectiveness includes the three stages. We use the same example of bank and insurance in
ASX. The example in Table 10 is a transaction database in ASX. There are over 250 working
days in ASX each year and we view each working day as one transaction. Let a, b, c be the
major banking shares and d, e, f, g, h, i represent the major insurance shares.

ID a b c d e f g h i
100
101
102
103

1 0 1
-1 0 1
0 -1 0
1 1 0

1 0 0 0 1 1
1 0 1 -1 0 -1
-1 0 1 0 0 -1
0 1 -1 0 -1 0

Table 10. Transaction database

In phase 1, FITI stores the intratransaction itemsets in the data structure FILT. In the ASX
share market, each share has three statuses, booming, steady, dropping, where let 1, 0, -1
represent them separately. Let a1, a2, a3 represent the three status for a. With the same idea,
we convert the transaction database into Table 11.

ID a b c d e f g h i
100
101
102
103

a1 b2 c1
a3 b2 c1
a2 b3 c2
a1 b1 c2

d1 e2 f2 g2 h1 i1
d1 e2 f2 g3 h2 i3
d3 e2 f1 g2 h2 i3
d2 e1 f3 g2 h3 i2

Table 11. Transformed database.

In FILT, if the transactions database is for one year, the max number of itemsets could be 39

= 19683, where the length of FILT is hundreds times of the length ofASX transaction table. If
let N be the length of transaction table, the length of FILT could be O (N2). Apparently many
of itemsets in FILT are redundant for rule generation, which means a large amount of
calculations are ineffective. This data structure expands the complexity of the algorithm and
causes an expensive cost in industry.
The phase II of FITI is database transformation, which transforms the database into a set of
FIT tables. FIT tables consist of one-item sets, two-item sets …. N-item sets FIT tables. Let N
be the number of the FIT tables. If the transaction table is for one year, FIT tables could be
from F1 to F27. If the status of each share becomes multiple choices in industry, the number

Granule Based Inter-transaction Association Rule Mining

461

of FIT tables could be N times of the width of transaction database. Therefore, the input of
the algorithm is a very large table set.
Moreover, the complexity extends into Phase III. The generation of candidate frequent
intertransaction itemsets is based on the regulation of transaction joins. As an additional
cost, we have to design many regulations for various joins. However, in Apriori algorithm
we need to prune off the non-frequent itemsets. It causes a large amount of time.
To generate a complete set of itemsets, the length of FILT in the phase I and the width of FIT
tables in phase II of FITI algorithm are N times of length and width of the transaction table
separately. Therefore, the data structure become O(N2) times of the transaction database. We
have to generate a large amount of meaningless itemsets. If we apply FITI algorithm in the
high dimensional data set, the complexity is over reasonable estimation and the cost are so
expensive. Apparently, it is not reasonable for the application in industry.

3. Granule mining
3.1 Decision tables and granules
In the multidimensional database, Pawlak proposed the decision tables in rough set theory
to represent the association rules from the hidden patterns (Pawlak, Z., 2002) (Pawlak, Z.,
2003). A feature of decision tables is related to user constraints, which divide the attributes
of a database into condition attributes and decision attributes, respectively. We call the tuple
(T, VT, C, D) a decision table of (T, VT) if C∩D=∅ and C∪D⊆ VT, T is a set of transactions, and
VT is the set of attributes (items). The condition attributes C represent the premise
(antecedent) of association rules, while the decision attributes D can be interpreted as the
post-condition (consequent) of association rules.
In a decision table, there is a function for every attribute a∈ VT such that a: T → Va, where Va
is the set of all values of a. We call Va the domain of a. C (or D) determines a binary relation
I(C) (or I(D)) on T such that (t1, t2) ∈ I(C) if and only if a(t1) = a(t2) for every a∈C, where a(t)
denotes the value of attribute a for object t∈ T. It is easy to prove that I(C) is an equivalence
relation, and the family of all equivalence classes of I(C), that is a partition determined by C,
is denoted by T /C.
The classes in T/C (or T /D) are referred to C-granules (or D-granules). The class which
contains t is called C-granule induced by t, and is denoted by C(t).
Table 12 simulates a part of the daily transactions for product sales in a shop, which is a
multidimensional database. There are 200 transactions for 7 different products in the

Granule Department Commodity Profit (%) Ng

1 F & V Accessories Over 70 47
2 Bakery General Merch 30-40 12
3 Bakery Glassware 20-30 48
4 Soft Drinks Dinners Frozen Over 70 12
5 F & V Accessories 30-40 21
6 Bakery General Merch 20-30 40
7 Soft Drinks Dinners Frozen 20-30 20

Table 12. A decision table

 Tools in Artificial Intelligence

462

database. The possible attributes are department, commodity, cost, price, profit. The users
choose only three attributes and let C = {department, commodity} and D = {profit}. We
compress the database into a decision table, where each product is viewed as a granule and
Ng is the number of transactions that belong to the granule.
Using Table 12 we can classify the condition granules (C-granules) as T/C = {{1,5}, {2,6},{3},
{4,7}} and decision granules (D-granule) as T/D = {{1,4}, {2,5}, {3,6,7}}, respectively.

Time Products
t1: 02/12/2003 a1, a5, a6, a7
t2: 02/01/2004 a1, a5, a6, a7
t3: 02/02/2004 a1, a2, a4, a5, a7
t4: 02/03/2004 a1, a2, a3, a5, a6
t5: 02/04/2004 a1, a2, a4, a5, a6
t6: 02/05/2004 a1, a2, a3, a5, a6
t7: 02/06/2004 a1, a4, a5, a7

Table 13. A time slice transaction table

Granule a1 a2 a3 a4 a5
cg1 1 0 0 0 1
cg2 1 1 0 1 1
cg3 1 1 1 0 1
cg4 1 0 0 1 1

 (a) C-granules (b) D-granules

Granule a1 a2 a3 a4 a5 a6 a7 Ng

g1 1 0 0 0 1 1 1 2

g2 1 1 0 1 1 0 1 1

g3 1 1 0 1 1 1 0 1

g4 1 1 1 0 1 1 0 0

g5 1 0 0 1 1 0 1 2
(c) Decision Table

Table 14. Granules

We also can view the transactions in Table 13, where the transactions come from the
different time slices during 7 months and all products are frequent. Let VT = {a1, a2, …, a7}, T
= {t1, t2 ,…, t7}. According to the profit, bananas Cavendish (a1), coca cola 2LT (a2), 1.25 LT (a3),
chicken pieces (a4) and potatoes brushed (a5) are all high profit products; bread white (a6) and
sandwich (a7) are both low profit products. We set up the user constraint with the profit and
classify the products into two groups. Let a1, a2, a3, a4, a5 be condition attributes and a6, a7

decision attributes. Table 14 (a) is the C-granules; Table 14 (b) is the D-granules; Table 14 (c) is

Granule a6 a7

dg1 1 1
dg2 0 1
dg3 1 0

Granule Based Inter-transaction Association Rule Mining

463

the decision table, where T/C ∪ D = {g1, g2, g3, g4, g5} and Ng is the number of objects in the
same granule.
In the representation of association rule mining, we view a decision table as a
multidimensional database. Every granule in the decision table can be mapped into a
decision rule (Pawlak, 2002). The condition attribute can be viewed as the premise of
association rules; the decision attributes can be viewed as the post-conditions. The presence
or absence of items is viewed as the same position. Therefore, we can obtain 5 decision rules
in Table 14 (c), and the first one can be read as the following decision rule:

(a1 =1) ^ (a2 = 0) ^ (a3 = 0) ^ (a4 = 0) ^ (a5 = 1) → (a6 = 1) ^ (a7 = 1)
or in short C(g1)→ D(g1) (or C(t1)→ D(t1)), where ^ means “and”.
From the above examples, we can now interpret association rules based on granules rather
than patterns. In particular, we can view the association rules based on different
granularities of multidimensional databases according to what users want.

3.2 Data mining and granule mining
Decision tables only provide a straightforward way to represent association rules. They only
cover some kinds of larger patterns, but avoid many of the frequent patterns.
As the representation of association rule mining, we need to understand the difference
between the patterns used in the decision tables and the association rules. To interpret this
puzzle, we present the concept of decision patterns. Therefore, we need to define a series of
concepts for illustrating the decision patterns.
Definition 1. A set of items X is referred to as an itemset if X ⊆ VT. Let X be an itemset,
where [X] denotes the covering set of X, which includes all objects t such that X ⊆ t, i.e., [X] =
{t | t∈ T, X ⊆ t}.
Given an itemset X, its occurrence frequency is the number of objects that contain the itemset,
that is |[X]|; and its support is |[X]|/|T|. An itemset X is called a frequent pattern if its
support ≥ min_sup is a minimum support.
Definition 2. Given a set of objects Y, its itemset which satisfies

itemset(Y) = {a | a∈ VT, t ∈Y => a∈t}.
Given a frequent pattern X, its Closure

Closure(X) = itemset([X]).
From the above definitions, we have the following theorem (Zaki, 2004).
Theorem 1. Let X and Y be frequent patterns. We have

Closure(X) ⊇ X for all frequent patterns X; (1)

X ⊆ Y => Closure(X) ⊆ Closure(Y). (2)

Definition 3. A frequent pattern X is closed if and only if X = Closure(X).
Given a C-granule cg = C(t), its covering set [cg] = {t’ | t’∈ T, (t’, t)∈ I(C)}. Let cg be a C-granule
and dg be a D-granule, we define [cg∧dg] = [cg] ∩ [dg].For example, in Table 14 g1 = {(a1 =1) ^
(a2 = 0) ^ (a3 = 0) ^ (a4 = 0) ^ (a5 = 1) ^ (a6 = 1) ^ (a7 = 1)} = C(g1) ^ D(g1) = cg1 ^ dg1; therefore

 Tools in Artificial Intelligence

464

[g1] = [cg1 ^ dg1] = [cg1] ∩ [dg3]= {t1, t2, t3, t4, t5, t6, t7} ∩ {t1, t2} = {t1, t2}.
Table 15 illustrates the covering sets of granules, where (a) includes the covering sets of C-
granules, (b) includes the covering sets of D-granules, and (c) includes the covering sets of
C∪D-granules.
Theorem 2. Let (T, VT , C, D) be a decision table. We have

[C(t)] ⊇ [C∪D(t)] , for all t∈ T. (1)

The derived decision pattern of every granule g∈T/C∪D is a closed pattern. (2)

Granule a1 a2 a3 a4 a5 covering set
cg1 1 0 0 0 1 {t1, t2, t3, t4, t5, t6, t7 }
cg2 1 1 0 1 1 { t3, t5}
cg3 1 1 1 0 1 { t4, t6}
cg4 1 0 0 1 1 { t7 }

(a) C-granules

Granule a6 a7 covering set
dg1 1 1 { t1, t2}
dg2 0 1 {t3 , t7 }
dg3 1 0 {t4 , t5 , t6 }

(b) D-granules

Granule a1 a2 a3 a4 a5 a6 a7 Ng Covering set

g1 1 0 0 0 1 1 1 2 { t1 , t2 }

g2 1 1 0 1 1 0 1 1 { t3 }

g3 1 1 0 1 1 1 0 1 { t5 }

g4 1 1 1 0 1 1 0 0 {t4, t6 }

g5 1 0 0 1 1 0 1 2 { t7 }

(c) Decision Table

Table 15. Covering set of C∪D -granules

Proof: (1) is obvious in accordance with the definition of closure.
For (2), Let X be the derived pattern of g, that is, X={ai ∈ C∪D | ai(g) = 1}. From the
definition of the granules, we know there is an object t0 ∈ [g] such that X = {ai ∈ C∪D | ai(t0)
= 1}, that is t0 ∈[X].
Given an item a ∈ itemset([X]), according to Definition 2 we have a ∈ t for all t ∈ [X], that
is, a ∈ t0 and also a ∈ X. Therefore, Closure(X) = itemset([X]) ⊆ X.
We also have X ⊆ Closure(X) from Theorem 1, and hence we have X = Closure(X).

Granule Based Inter-transaction Association Rule Mining

465

4. Granule based intertransaction association rule mining
Formally a transaction database can be described as an information table (D, VD), where D is
a set of objects in which each object is a sequences of items, and VD = {a1, a2, …, an} is a set of
selected items (or called attributes) for all objects in D.
Decision tables are efficient for dealing with multiple dimensional databases in line with
user constraints. Formally, users may use some attributes of a database; and they can divide
these attributes into two target groups: condition attributes and decision attributes,
respectively. We call the tuple (D, VD, C, D) a decision table of (D, VD) if C∩D=∅ and C∪D⊆
VD. The classes in D /C (or D /D) are referred to C-granules (or D-granule).
For example, in the share market, a transaction contains different shares at the same day. To
reduce the risk of investments, share-market experts usually consider a group of shares
rather one or two shares based on the current performance of another group of shares. To
help such investments, we can group shares into different industry categories. For instance,
we may choose two industries: bank and insurance.
The mining process has three sub stages.
1. Transform the transaction database into the form of a decision table;
2. Generate C-granules and D-granules based user selected two industry categories;
3. Generate inter association rules between C-granules and D-granules.
The original transaction database records the data of ASX share transactions along the
date dimension. The data includes attributes like high, low, open and close, which
represent the price status in a day. To keep up the monotonic property, we assume the
transactions are continuous and all records are complete filled. The empty records are
instead of null value.
Since the mining object is transferred from the item to the group, a sliding window not only
considers an interval (sliding_window_length), but also the number of attributes (we call
sliding_window_width).
When transforming the transaction database to the decision table (D, VD, C, D), let the
banking shares be condition attributes C and the insurance shares be decision attributes D.
We can use the normal way for dealing with C-granules. We use the technique of sliding
windows to generate D-granules, where sliding_window_width = |D|. Let D be all the
transactions and Va refers to the profit gain of all shares in each transaction. Va includes
three statuses: increased, neutral and loss, represented by 1, 0 and -1.
In Figure 1 there are three bank shares a, b, c as condition attributes that represent
Westpac bank, ANZ bank and National bank separately. Let ai, bi, ci be the profit gain of
bank shares on day i. The decision attributes d, e, f, g, h represent insurance shares PMN,
IAG, AMP, QBE, AXA, where di, ei, fi, gi, hi refer to the profit gain of insurance shares on
day i. The sliding windows only contains decision attributes, and the
sliding_window_width =5 and sliding_window_length=3. The interval of the transactions
decides the block of transactions in the sliding window, which would be used to
generate D-granules for a same C-granule.
To describe the inter associations between condition granules and decision granules, we can
extend the normal decision table into an extended decision table such that each condition
granule is linked to all possible sub-windows in sliding windows. For example, Table 16
illustrates an extended decision table when we let sliding_window_length = 2.

 Tools in Artificial Intelligence

466

Figure 1. A decision table with sliding windows

ID Condition Decision
1 a1,b1,c1 d2,e2,f2,g2,h2
2 a1,b1,c1 d3,e3,f3,g3,h3
3 a2,b2,c2 d3,e3,f3,g3,h3
…
39 a20,b20,c20 d21,e21,f21,g21,h21
40 a20,b20,c20 d22,e22,f22,g22,h22

Table 16. An extended decision table with maxspan = 2

The data compression is along the vertical direction in the extended decision table. Let D/C
be the set of C-granules that refer to all classes of the profit situations for three bank shares.
Let D/D be the set of D-granules that refer to all classes of the profit situations for five
insurance shares. The inter association rule mining can be represented by mining granules
now.
It is hard to clearly understand the intertransaction associations between condition granules
and decision granules because of many duplicates. For this purpose we would like to
represent the extended decision table as a 2-tier structure. The first tier contains all condition
granules, the second tier contains decision granules and the intertransaction associations are
the links.
For the above example, people concern the gain of the group of shares, not only single share.
Therefore, we can use a simple SUM measure to denote the gain information of a group of
shares, where SUM > 0 means positive gain, SUM <0 means negative gain and SUM = 0
means no-gain.
Figure 2 depicts an example of a 2-tier structure, where we have seven condition granules
that describe the possible changes of three bank shares; and have only three decision
granules that describe the possible gains of buying five insurance shares after 1 or 2 days
based on the changes of the three bank shares.

d20,e20,f20,g20,h20 a20,b20,c2 20

 …

d5, e5, f5, g5, h5 a5, b5, c5 5

d4, e4, f4, g4, h4 a4, b4, c4 4

d3, e3, f3, g3, h3 a3, b3, c3 3

d2, e2, f2, g2, h2 a2, b2, c2 2

d1, e1, f1, g1, h1 a1, b1, c1 1

Decision ConditionDate

W1

W2

W3

Granule Based Inter-transaction Association Rule Mining

467

Figure 2. The association of C granules and D granules

Formally, a set of items X is referred to as an itemset if X ⊆ VD. Let X be a itemset, we use [X]
to denote the covering set of X, including all objects d such that X ⊆ d, i.e., [X] = {d | d∈ D, X
⊆ d}.
Let D/C = {cg1, cg 2 , …, cgm } and D/D = { dg1, dg2, dg3}. The decision rules in Figure 2 can
be illustrated as follows:

cgx → dgz

conf = | [cgx ∧ dgz] | /| cgx|

support = | [cgx ∧ dgz]|/N
In Figure 2, there are twelve associations. If we set up the min_sup = 2, we have the
following six inter association rules:

cg1 → dg1 (conf = 2/5) cg1 → dg3 (conf = 2/5)

cg2 → dg1 (conf = 2/2) cg5 → dg3 (conf = 3/4)

 cg7 → dg1 (conf = 2/5) cg7 → dg3 (conf = 3/5)

5. Experiments
5.1 Basic experiments
In the ASX share market, there are 26 industries and almost 2000 companies. We take the
ASX data of four industries from January 2005 to January 2007. We divide the data into two
sections: a training set and a testing set. The first section contains over 260,000 transactions
in 2005. The second section includes over 340,000 transactions in the other.
We choose two pairs of industries for the experiments: bank vs. insurance and food
beverage & tobacco vs. retailing. In each pair, according to the yearly share volumes, we
select the top three shares of one industry as condition granules and the top five products of
another industry as decision granules.

cg6: 1 1 -1

cg7: 1 1 1

cg5: 1 1 -1

cg4: 1 -1 1

cg3: -1 1 1

cg2: -1 -1 1

cg1: -1 -1 -1

SUM > 0

SUM = 0

SUM <0

2

2
1

1

1

2

1

3

3

dg1

dg2

dg3 1
1

2

 Tools in Artificial Intelligence

468

Table 17 describes some samples for the first pair of industries in 2005 and the interval is one
day. There are 15 condition granules. In the second pair of industries, there are 23 condition
granules. The constraint-based decision granules are decided base on SUM > 0, SUM = 0
and SUM < 0. We choose three intervals for inter association mining. The intervals are one
day, two days and three days.

ID B1 B2 B3 SUM>0 SUM=0 SUM<0
1 -1 -1 -1 27 6 27
2 -1 -1 0 5 0 0
3 -1 -1 1 12 1 11
…
15 1 1 1 33 5 29

Table 17. Bank vs. insurance in 2005

5.2 Precision
When applying the inter association rule in the real data, we propose Precision as the
criterion to evaluate the effectiveness of inter association rules.
In share market, investors should be interested in the prosperous shares where SUM ≥ 0. Let
cgx → dgz be an inter association rule discovered in training phase and SUM(dgz) > 0, a
positive gain.
Let Sfst be the number of transactions in the testing set that match cgx. Let S′snd be the number
of dgz with SUM(dgz) ≥ 0 that match cgx , and Ssnd be the number of dgz with SUM(dgz) > 0
that match cgx.
We define PN as Non_ Negative_ Precision where

PN(cgx → dgz) = (S′snd / Sfst) * 100% .
We also define PP as Positive_ Precision where

PP (cgx → dgz) = (Ssnd / Sfst) * 100%.

Bank vs. Insurance

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

1 Day 2 Days 3 Days
Intervals

Positive
Not Negative

Figure 3. Precision for bank vs. insurance

Granule Based Inter-transaction Association Rule Mining

469

In Figure 3 the pair is bank and insurance. All Non_Negative_Precisions are between 60% and
100%. All Positive_Precisions are greater than 10%. When the interval is one day, the positive
percentage reaches 60%.

5.3 Efficiency
Compared to the FITI algorithm, granule-based inter association mining makes long pattern
mining possible and easier. In the FITI algorithm, the max frequent patterns of eight items in
Figure 1 listed in Figure 4 NP = 28 = 256. It expands the scope of the user requirement and
generates many extra items. In the basic experiments, each pair includes eight different
frequent items. In both pairs of industries, the minimum numbers of association rules are 15
and 23 separately; the maximum numbers of association rules are 45 and 69 separately. Our
method obviously reduces the time and looks more efficient and applicable in the above
example.

Frequent Patterns

0

50

100

150

200

250

300

FITI Algorithm Granule Mining: Bank
vs.Insurance

Granule Mining:Food vs.
Retailing

8 Frequent Items

Max Min

Figure 4. Frequent Patterns

In addition, the granule based approach has advantage in common feature instead of FITI
based on item association for decision rule generation. It avoids of generation of the
extended database and the joins in Apriori-like algorithms. As knowledge representation,
granule based approach simplifies the complexity of the algorithms and keeps the major
benefit of intertransaction association mining, which is easy to understand and use. In
particular, it is more practical and meaningful in industry. However, the weakness is the
loss of the completeness of item association.
For the future research, we need to develop granule based intertransaction association rule
mining in two aspects. At first we will keep studying how to apply granule based
intertransaction association rule in high dimensional data. Secondly we need to consider
how to use multi-tier structure to improve the quality of rules during the rule discovery.
Also the data scope of the experiments will expand to various share products running for
long term. Moreover, the design idea can extend to different fields in industry.

 Tools in Artificial Intelligence

470

6. Related work
Granule based intertransaction association rule mining is involved in intratransaction
association rules and granule mining. The related work is for both issues.
Most current researchers endeavor to use the existing efficient algorithms for mining
intratransaction association rules. Apriori like algorithm (Agraw et al., 1993) and FP-tree
algorithm (Han et al., 2000) are two foundation methods in this field. To apply association
rule mining in industry, the association mining scope expands from single dimensional
association to multidimensional association, even extending to the multilevel.
However, to satisfy complex requirements in industry, intertransaction association rule
mining looks attractive. Lu et al. (2000) first presented the concept of intertransaction
association rule mining and contributed E-Apriori and EH-Apriori algorithms. The
performance of these algorithms suffered when dealing with real data in industry. To speed
up the above process, Feng et al. (2002) presented a template model that includes several
optimization techniques, i.e., joining, converging.
Moreover, Tung et al. (2003) proposed the FITI algorithm to overcome the shortcoming in
previous methods. Also FITI turns to be a brilliant milestone in intertransaction association
rule mining. FITI algorithm offers the data structure FILT to store frequent intratransaction
itemsets and transfer database into FIT tables as input for data processing, where FITI
algorithm generates frequent intertransaction itemsets by joins. Mining both intra and inter
frequent itemsets are all based on Aprior algorithm. The nature of FITI algorithm seems an
extension of Apriori like idea in interaction association. Because of the complexity of the
interaction association, the disadvantage of Apriori causes many extra itemsets during the
joins. It is difficult to cope with the long patterns in the intertransaction.
To improve the efficiency of intertransaction association, few methods recently are
proposed. In intertransaction frequent closed itemsets algorithm (IFCIA) (Dong et al. 2007),
the basic design follows up FITI algorithm. The contribution is the closed itemsets, which
are applied in mining process in order to avoid of the extended database. But it is still in the
frame of Apriori like scope. MMIT is the interaction based on matrix mining (Zhang et al.,
2007). In the algorithm design, MMIT is different from FIT in two aspects. First, MMIT
directly moves into mining and sorting of intertransaction itemsets at the first step. It avoids
of intratransaction itemsets mining and Apriori like idea. Secondly, MMIT uses matrix for
mining frequent intertransaction itemsets. However, the experiments seem not enough to
prove this method.
Granule mining originally is from rough set theory (Pawlak, 1982). The rough set theory can
be used to describe the knowledge in information tables (Guan et al. 2003; Li et al. 2003).
Further, rough sets based decision tables presented by Pawlak (2002) can be used to
represent some sorts of association rules. Li and Zhong (2003) presented a structure to
disconnect the condition granules and decision granules in order to improve the efficiency
of generating association rules from decision tables.
To cope with a multiple dimensional transaction database with current algorithms, rough
set theory becomes more abstractive in association rule mining. Pawlak (2002) proposed the
decision table and divided the transaction table into the condition attribute and the decision
attribute. Li et al. (2003) presented a new algorithm to modify Pawlak’s method and
improved the efficiency. Both algorithms can make use of the advantage of rough sets,
which can find minimal sets of data and generate minimal sets of association rules (Pawlak,
1996). However, they are only suitable for a low dimensional system. It does not offer a

Granule Based Inter-transaction Association Rule Mining

471

solution for the decomposition of a high dimensional database. We also need to reduce
dimensionality for a large database.
Li et al. (2006) presented a multi-tier structure for granule mining to represent
multidimensional intratransaction association rules. It breakthroughs traditional methods in
association rule mining. One feature of this approach is focusing on the association among
the granules. The multi-tier structure can improve the quality of association rule mining and
reduce attributes for a large database. Also this method can be applied in data processing in
data warehouse (Yang et al., 2008).

7. Conclusion
In this chapter, we present granule based inter association mining to reduce the complexity
of intertransaction association rule mining. To compare with other methods, our method can
reduce the width of sliding windows. It uses granules to replace extended item sets. Thus,
we do not need to consider too many combinations of extended items. We also propose the
concept of precision in order to evaluate the effectiveness of intertransaction association rule
mining. The experiments show that the proposed method is promising.

8. References
Agraw, R., Imielinski, T.&Swami, A. (1993). Mining association rules between sets of items

in large database, Proceedings of ACM-SIGMOD, pp. 207-216, Montreal, Canada,
1993

Agraw, R., Srikant, R. (1994). Fast Algorithms for Mining Association Rules in Large
Databases, Proceedings of the 20th International Conference on Very Large Data Bases,
pp. 487-499, 1994

Dong, J. & Han, M. (2007). IFCIA: An Efficient Algorithm for Mining Intertransaction
Frequent Closed Itemsets, Proceedings of fourth international conference on fuzzy
systems and knowledge discovery, pp. 678-682, Haikou, China, 2007

Feng, L., Yu, J. X., Lu, H.&Han, J. (2002). A template model for multidimensional inter-
transactional association rules, The International Journal on Very Large Data Bases,
11(2), (2002) pp. 153 -175

Han, J. & Fu, Y. (1999). Mining multiple-level association rules in large databases, IEEE
Transaction on Knowledge and Data Engineering, Vol. 11, No. 5, pp. 798-805, 1999

Han, J. & Kamber, M. (2006). Data Mining: Concepts and Techniques, Morgan Kaufmann
Publishers

Han, J., Pei, J. & Yin, Y. (2000). Mining frequent patterns without candidate generation,
Proceedings of the 2000 ACM SIGMOD international conference on Management of data
table of contents, pp. 1-12, Texas, United States, 2000

Lee, A. J. T., Lin, W. & Wang, C. (2006). Mining association rules with multi-dimensional
constraints, The Journal of Systems and Software, pp. 79-92, 2006

Li, Y. & Zhong, N. (2003). Interpretations of association rules by granular computing,
Proceedings of 3rd IEEE International Conference on Data Mining, pp. 593-596, USA,
2003

Li, Y., Yang, W. & Xu, Y. (2006). Multi-Tier Granule Mining for Representations of
Multidimensional Association Rules, Proceedings of 6th IEEE International Conference
on Data Mining, pp. 953-958, Hong Kong, 2006.

 Tools in Artificial Intelligence

472

Lu, H., Han, J. & Feng, L. (2000). Beyond intratransaction association analysis: mining
multidimensional intertransaction association rules, ACM Transactions on
Information Systems, 18(4), (2000) pp.423 – 454

Pawlak, Z. (1982) Rough Sets, International Journal of Computer and Information Science, Vol.11,
No.5, (1982), pp. 341-356

Pawlak, Z. (1996). Rough sets and data analysis, Proceedings of IEEE AFSS, pp. 1-6, Kenting,
Taiwan, 1996

Pawlak, Z. (2002). In pursuit of patterns in data reasoning from data, the rough set way,
Proceedings of 3rd International Conference on Rough Sets and Current Trends in
Computing, pp. 1-12, USA, 2002

Pawlak, Z. (2003). Flow graphs and decision algorithms, Proceedings of 9th International
Conference on Rough Set, Fuzzy Sets, Data Mining and Granular Computing, pp. 1-10,
Chongqing, China, 2003

Pei, J., Han, J. & Lakshmanan, L.V.S. (2001). Mining frequent itemsets with convertible
constraints, Proceedings of 17th International Conference on Data Engineering, pp. 433-
442, Heidelberg, Germany, 2001

Ruckert, U., Richter, L. & Kramer, S. (2004). Quantitative association rules based on half-
spaces: an optimization approach, Proceedings of fourth IEEE International Conference
on Data Mining, pp. 507 – 510, Brighton, UK, 2004

Tung, A.K.H., Lu, H., Han, J. & Feng, L. (2003). Efficient mining of intertransaction
association rules, IEEE Transactions on Knowledge and Data Engineering, Vol.15,
No.1, (2003), pp.43–56

Tzvetkov, P., Yan, X. & Han, J. (2003). TSP: mining top-K closed sequential patterns,
Proceedings of 3rd IEEE International Conference on Data Mining, pp. 347-354, Urbana,
IL, USA, 2003

Yang, W., Li, Y., Wu, J. & Xu, Y., Granule Mining Oriented Data Warehousing Model for
Representations of Multidimensional Association Rules, International Journal of
Intelligent Information and Database Systems, Vol.2, No.1, (2008), pp. 125-145 2008.

Yang, W., Li, Y. & Xu, Y. (2007). Granule Based Intertransaction Association Rule Mining,
Proceedings of 19th IEEE International Conference on Tools with Artificial Intelligence,
Vol.1, pp. 337-340, Patras, Greece, 2007

Zhang, Z., Wang, H. & Huang, G. (2007). A New Algorithm Based on Matrix for Mining
Inter-Transaction Association Rules, International Conference on Wireless
Communications, Networking and Mobile Computing, pp. 6717-6720, Shanghai, China,
2007

27

Countering Good Word Attacks on Statistical
Spam Filters with Instance Differentiation and

Multiple Instance Learning
Yan Zhou, Zach Jorgensen and Meador Inge

University of South Alabama
USA

1. Introduction
Although the impact of e-mail spam has been greatly reduced by existing spam filters, spam
remains a great challenge to Internet Service Providers and the average user. Given that
there are millions of e-mail users, profit-driven spammers have great incentives to spam.
With as little as 0.001% response rate, a spammer could potentially profit $25,000 on a $50
product (Carpinter and Hunt, 2006). Over the years, spammers have grown in sophistication
with cutting-edge technologies and have become more evasive. The best evidence of their
growing effectiveness is a recent estimate of over US $10 billion worldwide spam-related
cost in terms of wasted resources and lost productivity (Jennings, 2005). The spam problem
has been generally accepted as a long lasting problem, unlikely to end anytime soon.
Spam filtering has become an extensively studied subject due to the severity of the spam
problem. However, relatively little research has been done on countering adversarial attacks
on existing spam filtering systems. In recent years, adversarial attacks have become an
increasing challenge to the anti-spam community. Common adversarial attacks on spam
filters are exploratory attacks. These attacks attempt to discover ways to disguise spam
messages so that spam filters are unable to correctly detect them. However, the adversary
who initiates this type of attacks has no intention to influence or alter the training process of
spam filters that are the targets of attack. The good word attack (Lowd and Meek, 2005b) is
one of the most popular exploratory attacks employed by spammers. This technique
involves appending to spam messages sets of “good” words that are common to legitimate
e-mails (ham) but rare in spam. Spam messages injected with good words are more likely to
bypass spam filters. So far, relatively little research has been done on how spam filters can
be trained to account for such attacks. This chapter presents an effective defence strategy,
using instance differentiation and multiple instance (MI) learning, against spam disguised
with good words.
Multiple instance (MI) learning (Dietterich et al., 1997) differs from single instance
supervised learning in that an example is represented by a set, or bag, of instances rather
than as just a single instance. The bag is assigned a class label (either positive or negative)
based on the instances it contains; however, the instances within the bag are not necessarily
labelled. Classic MI learning assumes that a bag is positive if at least one instance in the bag
is positive and negative if all instances are negative. Therefore, the goal of multiple instance
learning is to learn a classification function that accurately maps a given bag to a class.

 Tools in Artificial Intelligence

474

Our spam filtering strategy adopts the classical MI assumption. Each e-mail is transformed
into a bag of instances. An e-mail is classified as spam if at least one instance in the
corresponding bag is spam, and as legitimate if all the instances in it are legitimate. The
other integral component of our defence strategy is the model for instance differentiation,
i.e., dividing an e-mail into a bag of multiple instances. The challenge of defining such a
model includes finding a clean separation between the spam content and the good words
that are common to legitimate e-mail, and ensuring that the model itself does not introduce
a loophole for adversarial attacks. With an effective instance differentiation model, we can
split each e-mail into multiple instances so that even when spam is injected with good
words, a multiple instance learner is still able to recognize the spam part of the message.
In this chapter, an overview of recent research in the area of adversarial learning and
multiple instance learning is provided. The models for performing instance differentiation
and multiple instance learning are presented and investigated. Experimental results are
given to show that a multiple instance learner stands up better to good word attacks than its
single instance counterpart and the commonly practiced Bayesian filters. Then further
development and future directions for this research are discussed.

2. Related work
Our work is primarily motivated by recent research on adversarial learning (Dalvi et al.,
2004; Lowd & Meek, 2005a; Kolter & Maloof, 2005). Dalvi et al. (2004) consider classification
to be a game between classifiers and adversaries in problem domains where adversarial
attacks are expected. They model the computation of the adversary’s optimal strategy as a
constrained optimization problem and approximate its solution based on dynamic
programming. Subsequently, an optimal classifier is produced against the optimal
adversarial strategy. Their experimental results demonstrate that their game-theoretic
approach outperforms traditional classifiers in the spam filtering domain. However, in their
adversarial classification framework, they assume both the classifier and the adversary have
perfect knowledge of each other, which is unrealistic in practice.
Instead of assuming the adversary has perfect knowledge of the classifier, Lowd & Meek
(2005a) formalized the task of adversarial learning as the process of reverse engineering the
classifier. In their adversarial classifier reverse engineer (ACRE) framework, the adversary
aims to identify difficult spam instances (the ones that are hard to detect by the classifier)
through membership queries. The goal is to find a set of negative instances with minimum
adversarial cost within a polynomial number of membership queries. Newsome et al. (2006)
emphasize the point that the training data used to build classifiers for spam filtering and the
similar problem of internet worm detection is, to a large extent, controlled by an adversary.
They describe and demonstrate several attacks on the generators of such classifiers in which
the adversary is able to significantly impair the learning of accurate classifiers by
manipulating the training data, even while still providing correct labels for the training
instances. The attacks involve inserting features, in a specific manner, into one or both
classes of the training data and are specifically designed to cause a significant increase in
false positives or false negatives for the resulting classifier. They conclude that the
generation of classifiers for adversarial environments should take into account the fact that
training data is controlled by an adversarial source in order to ensure the production of
accurate classifiers.

Countering Good Word Attacks on Statistical Spam Filters with Instance Differentiation
and Multiple Instance Learning

475

Barreno et al. (2006) explore possible adversarial attacks on machine learning algorithms
from multiple perspectives. They present a taxonomy of different types of attacks on
machine learning systems. An attack is causative if it targets the training data, and is
exploratory if it aims to discover information through, for example, offline analysis. An attack
is targeted if it focuses on a small set of points, and is indiscriminate if it targets a general class
of points. An integrity attack leads to false negatives, and an availability attack aims to cause
(machine learning) system dysfunction by generating many false negatives and false
positives. They also discuss several potential defences against those attacks, and give a
lower bound on the adversary’s effort in attacking a naïve learning algorithm.
A practical example of adversarial learning is learning in the presence of the good word
attack. Lowd & Meek (2005b) present and evaluate several variations of this type of attack
on spam filters. They demonstrate two different ways to carry out the attack: passively and
actively. Active good word attacks use feedback obtained by sending test messages to a
spam filter in order to determine which words are “good”. The active attacks were found to
be more effective than the passive attacks; however, active attacks are generally more
difficult than passive attacks because they require user-level access to the spam filter, which
is not always possible. Passive good word attacks, on the other hand, do not involve any
feedback from the spam filter, but rather, guesses are made as to which words are
considered good. Three common ways for passively choosing good words are identified.
First, dictionary attacks involve selecting random words from a large collection of words,
such as a dictionary. In testing, this method did not prove to be effective; in fact, it actually
increased the chances that the e-mail would be classified as spam. Next, frequent word attacks
involve the selection of words that occur most often in legitimate messages, such as news
articles. This method was more effective than the previous one, but it still required as many
as 1,000 good words to be added to the original message. Finally, frequency ratio attacks
involve the selection of words that occur very often in legitimate messages but not in spam
messages. The authors’ tests showed that this technique was quite effective, resulting in the
average spam message being passed off as legitimate by adding as few as 150 good words to
it. Preliminary results were also presented that suggested that frequent retraining on
attacked messages may help reduce the effect of good word attacks on spam filters.
Webb et al. (2005) also examined the effectiveness of good word attacks on statistical spam
filters. They present a “large-scale evaluation” of the effectiveness of the attack on four spam
filters: naïve Bayes, support vector machine (SVM), LogitBoost, and Spam-Probe. Their
experiments were performed on a large e-mail corpus consisting of around a million spam
and ham messages, which they formed by combining several public and private corpora.
Such a large and diverse corpus more closely simulates the environment of a server-level
spam filter than a client-level filter. The experimental results show that, on normal e-mail,
i.e., e-mail that has not been modified with good words, each of the filters is able to attain an
accuracy as high as 98%. When testing on “camouflaged messages”, however, the accuracies
of the filters drop to between 50% and 75%. In their experiments, spam e-mails were
camouflaged by combining them with portions of legitimate messages. They experimented
with camouflaged messages containing twice as much spam content as legitimate content,
and vice versa. They also proposed and demonstrated a possible solution to the attack. By
training on a collection of e-mails consisting of half normal and half camouflaged messages,
and treating all camouflaged messages as spam, they were able to improve the accuracy of
the filters when classifying camouflaged messages.

 Tools in Artificial Intelligence

476

Our counterattack strategy against good word attacks is inspired by work in the field of
multiple instance (MI) learning. The concept of MI learning was initially proposed by
Dietterich et al. (1997) for predicting drug activities. The challenge of identifying a drug
molecule that binds strongly to a target protein is that a drug molecule can have multiple
conformations, or shapes. A molecule is positive if at least one of its conformations binds
tightly to the target, and negative if none of its conformations bind well to the target. The
problem was tackled with an MI model that aims to learn axis-parallel rectangles (APR).
Later, learning APR in the multiple instance setting was further studied and proved to be
NP-complete by several other researchers in the PAC-learning framework (Auer, 1997; Long
and Tan, 1998; Blum and Kalai, 1998).
Several probabilistic models: diverse density (DD) (Maron & Lozano-Pérez, 1998) and its
variation EM-DD (Zhang & Goldman, 2002), and multiple instance logistic regression
(MILR) (Ray & Craven, 2005), employ a maximum likelihood estimation to solve problems
in the MI domain. The original DD algorithm searches for the target concept by finding an
area in the feature space with maximum diverse density, i.e., an area with a high density of
positive points and a low density of negative points. The diverse density at a point in the
feature space is defined to measure probabilistically how many different positive bags have
instances near that point, and how far the negative instances are from that point. EM-DD
combines EM with the DD algorithm to reduce the multiple instance learning problem to a
single-instance setting. The algorithm uses EM to estimate the instance in each bag which is
most likely to be the one responsible for the label of the bag. The MILR algorithm presented
by Ray & Craven (2005) is designed to learn linear models in a multiple instance setting.
Logistic regression is used to model the posterior probability of the label of each instance in
a bag, and the bag level posterior probability is estimated by using softmax to combine the
posterior probabilities over the instances of the bag. Similar approaches with different
combining functions are presented by Xu & Frank (2004).
Many single-instance learning algorithms have been adapted to solve the multiple instance
learning problem. For example, Wang & Zucker (2000) propose the lazy MI learning
algorithms, namely Baysian-kNN and citation-kNN, which solve the multiple instance
learning problem by using the Hausdorff distance to measure the distance between two
bags of points in the feature space. Chevaleyre & Zucker (2001) propose the multi-instance
decision tree ID3-MI and decision rule learner RIPPER-MI by defining a new multiple
instance entropy function and a multiple instance coverage function. Other algorithms that
have been adapted to multiple instance learning include the neural network MI-NN (Ramon
& Raedt, 2000), DD-SVM (Chen & Wang, 2004), MI-SVM and mi-SVM (Andrews et al.,
2003), multi-instance kernels (Gärtner et al., 2002), MI-Ensemble (Zhou & Zhang, 2003), and
MI-Boosting (Xu & Frank, 2004).
In this chapter, we demonstrate that a counterattack strategy against good word attacks,
developed in the framework of multiple instance learning, can be very effective, provided
that a single instance can be properly transformed into a bag of instances. We also explore
several possible ways to transform e-mails into bags of instances. Our experiments also
verify earlier observations, discussed in other works (Lowd & Meek, 2005b; Webb et al.,
2005), that retraining on e-mails modified during adversarial attacks may improve the
performance of the filters against the attack.

Countering Good Word Attacks on Statistical Spam Filters with Instance Differentiation
and Multiple Instance Learning

477

3. Problem definition
Consider a standard supervised learning problem with a set of training data

},,...,,{ 11 ><><= mm YXYXD , where iX is an instance represented as a single feature vector,
)(ii XCY = is the target value of iX , where C is the target function. Normally, the task is to

learn C given D. The learning task becomes more difficult when there are adversaries who
could alter some instance so that '

ii XX → and cause '
ii YY → , where '

ii YY ≠ . Let iXΔ be the

difference between iX and '
iX , i.e., iii XXX Δ+=' . In the case of spam filtering, an

adversary can modify spam e-mails by injecting them with good words. So, iXΔ represents
a set of good words added to a spam message by the spammer. There are two cases that
need to be studied separately:
1. the filter is trained on normal e-mails, i.e., e-mails that have not been injected with good

words, and tested on e-mails which have been injected with good words;
2. both the training and testing sets contain e-mails injected with good words.
In the first case, the classifier is trained on a clean training set. Predictions made for the
altered test instances are highly unreliable. In the second case, the classifier may capture
some adversarial patterns as long as the adversaries consistently follow a particular pattern.
In both cases, the problem becomes trivial if we know exactly how the instances are altered;
we could recover the original data and solve the problem as if no instances were altered by
the adversary. In reality, knowing exactly how the instances are altered is impossible.
Instead, we seek to approximately separate iX and iXΔ and treat them as separate instances
in a bag. We then apply multiple instance learning to learn a hypothesis defined over a set
of bags.

4. Multiple instance bag creation
We now formulate the spam filtering problem as a multiple instance binary classification
problem in the context of adversarial attacks. Note that the adversary is only interested in
altering positive instances, i.e., spam, by injecting sets of good words that are commonly
encountered in negative instances, i.e., legitimate e-mails, or ham. We propose four different
approaches to creating multiple instance bags from e-mails. We call them split-half (split-H),
split-term (split-T), split-projection (split-P), and split-subtraction (split-S). We will now
discuss each of these splitting methods, in turn.

4.1 Split-H
In our first splitting method, split-half, we split every e-mail right down the middle into
approximately equal halves. Formally, let },...,,...,{ mi1 BBBB = be a set of bags (e-mails),

where },{ i2i1i XXB = is the thi bag, i1X and i2X are the two instances in the thi bag,
created from the upper half and the lower half of the e-mail respectively. This splitting
approach is reasonable in practice because spammers usually append a section of good
words to either the beginning or the end of an e-mail to ensure the legibility of the spam
message.
This splitting method, because it relies on the physical positioning of words in an e-mail,
could potentially be circumvented by the spammer. There are two obvious ways to do this.

 Tools in Artificial Intelligence

478

One is to create a visual pattern with good words so that the original spam message is still
legible after the attack, but the spam is fragmented in such a way that “spammy” words are
well separated and become less indicative of spam in the presence of a number of good
words. The following example demonstrates how this idea can work effectively to
circumvent this splitting method.

The second way to defeat the split-H method is to append a very large block of good words
to an e-mail so that after the split, good words outweigh spam-indicative words in all
instances. The next three splitting methods do not rely on the positions of the words and
thus do not suffer from this vulnerability.

4.2 Split-T
The second splitting method, split-term (split-T), partitions a message into three groups of
words (terms) depending on whether the word is an indicator of spam, an indicator of ham,
or neutral, i.e., },,{ ihinisi XXXB = , where isX is the spam-likely instance, inX is the neutral
instance, and ihX is the ham-likely instance in bag iB . The instance to which each word is
assigned is based on a weight generated for it during preprocessing. These weights are
calculated using word frequencies obtained from the spam and legitimate messages in the
training corpus. More specifically, the weight of a term W is given as follows:

,
)|()|(

)|()(
hs

s

DWpDWp
DWpWweight

+
=

where sD and hD are the spam and ham e-mails in the training set respectively. When
splitting an e-mail into instances we used two threshold values, sthresh and thresh , to
determine which instance (spam-likely, ham-likely, or neutral) each word in the e-mail
should be assigned to. We considered any word with a weight greater than sthresh to be
spammy, any word with a weight less than thresh to be legitimate, and any word with a
weight in between to be neutral. Given each training set, sthresh was selected such that
some fraction, for example 20%, of the terms chosen during attribute selection (discussed in
Section 6.1) would have a weight greater than or equal to it. thresh was selected so that
some other fraction, for example 50%, of the terms would have a weight less than or equal
to it. Reasonable fractions of terms and threshold values can be determined by using cross
validation on training e-mails.

From: foo@internet.org
To: foo-foo@email.org
Subject: meeting agenda

good words ... low ... good words

good words ... mortgage ... good words

good words ... rate ... good words

Countering Good Word Attacks on Statistical Spam Filters with Instance Differentiation
and Multiple Instance Learning

479

4.3 Split-P
The third splitting method, split-projection (split-P), transforms each message into a bag of
two instances by projecting the message vector onto the spam and ham prototype vectors.
The prototype vectors are computed using all the spam and ham messages in the training
set. If we view the spam and ham messages in the training set as two clusters, then the
prototypes are essentially the centroid of the two clusters. More specifically, let sC be the
set of e-mails that are spam and lC be the set of e-mails that are legitimate. The prototypes
are computed using Rocchio’s algorithm (Rocchio Jr., 1971) as follows:

where

is
C is the thi spam message in sC and iC is the thi ham message in C , β is a fixed

constant suggested to be 16 and γ is a fixed constant suggested to be 4. Given a message M,

two new instances, SM and M , are formed by projecting M onto sP and P :

sM =
2| |
s

s
s

M P P
P
⋅

The rationale of this splitting approach rests on the assumption that a message is close to the
spam prototype in terms of cosine similarity if it is indeed spam, and a ham message is close
to the ham prototype.

4.3 Split-S
The last splitting method, split-subtraction (split-S), like the former, uses prototype (centroid)
vectors. In this method, however, the ham and spam prototypes are calculated by averaging
the corresponding attribute values of all of the ham and spam e-mails, respectively.

 Tools in Artificial Intelligence

480

where sC is a set of spam and
isC is the thi spam message in sC ; C is a set of ham, and

iC is the thi ham message in C . A message can then be transformed from a single instance
attribute vector M into a bag of two instances by subtracting corresponding attribute values
in the single instance vector from the ham prototype and the spam prototype, yielding a
legitimate instance PMM −= and a spam instance ss PMM −= , respectively (Zhang &
Zhou, 2007).
Now that we have devised several techniques for creating multiple instance bags from e-
mail messages, we can transform the standard supervised learning problem of spam
filtering into a multiple instance learning problem under the standard MI assumption. For
this research, we adopt the multiple instance logistic regression (MILR) model to train a
spam filter that is more robust to adversarial good word attacks than traditional spam filters
based on single instance models. We chose to use the MILR classifier over other MI
classifiers mainly because its single instance counter-part, logistic regression (LR), which has
been shown to be very effective in the spam filtering domain (Yih et al., 2006), appeared to
be the best among the single instance learners considered in our experiments. The next
section outlines the multiple instance logistic regression learning model.

5. Multiple instance logistic regression
Given a set of training bags },,,...,,,...,,{ 11 ><><><= mmii YBYBYBB let)|1(ii BYPr = be the

probability that the thi bag is positive, and)|0(ii BYPr = be the probability that it is negative.

Here iY is a dichotomous outcome of the thi bag (e.g., spam or legitimate). The bag-level
binomial log-likelihood function is:

)].|0(log)1()|1(log[
1

iiiiii

m

i
BYPrYBYPrYL =−+==∑

=

In a single instance setting where logistic regression is used, given an example Xi, we model

the expected value of the dichotomous outcome of Xi with a sigmoidal response function,

i.e.,))exp(1/()exp()|1(bXpbXpXYPr iiii +⋅++⋅== , then estimate the parameters p and b
that maximize the log-likelihood function. In a multiple instance setting, we do not have direct
measure of bag-level probabilities in the log-likelihood function. Instead, we estimate the
instance-level class probabilities)|1(ijij XYPr = with a sigmoidal response function as follows:

,
)exp(1

)exp(
)|1(

bXp
bXp

XYPr
ij

ij
ijij +⋅+

+⋅
==

where ijX is the thj instance in the thi bag, and p and b are the parameters that need to be
estimated. Thus,)|0(ii BYPr = with instance-level class probabilities can be computed as
follows:

Pr(Yij = 0 | Xij) = 1− Pr(Yij = 1 | Xij) =
1

1 + exp(p ⋅ Xij + b)
.

Countering Good Word Attacks on Statistical Spam Filters with Instance Differentiation
and Multiple Instance Learning

481

Now we can compute the probability that a bag is negative based on the MI assumption that
a bag is negative if and only if every instance in the bag is negative:

)|0(ii BYPr = =)|0(
1

ijij

n

j

XYPr =∏
=

 =))))exp(1(log(exp(
1

bXp ij

n

j
+⋅+−∑

=

,

where n is the number of instances in the thi bag. Thus the probability

)|0(1)|1(iiii BYPrBYPr =−==

estimates how likely a bag is positive if at least one instance in the bag is positive. In our
case, given a set of e-mails for training, ijX is a vector of the frequency count (or other
variations such as a tf-idf weight) of unique terms in each e-mail. We can apply maximum
likelihood estimation (MLE) to maximize the bag-level log-likelihood function, and estimate
the parameters p and b that maximize the probability of observing the bags in B.

6. Experimental setup
We evaluated our multiple instance learning counterattack strategy on e-mails from the 2006
TREC Public Spam Corpus (Cormack & Lynam, 2006). Good word attacks were simulated
by generating a list of good words from the corpus and injecting them into spam messages
in the training and/or test data sets. We compared our counterattack strategy, using the
multiple instance logistic regression model and the four splitting methods introduced
above, to its single instance learning counterpart—logistic regression (LR)—and to the
support vector machine (SVM) and the multinomial naïve Bayes (MNB) classifiers.

6.1 Experimental data
Our experimental data consists of 36,674 spam and legitimate e-mail messages from the 2006
TREC spam corpus. We preprocessed the entire corpus by stripping HTML and non-textual
parts and applying stemming and stop-list to all terms. The to, from, cc, subject, and
received headers were retained, while the rest of the headers were stripped. Messages that
had an empty body after preprocessing were discarded. Tokenization was done by splitting
on nonalphanumeric characters. We did not take any measures to counter obfuscated words
in the spam messages. Given that there are a large number of possibilities to disguise a
word, most content-based spam filters will not be able to deobfuscate the text of a message
efficiently (Carpinter & Hunt, 2006). Recently, an efficient complementary filter (Lee & Ng,
2005) has been demonstrated to be able to effectively deobfuscate text with high accuracy. In
practice, this type of technique could be used during preprocessing.
For our experiments we sorted the e-mails in the corpus chronologically by receiving date
and evenly divided them into 11 subsets { 111,..., DD }. In other words, the messages in subset
n come chronologically before the messages in subset n+1. Experiments were run in an on-
line fashion, i.e., training on subset n and testing on subset n+1. Each subset contains
approximately 3300 messages. The percentage of spam messages in each subset varies as in

 Tools in Artificial Intelligence

482

the operational setting (see Figure 1). We used the Multiple Instance Learning Tool Kit
(MILK) (Xu, 2003) implementation of MILR and the Weka 3.4.7 (Witten and Frank, 2000)
implementations of LR, SVM and multinomial naïve Bayes, in our experiments. We reduced
the feature space to the top 500 words ranked using information gain. Retaining 500 features
appeared to be the best compromise among the classifiers in terms of improved efficiency
and impaired performance. Attribute values for each message are calculated using the tf-idf
(term frequency inverse document frequency) weighting scheme.

Fig. 1. Percentage of e-mails in each data set that are spam.

6.2 Good word list
To simulate the good word attacks, we generated a list of good words using all the messages
in the TREC spam corpus. We ranked each word according to the ratio of its frequency in
the legitimate messages over its frequency in the spam messages. We then selected the top
1,000 words from the ranking to use as our good word list. Generating the good word list in
this manner has an important implication. Since the list was generated from the entire
corpus rather than from the subset of messages used to train the classifiers, and since we
represent e-mails using a feature vector of 500 features, some of the words in the list will not
have an effect on the classification of messages that they are injected into. Such a list is more
representative of the kind of list a spammer would be able to produce in practice, since the
spammer would have no way of knowing the exact features used by the target filter. We
noticed that in our experiments, only about 10% of the injected good words were actually
retained in the feature vector, yet they had a significant impact on the classification.

7. Experimental results
We now present the results of two experiments in which we evaluate the effectiveness of
our proposed multiple instance counterattack strategy. In the first experiment, we train all
of the classifiers on normal e-mail (i.e., e-mail that has not been injected with good words)
and then test them on e-mail that has been injected with good words. In the second
experiment we train on both normal and attacked e-mails to observe how doing so affects
classification of both normal and attacked e-mails.

Countering Good Word Attacks on Statistical Spam Filters with Instance Differentiation
and Multiple Instance Learning

483

7.1 Experiment 1: attacking the test set
In this experiment, we tested the ability of the MILR algorithm, using the four splitting
methods introduced above, to classify e-mail injected with good words. We also tested the
single instance logistic regression (LR), support vector machine (SVM) and multinomial
naïve Bayes (MNB) classifiers for comparison. The classifiers were each trained and tested
on the eleven chronologically sorted data sets in an on-line fashion. That is, all of the
classifiers were trained on the same unaltered data set nD , and then tested on the data set

1+nD , for n=1...10. Fifteen variations of each test set were created to test the susceptibility of
the classifiers to good word attacks of varying strength. The first version of each test set was
left unmodified, i.e., no good words were injected. Half of the spam messages (selected at
random) in each of the remaining 14 variations of each test set were injected with some
quantity of random good words from our good word list, beginning with 10 words. With
each successive version of the test set, the quantity of good words injected into half of the
spam messages was increased: first in increments of 10 words, up to 50, and then in
increments of 50 words up to 500. The injected words were randomly selected, without
replacement, from our good word list on a message by message basis. We chose to inject
good words into only half of the messages in each test set because, in practice, spam
messages injected with good words account for only a subset of the spam e-mails
encountered by a given filter. The precision and recall values on each version of the test set
for all 10 test sets were averaged and recorded for each classifier. In our results, we use
“MILRH”, “MILRT”, “MILRP” and “MILRS” where split-H, split-T, split-P and split-S were
used with MILR, respectively.
Figures 2 and 3 show how the average precision and average recall, respectively, of each
classifier is affected as the good word attack increases in strength (that is, the quantity of
good words injected into the spam e-mails in the test set increases).

Precision with No Words Added to the Training Set

0.750

0.800

0.850

0.900

0.950

1.000

0 10 20 30 40 50 100 150 200 250 300 350 400 450 500
Number of Good Words Added to Spam in Test Set

Pr
ec

is
io

n

MILRH LR MILRT MNB MILRP SVM MILRS

Fig 2. Change in average precision as good words are injected into the test Set.
From the results we can see that, with the exception of MILRT, each classifiers’ ability to
correctly identify spam e-mail was significantly reduced as a result of the simulated good
word attack. Of all the classifiers MILRT was most resilient to the attack, dropping by only
0.3% (from 0.914 to 0.911) in average precision and by only 2% (from 0.901 to 0.883) in
average recall after 500 good words had been injected into the test set. MILRH and MILRP
stood up better to the attack than the single instance classifiers and the MILRS classifier, but

 Tools in Artificial Intelligence

484

the attack still had a very noticeable effect on their ability to classify spam, reducing the
average recall of MILRH by 27.1% (from 0.980 to 0.714) and the average recall of MILRP by
29.2% (from 0.957 to 0.678). The average precision values of MILRH and MILRP dropped by
7% (from 0.846 to 0.787) and by 5.7% (from 0.895 to 0.844), respectively. Of the single
instance classifiers, LR was the most resilient; however, the attack still had a very significant
effect on its ability to classify spam, reducing its average recall by 42.8% (from 0.966 to 0.553)
and its average precision by 8.6% (from 0.909 to 0.831). The average recall of MNB and SVM
dropped by 47.4% (from 0.914 to 0.481) and 46.2% (from 0.932 to 0.501), respectively. Their
average precision values dropped by 2.7% (from 0.973 to 0.947) and by 6.9% (from 0.932 to
0.868), respectively. MILRS turned out to be nearly as vulnerable to the attack as the single
instance classifiers, dropping by 37.8% (from 0.961 to 0.598) in average recall and by 8.7%
(from 0.885 to 0.808) in average precision.

Recall with No Words Added to the Training Set

0.400
0.500
0.600
0.700
0.800
0.900
1.000

0 10 20 30 40 50 100 150 200 250 300 350 400 450 500
Number of Good Words Added to Spam in Test Set

R
ec

al
l

MILRH LR MILRT MNB MILRP SVM MILRS

Fig 3. Change in average recall as good words are injected into the test set.
One thing that is clear from these results is that the effectiveness of our multiple instance
counterattack strategy is very much dependent on the specific technique used to split e-
mails into multiple instance bags. The success of the split-term method (MILRT) is due to
the fact that the classifier is able to consider both spammy and legitimate terms
independently, since they are placed into separate instances in the bag created from an e-
mail. Under the multiple instance assumption, if at least one instance in a bag is spammy,
the entire bag is labeled as spammy. When good words are injected into a spam message
they end up in the legitimate instance of the bag and have no effect on the spammy instance;
thus the bag still contains a spammy instance and is classified correctly as spam.

7.2 Experiment 2: training on attacked spam messages
In the second experiment, our goal was to observe the effect that training on messages
injected with good words has on the susceptibility of the classifiers to attacks on the test set.
As in the previous experiment, we tested each of the classifiers on the eleven chronologically
sorted data sets in an on-line fashion. This time, however, in addition to creating 15 versions
of the test set injected with increasing quantities of good words, we also created 5 versions
of the training set. We injected 10 good words into half of the spam messages (selected at
random) in the first version of the training set and then increased the number of injected

Countering Good Word Attacks on Statistical Spam Filters with Instance Differentiation
and Multiple Instance Learning

485

good words by 10 for each subsequent version, up to 50 good words for the fifth version.
We also tried injecting larger numbers of good words, but after exceeding 50 words, the
additional effect was minimal; therefore, those results are not shown here. For each version
of the training set we tested the classifiers on the 15 versions of the corresponding test set.
As before, good words were selected from our good word list randomly and without
replacement on a message by message basis. For all ten tests, the precision and recall values
on each version of the test set were averaged and recorded, separately for each of the 5
versions of the training set. In the interest of space, the results of this experiment are
presented in terms of average F-measure that is the harmonic mean of the precision and
recall values, and only the results of the experiments when 10, 30 and 50 good words are
added to some spam in the training set are presented. Figures 4-6 show the average F-
measure of each of the classifiers when 10, 30 and 50 good words are injected into half of the
spam messages in the training set, respectively.

F-Measure with 10 Words Added to the Training Set

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 10 20 30 40 50 100 150 200 250 300 350 400 450 500
Number of Good Words Added to Spam in Test Set

F-
M

ea
su

re

MILRH LR MILRT MNB MILRP SVM MILRS

Fig 4. Change in average F-measure as good words are injected into the test set. 10 good
words were also injected into the training set.
From these results we can see that injecting just 10 good words into half of the spam
messages in the training set appeared to lessen the effect of the good word attack for almost
all of the classifiers (see Fig. 4). Further increasing the number of good words injected into
the training set continued to lessen the effect of the attack for all of the classifiers (see Fig. 5).
After 30 good words had been injected into the training set, the presence of good words in
the test messages actually began to increase the likelihood that such messages would be
correctly classified as spam (see Fig. 6). These results confirm the observations of several
other researchers (Lowd and Meek, 2005b; Webb et al., 2005) that retraining on normal and
attacked e-mails may help to counter the effects of the good word attack. However, it is
important to realize that this would only work in cases where the attacked messages being
classified contained the same good words as the attacked messages that the spam filter was
trained on. One of the major advantages of our proposed multiple instance strategy is that
the spam filter need not be trained on attacked messages in order to be effective against
attacks and further, that frequent retraining on attacked messages is not necessary for the
strategy to maintain its effectiveness.

 Tools in Artificial Intelligence

486

F-Measure with 30 Words Added to the Training Set

0.800

0.850

0.900

0.950

1.000

0 10 20 30 40 50 100 150 200 250 300 350 400 450 500
Number of Good Words Added to Spam in Test Set

F-
M

ea
su

re
MILRH LR MILRT MNB MILRP SVM MILRS

Fig 5. Change in average F-measure as good words are injected into the test set. 30 good
words were also injected into the training set.

F-Measure with 50 Words Added to the Training Set

0.700

0.750

0.800

0.850

0.900

0.950

1.000

0 10 20 30 40 50 100 150 200 250 300 350 400 450 500
Number of Good Words Added to Spam in Test Set

F-
M

ea
su

re

MILRH LR MILRT MNB MILRP SVM MILRS

Fig 6. Change in average F-measure as good words are injected into the test set. 50 good
words were also injected into the training set.

8. Conclusions and future work
A multiple instance learning counterattack strategy for combating adversarial good word
attacks on statistical spam filters has been presented. In the proposed strategy, e-mails are
treated as multiple instance bags and a logistic model at the instance level is learned
indirectly by maximizing the bag-level binomial log-likelihood function. The proposed
counterattack strategy has been demonstrated on good word attacks of varying strength and
has been shown to be effective. Additionally, we have confirmed earlier reports that

Countering Good Word Attacks on Statistical Spam Filters with Instance Differentiation
and Multiple Instance Learning

487

retraining on attacked as well as normal e-mails may strengthen a spam filter against good
word attacks. One of the advantages of our proposed strategy, as demonstrated by our
experiments, is that it is effective even when trained on normal e-mail and that frequent
retraining on attacked messages is not necessary to maintain that effectiveness. We
presented several possible methods for creating multiple instance bags from e-mails. As was
observed from our experimental results, the splitting method used ultimately determines
how well the strategy performs. The splitting methods we presented here work fairly well,
especially the split-term method, but there are possibly other, perhaps better, methods that
could be used. We plan to investigate other possible splitting methods in the future, and
investigate the vulnerability of each splitting method in adversarial environments. In our
experiments, we simulated the real operational environment where the adversary does not
have a complete knowledge of the training data. We plan to investigate the effectiveness of
our proposed counterattack strategy in the extreme cases where we assume the adversary
knows the make-up of the training examples.
Since it is an arms race between spammers and filter designers, we also plan to make our MI
strategy adaptive as new spam techniques are devised, and on-line as the concept of spam
drifts over time. In addition, we plan to investigate the possibility of extending the proposed
multiple instance learning strategy to handle similar adversarial attacks in other domains.

9. References
S. Andrews, I. Tsochantaridis, and T. Hofmann. Support vector machines for multiple

instance learning. In NIPS 15, pages 561–568. MIT Press, 2003.
P. Auer. On learning from multi-instance examples: Empirical evaluation of a theoretical

approach. In Proceedings of the 14th International Conference on Machine Learning,
pages 21–29, San Francisco, CA, 1997. Morgan Kaufmann.

M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine learning be
secure? In ASIACCS ’06: Proceedings of the 2006 ACM Symposium on Information,
computer and communications security, pages 16–25, New York, NY, USA, 2006. ACM
Press. ISBN 1-59593-272-0. doi: http://doi.acm.org/10.1145/1128817.1128824.

A. Blum and A. Kalai. A note on learning from multiple-instance examples. Machine
Learning, 30(1):23–30, 1998.

J. Carpinter and R. Hunt. Tightening the net: A review of current and next generation spam
filtering tools. Computers and Security, 25(8):566–578, 2006.

Y. Chen and J.Z. Wang. Image categorization by learning and reasoning with regions.
Journal of Machine Learning Research, 5:913–939, 2004.

Y. Chevaleyre and J.D. Zucker. Solving multiple-instance and multiple-part learning
problems with decision trees and rule sets. application to the mutagenesis problem.
In Proceedings of the 14th Biennial Conference of the Canadian Society for Computational
Studies of Intelligence, pages 204–214, 2001.

G. V. Cormack and T. R. Lynam. Spam track guidelines — TREC 2005-2007.
http://plg.uwaterloo.ca / gvcormac/treccorpus06/, 2006.

N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma. Adversarial classification. In
Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 99–108. ACM Press, 2004.

T.G. Dietterich, R.H. Lathrop, and T. Lozano-Pérez. Solving the multiple-instance problem
with axis-parallel rectangles. Artificial Intelligence Journal, 89(1-2):31–71, 1997.

 Tools in Artificial Intelligence

488

T. Gärtner, P. Flach, A. Kowalczyk, and A. Smola. Multi-instance kernels. In Proceedings Of
the 19th International Conference on Machine Learning, pages 179–186, San Francisco,
CA, 2002. Morgan Kaufmann.

R. Jennings. The global economic impact of spam. Technical report, Ferris Research, 2005.
J.Z. Kolter and M.A. Maloof. Using additive expert ensembles to cope with concept drift. In

Proceedings of the Twenty-second International Conference on Machine Learning, pages
449–456, New York, NY, 2005. ACM Press.

H. Lee and A. Ng. Spam deobfuscation using a hidden markov model. In Proceedings of the
Second Conference on Email and Anti-Spam, 2005.

P. Long and L. Tan. Pac learning axis-aligned rectangles with respect to product distribution
from multiple-instance examples. Machine Learning, 30(1):7–21, 1998.

D. Lowd and C. Meek. Adversarial learning. In Proceedings of the 2005 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 641 647. ACM Press, 2005a.

D. Lowd and C. Meek. Good word attacks on statistical spam filters. In Proceedings of the 2nd
Conference on Email and Anti-Spam, 2005b.

O. Maron and T. Lozano-P´erez. A framework for multiple-instance learning. Advances in
Neural Information Processing Systems, 10:570–576, 1998.

J. Newsome, B. Karp, and D. Song. Paragraph: Thwarting signature learning by training
maliciously. In Recent Advances in Intrusion Detection: 9th International Symposium
(RAID), pages 81–105, 2006.

J. Ramon and L.D. Raedt. Multi instance neural networks. In Proceedings of ICML-2000
workshop on Attribute-Value and Relational Learning, 2000.

S. Ray and M. Craven. Supervised versus multiple instance learning: An empirical
comparison. In Proceedings of the 22nd International Conference on Machine Learning,
pages 697–704, New York, NY, 2005. ACM Press.

J. Rocchio Jr. Relevance feedback in information retrieval. In The SMART Retrieval System:
Experiments in Automatic Document Processing, pages 68–73. Prentice Hall, 1971.

J. Wang and J.D. Zucker. Solving the multiple-instance learning problem: A lazy learning
approach. In Proceedings of the 17th International Conference on Machine Learning,
pages 1119–1125, San Francisco, CA, 2000. Morgan Kaufmann.

S. Webb, S. Chitti, and C. Pu. An experimental evaluation of spam filter performance and
robustness against attack. In The 1st International Conference on Collaborative
Computing: Networking, Applications and Worksharing, pages 19–21, 2005.

I.H. Witten and E. Frank. Data Mining: Practical machine learning tools with Java
implementations. Morgan Kaufmann, San Francisco, CA, USA, 2000.

X. Xu. Statistical learning in multiple instance problems. Master’s thesis, University of
Waikato, 2003.

X. Xu and E. Frank. Logistic regression and boosting for labeled bags of instances. In
 Proceedings of the Pacific-Asian Conference on Knowledge discovery and data mining.
Springer-Verlag, 2004.

W. Yih, J. Goodman, and G. Hulten. Learning at low false positive rates. In Proceedings of the
Third Conference on Email and Anti-Spam, 2006.

Q. Zhang and S. Goldman. Em-dd: An improved multiple-instance learning technique. In
Proceedings of the 2001 Neural Information Processing Systems (NIPS) Conference, pages
1073–1080, Cambridge, MA, 2002. MIT Press.

M. L. Zhang and Z. H. Zhou. 2007. Multi-label learning by instance differentiation. In The 22nd
AAAI Conference on Artificial Intelligence (AAAI'07), pages 669–674, Vancouver, Canada.

Z.H. Zhou and M.L. Zhang. Ensembles of multi-instance learners. In ECML-03, 15th
European Conference on Machine Learning, pages 492–502, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

